Math 776 Graph Theory Lecture Note 6
Kruskal’s algorithm, Dijksta’s algorithm, and
Huffman algorithm

Lectured by Lincoln Lu
Transcribed by Lincoln Lu

1 Minimum spanning trees and Kruskal’s algo-
rithm

Definition 1 A weighted graph (G,w) is a graph G together with a map
w: E(G) = Rt =10, 00).

For any edge e, w(e) is called the weight of e. For any subgraph H, the total
weight of H is

e€E(H)

In particular, we are interested in a spanning tree with minimum total weight.
Such a tree is called a minimum spanning tree. Given a weighted graph (G, w),
the Kruskal’s algorithm produces a minimum spanning tree of G as follows.
Kruskal’s Algorithm:

Kruskal(G, w){
//input: a weighed graph (G, w).
//output: a minimum spanning tree.
//H: (temperate variable) an acyclic spanning subgraph.

EH)=10

Sort edges of G according to their weights.

while( |[E(H)| < |V(G)| — 1){
Find the next cheapest edge e joins two components of H.
E(H)=E(H)U {e}.

}

return H;

}

Theorem 1 (Kruskal 1956) In a connected weighted graph (G,w), Kruskal’s
algorithm constructs a minimum spanning tree.

Proof: Let n = |V(G)|. Initially, H consists of n isolated vertices. At
each iteration, the number of edges of H increases by one, while the number
of connected components of H decreases by one. When the program exits the
“while” loop, H has n — 1 edges and 1 connected component. Thus H is a
spanning tree.



Let T* be the resulting tree. We will prove w(T*) < w(T') for any spanning
tree T'.

For any tree T, let m(T') be the number of edges in T that is not in 7*. We
will inductively prove that w(T*) < w(T) for all T satisfying m(T") > 0.

If m(T) =0, we have T = T*. Thus, w(T) = w(T*), and we are done.

We assume w(T*) < w(T) for all trees T' with m(T) = k.

For any tree T' with m(T) = k + 1, let e be the first edge chosen for T* that
is not in 7. Adding e to T creates a cycle C. Let ¢’ be an edge in C' but not in
T*. From the choice of edge e, we have

w(e) < w(e').
We note that T + e — ¢’ is a spanning tree with
m(T+e—¢e)=m(T)—1=k.

By inductive hypothesis, we have

w(T) < w(T+e—c¢)
< w(T) +w(e) — ule)
< w(T).

The inductive step is completed.

Therefore, T* is a minimum spanning tree. O
Worst-case running time analysis:

Let V = |V(G)| and E = |E(G)|. The running time of Kruskal’s algorithm
for a graph G depends on the implementation of disjoint-set data structure.
There is an implementation of the disjoint-set data structure such that the
union and query takes only o(log E).

Initialization takes time O(V'), and the time to sort the edges is O(E log E).
There is O(E) operations of query and union on the disjoint-set structure, which
in total take O(F log F) time. The total running time for Kruskal’s algorithm
is O(ElogE).

2 Shortest distances and Dijkstra’s algorithm

The distance d(u, v) between two vertices w and v in a graph G is the minimum
number of edges among all u, v-paths.

For a weighted graph (G, w) and two vertices u, v, the distance d(u,v) is the
minimum weight w(P) among all u, v-paths.

Dijkstra’s algorithm calculates distances from one vertex.

Dijkstra’s Algorithm:

Dijkstra(G, w, u){
//input: a weighed graph (G, w), a starting vertex w.
//output: the distance d(u,v) for all v.



//S: (temperate variable) the set of vertices to which a shortest path from u is known.
//t(u):tentative distance from u to v.

//initializtion:

S = {u}

Extend weight function to non-edges. w(xy) = oo for any non-edge xy.

t(u) =0, t(z) = w(uz) for z # u.

while( S # V(G)){
Select a vertex v outside S with minimum value ¢(v).
For all z ¢ S, t(z) = min{t(2),t(v) + w(vz)}.

}

For all v, let d(u,v) = t(v).

Return d(u,v).

}

Theorem 2 Given a weighted (di)graph (G,w) and a vertex u € V(G), Dijk-
stra’s algorithm computes d(u, z) for each z € V(G).

Proof: Let Sy be the set S at k-th iteration, and tx(z) be value of ¢(z) at k-th
iteration. We will prove the following claim:
Claim: For k =1,2,..., we have

1. for z € Sy, tr(z) = d(u, ), and

2. for z & Sk, ti(2) is the least length of a u, z-path reaching z directly from
Sk

We use induction on k. Initial step: k = 1. We have S; = {u}, t1(u) =0 =
d(u,u), and t1(z) = w(uz). The claim holds.

Suppose that the claim holds for k. So we have t4(z) = d(u, z) for z € S,
and t(z) is the least length of a u, z-path reaching z directly from Sj.

Now we consider a set Si+1 = Sk U{v}. Here v is the last vertex added into
Sk. We have tg(v) < tx(z), for any z & S.

If 2 € Sgy1 and 2z # v, we have tp41(2) = tg(2) = d(u, 2), by inductive
hypothesis.

If 2 = v, tgg1(v) = tx(v). We need show ¢5(v) = d(u,v). On one hand,
we consider a shortest u,v-path P with weight d(u,v). Suppose z be the first
vertex on P not in Sk. Let P,, be the sub-path of P from u to z. We have

d(u,v) = w(P) > w(Pyz) > tx(2) > tr(v).

On the other hand, tx(v) > d(u,v) by definitions of t;(v) and d(u,v). Together,
we have
d(u,v) = tg(v).

