1 Eulerian circuits for undirected graphs

An Eulerian circuit/trail in a graph G is a circuit containing all the edges. A
graph is Eulerian if it has an Eulerian circuit. We first prove the following
lemma.

Lemma 1 If every vertex of a (finite) graph G has degree at least 2, then G
contains a cycle.

Proof: Let P be a maximal path in G, and let u be an endpoint of P. On one
hand, P can not be extended, every neighbor of u is in $V(P)$. On the other
hand, u has a neighbor v via an edge not in P. This edge uv and the path from
v to u form a cycle.

Theorem 1 A graph G is Eulerian if and only if G has at most one nontrivial
component and its vertices all have even degrees.

Proof:

Necessity: Suppose G is Eulerian. All edges are on a Eulerian cycle. There-
fore, all edges are in one component. Other components have no edge. Thus,
they are isolated vertices. Let us fix an orientation of the Eulerian circuit. For
any vertex v in the nontrivial component, the number of edges leaving v is equal
to the number of edges entering v. The degree d_v is the sum of edges which are
either leaving or entering v. Thus, d_v is even.

Sufficiency: We will prove it by induction on the number m of edges.
If $m = 0$, the Eulerian cycle is empty. It holds.
Suppose that the statement holds for any graph with at most m edges. In
another words, if a graph G with at most m edges has at most one nontrivial
component and its vertices all have even degrees, then G is Eulerian.
Now we consider a graph with $m + 1$ edges, which has at most one nontrivial
component H and whose vertices all have even degrees. By Lemma 2, it contains
a cycle C. Deleting all edges on C from G, H might be breaking into several
components, say H_1, H_2, \ldots, H_r. The degree of a vertex v either decreases by 2
if $v \in C$, or remains the same if $v \not\in C$. All degrees remain even after deleting
the edges of C.

Each component H_i has at most m edges. By inductive hypothesis, There is
an Eulerian circuit C_i for each component H_i. Since G has only one non-trivial
component, the cycle C must intersect with every component H_i. Pick one
vertex $v_i \in V(C) \cap V(H_i)$. The vertices v_1, v_2, \ldots, v_r break the cycle C into r
paths, say $v_1P_1v_2, v_2P_2v_3, \ldots, v_rP_rv_1$. Arrange Eulerian circuit C_i so that the
starting vertex and end vertex is \(v_i \). Now we construct an Eulerian circuit as follows.

\[
C_1 P_1 C_2 P_2 \ldots C_r P_r v_1
\]

It contains all edges of \(G \).

2 Directed Graphs

Definition 1 A directed graph \(G \) (or digraph, for short) is a triple consisting of a vertex set \(V(G) \), an edge set \(E(G) \), and a relation that associates with each edge an ordered pair of vertices called the head and the tail.

Definition 2 A loop is an edge whose head and tail are the same vertex. Multiple edges are edges that have the same pair of the head and the tail. A simple digraph is a digraph without loops or multiple edges.

For a simple digraph, an edge \(e \) is uniquely represented by its head \(u \) and its tail \(v \). In this case, we write \(e = uv \), and say \(u \) is a predecessor of \(v \) and \(v \) is a successor of \(u \). For any vertex \(v \), the out-degree \(d^+(v) \) is the number of successors of \(v \); the in-degree \(d^-(v) \) is the number of predecessors of \(v \).

For a digraph \(G \) on the vertex set \(\{v_1, v_2, \ldots, v_n\} \), the adjacency matrix \(A = (a_{ij})_{n \times n} \) of \(G \) is define to be

\[
a_{ij} = \begin{cases}
1 & \text{if } v_i v_j \in E(G) \\
0 & \text{otherwise.}
\end{cases}
\]

The out-degree \(d^+(v_i) \) is the sum of entries in \(i \)-th row of the adjacency matrix \(A \). The in-degree \(d^-(v_j) \) is the sum of entries in \(j \)-column row of the adjacency matrix \(A \). The total number of edges is

\[
\sum_{i=1}^{n} d^+(v_i) = \sum_{i=1}^{n} d^-(v_i).
\]

The following concepts are similar to those for undirected graphs.

A walk (on a digraph \(G \)) is a list \(v_0, e_1, v_1, e_2, v_2, \ldots, e_k, v_k \), satisfying \(e_i = v_{i-1} v_i \) is an edge for all \(i = 1, 2, \ldots, k \). \(k \) is called the length of the walk.