For any z ¢ Sky1, we consider a minimum u, z-path P reaching z directly
from Si4i1. If P doesn’t contain v, P is a u, z-path reaching z directly from
S’. Thus, w(P) = tx(z). If P contains v, then w(p) = tx(v) + w(vz). Thus,
w(P) = min{tx(2), tx(v) + w(vz)}. We finish the inductive step.



Worst-case running time analysis:

Let V = |V(G)| and E = |E(G)|. Initialization takes time O(V?). There
are V iterations. Each iteration takes time O(V'). The total running time for
Dijkstra’s algorithm is O(V?2). O

3 Binary trees and Huffman’s algorithm

A rooted tree is a tree with one vertex r chosen as root. For each vertex v, let
P(v) be the unique v, r-path. The depth of v is the length of path P(v). The
height of a rooted tree T is the largest depth of any vertex in T'. The vertices
of P(v) \ {v} are the ancestors of v. The parent of v is the only neighbor of
v which is on P(v). The children of v are other neighbors of v other than its
parent.

A binary tree is a tree where each vertex has at most two children, and each
child of a vertex is designated as its left child and right child.

Binary trees permit storage of data for quick access. We store one item
at a leaf and access it by following the path from the root. Suppose n items
have access probabilities/frequencies p1,pa,...,pn. The expect access time is
U(T)=>"", pil;, where [; is the depth of the leaf where i-th items are stored.

Given access probabilities among n items, we want to place them at leaves
of a binary tree such that the expect access time is minimized.

A path in a binary tree can be encoded by a binary string with 0 when we
move to a left child and 1 when we move to right child. These binary strings are
prefix-free, since no two of items are stored on two vertices from a path from
the root. The binary tree with items stored on leaves gives a set of prefix-free
binary codes for these items. The expected access time is proportional to the
length of encoded messages.

Huffman’s Algorithm:

Huffman(C){
//input: C contains n nodes with associated frequencies p1,pa, ..., pn-
//output: a binary tree with minimum expected access time.

if(C has one node){
return C' as a binary tree with single node.
}

else {
Find two nodes v and v with least frequencies, say p,—1 and p,.
Let g,—1 = pn—1 + pn. Create a new node w with frequency ¢, _1.
Let C' = C\ {u,v} U{gn-1}-
Let T" = Huffman(C").
Attach nodes u and v as children of w.
Let T be the result binary tree.

}

return T7;



Example 1 Consider 6 items with frequencies 2,3,10,20,25,40. The output
of Huffman’s algorithm is the following binary tree (see Figure ??). The corre-
sponding Huffman codes are given as follows.

11000, 11001, 1101, 111,10, 0.

Figure 1: An example of Huffman coding.

Theorem 3 (Huffman) The Huffman’s algorithm computes correctly the prefiz-
free codings with minimum expected code length.

Proof: Let C be the set of frequencies and f(C) be the minimum access time
among any binary trees with the set C as leaves. Let T'(C) be the tree con-
structed by Huffman’s algorithm. The theorem says I[(T(C)) = f(C). We use
induction on the number of items.

It is trivial when n = 1 since there is only one tree.

Suppose that I[(T(C)) = f(C) for any C with n nodes.

For a set C' of n + 1 nodes, let u be the node with least frequency and v be
the node with second least frequency in C. Let T be an optimized binary tree
with leaf set C'. We observe that

1. Except for the root, all non-leaf nodes have two children.
2. u and v have the maximum depth.

If there is an non-leaf node x with only one child node y. Delete the node x
and connect y to the parent node of z. It is clearly that the new tree will have
smaller access time. Contradiction.



Now let x be the node of T" with maximum depth. Since the parent of z
have two children. The other child of z’s parent is also a leaf. We denote it by
y. We have I(z) = I(y) > max{i(u),l(v)}. We also assume that p(y) > p(z). In
particular, we have p(u) > p(x) and p(v) > p(y). Exchange node z with u and
node y with v. Let 7" be the resulting tree. We have

WT') = UT) = p(u)(u) = p)l(v) = p(x)l(x) = p(y)l(y)

+p(u)l(z) + p(v)l(y) + px)l(u) + p(y)l(v)
= UT)— (p(z) — p(u)(U(x) — l(v)) = (p(y) — p(v))((y) = I(v))
< UT)
< f(O).

Thus, T’ is also an optimized tree. Without loss of generality, we can assume
that v and v are siblings. Let w be the parent nodes of u and v. Associate
w with the frequency p(u) 4+ p(v). Delete u and v from the tree T resulting a
binary tree T” for C' = C \ {u,v} U {w}. By inductive hypothesis, we have
f(C) =UT(C")). Thus,

WT(C) = UT(C")+p(u) +p(v)

= f(C") +p(u) + p(v)
< UT") + p(u) +p(v)
< U1
< f(O).

On the other hand, we have I[(T'(C)) > f(C) by the definition of f(C'). Hence,
we get I(T'(C)) = f(C). We finish the inductive step.

The proof of this theorem is finished. |
Worst-case running time analysis:

At each iteration, it find two nodes with least frequencies. If we use a
priority queue to store the nodes, it requires two “pop” operations and one
“insert” operation. These operations can be done in O(logn) time. Let f(n) be
the worst-case running time of Huffman’s algorithm. We have

f(n)= f(n—1)4 O(logn).

It implies that f(n) = O(nlogn).
Remark: Kruskal’s algorithm is a greedy algorithm; Dijkstra’s algorithm is a
dynamical algorithm; and Huffman’s algorithm is a recursive algorithm.