A \(u, v \)-walk is a walk with \(v_0 = u \) and \(v_k = v \).

A trail is a walk with no repeated edge.

A path is a walk with no repeated vertices.

A closed walk is a walk with the same endpoints, i.e., \(v_0 = v_k \).

A cycle is a closed walk with no repeated vertices except for the endpoints.

An Eulerian circuit/trail of a digraph \(G \) is a circuit containing all the edges. A digraph is Eulerian if it has an Eulerian circuit. We first prove the following lemma.

Lemma 2 If every vertex of a (finite) graph \(G \) has out-degree (or in-degree) at least 1, then \(G \) contains a cycle.
Proof: Let P be a maximal path in G, and u be the last vertex on P. Since P can not be extended, every successor of u is in $V(P)$. There is at least one successor of u, say v. This edge uv and the path from v to u form a cycle. □

Theorem 2 A digraph G is Eulerian if and only if G has at most one nontrivial component and $d^+(v) = d^-(v)$ for each vertex v.

Proof:

Necessity: Suppose G is Eulerian. All edges are on an Eulerian cycle. Therefore, all edges are in one component. Other components have no edges. Thus, they are isolated vertices. For any vertex v in the nontrivial component, the number of edges leaving v is equal to the number of edges entering v. Thus, $d^+(v) = d^-(v)$.

Sufficiency: We will prove it by induction on the number m of edges.

If $m = 0$, the Eulerian cycle is empty. It holds.

Suppose that the statement holds for any graph with at most m edges. In another words, if a graph G with at most m edges has at most one nontrivial component and its vertices all have even degrees, then G is Eulerian.

Now we consider a graph with $m + 1$ edges, which has at most one nontrivial component H and $d^+(v) = d^-(v) \geq 1$ for all $v \in V(H)$. By Lemma 2, it contains a cycle C. Deleting all edges on C from G, H might be breaking into several components, say H_1, H_2, \ldots, H_r. It is clear that $d^+(v) = d^-(v)$ still holds for every vertex v.

Each component H_i has at most m edges. By inductive hypothesis, There is an Eulerian circuit C_i for each component H_i. Since G has only one non-trivial component, the cycle C must intersect with every component H_i. Pick one vertex $v_i \in V(C) \cap V(H_i)$. The vertices v_1, v_2, \ldots, v_r break the cycle C into r paths, say $v_1P_1v_2, v_2P_2v_3, \ldots, v_rP_rv_1$. Arrange Eulerian circuit C_i so that the starting vertex and end vertex is v_i. Now we construct an Eulerian circuit as follows.

$$C_1P_1C_2P_2 \ldots C_rP_r, v_1$$

It contains all edges of G. □

3 Applications

A de Bruijn sequence of window-size n is a circular binary string of length 2^n such that every substring of consecutive n-bits are distinct. For example, for $n = 4$, 00001111101100101 is a de Bruijn sequence.

A de Bruijin digraph D_n is a digraph (V, E) satisfying

1. The vertex set $V = \{\text{all binary strings of length } n - 1\}$.

2. The edge set $E = \{uv \mid \text{the last } n - 2 \text{ bits of } u \text{ agree with the first } n - 2 \text{ bits of } v.\}$. Each edge can be labeled by the last bit of its head.
There is a bijection between the set of de Bruijn sequences and Eulerian circuits of de Bruijn digraphs. The bijection is obtained by collecting the labels of edges on an Eulerian circuit.

Remark: The de Bruijn sequences and de Bruijn digraphs can be defined over any alphabet.

4 Orientations and tournaments

Definition 3 An orientation of a graph G is a digraph D obtained from G by choosing an orientation $x \rightarrow y$ or $y \rightarrow x$ for every edge $xy \in E(G)$. A tournament is an orientation of a complete graph.

In a digraph, a **king** is a vertex from which every vertex is reachable by a path of length at most 2.

Theorem 3 (Landau 1953) Every tournament has a king.

Proof: Let x be a vertex with maximum out-degree in a tournament T. We claim x is a king. We will prove this claim by contradiction.

Otherwise, there is a vertex y can not reached by x in at most 2 steps. So y must reach x. If z can be reached by x, y must reach z as well. In particular, we have $d^+(y) > d^+(x)$. Contradiction to the choice of x.

\[\square \]