
Math 776 Graph Theory Lecture Notes 10 
Graph Coloring 

 
Lectured by Lincoln Lu 

Transcribed by Rebecca Hughes 
 
Definition: A proper k-coloring of a graph, G, is a labeling f:V(G) S such that: →

|S| = k 
                           f(u)≠ f(v) if uv ∈E(G) 

Definition: The chromatic number of a graph, G, is the minimum k such that G is k-
colorable and is noted: X(G)  

For any non-trivial bipartite graph, H, X(H)=2 
  cycle, X(C2k+1)=3  
  complete graph, X(Kn)=n 
Definition: The clique number of a graph, G, is te maximum size of a set of pairwise 

adjacent vertices in G and is noted: ω (G) 
Examples of Lower Bounds: 

1. X(G)≥X(H) for any subgraph H of G 
2. X(G)≥  ω (G) 
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If G is k-colorable, then V(G) =I1∪… I∪ k 
where the I’s are independent sets.  Then 
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Examples of New Operators: 
1. Disjoint union G + H 

V(G+H) = V(G) +V(H) 
E(G+H) = E(G) + E(H) 
X(G+H) = max{X(G), X(H)} 

2. Join G H = ∨ HG +  
V(G∨ H) = V(G) + V(H) 
E (G∨ H) = E(G) E(H)  {uv | u∪ ∪ ∈V(G), v∈V(H)} 
X(G∨ H) = X(G) + X(H) 

3. Cartesian product G □ H 
V(G □ H) = {(u,v) | u∈V(G), v ∈V(H)} 
E(G □ H) =  {(u1v1)(u2v2) | u1 = u2 , v1v2∈E(H) or v1 = v2 , u1u2∈E(G)} 
X(G □ H) = max{X(G),X(H)} 

 



 
 
 
 
 
Proof that X(G □ H) = max{X(G),X(H)}:  (Vizing, 1963, Aberth 1964) 

1. X(G □ H) ≥  X(G)   X(G □ H) ≥  X(H) 
X(G □ H) = max{X(G),X(H)} 

2. Suppose G is k1-colorable and H is k2-colorable with k1≤  k2 
f1: V(G) [k→ 1] 
f2: V(H) [k→ 2] 
f: V(G □ H) k→ 2
f(u,v) = f1(u)+f2(v)mod k2
If (u1,v1) is adjacent to (u2,v2) then either: 

1. u1 = u2 and v1v2∈E(H) or 
2. v1 = v2 and u1u2∈E(G) 

In case (1.) consider f(u1,v1) – f(u2,v2) = f2(v1) – f 2(v2)≠ 0 mod k 
In case (2.) consider f(u1,v1) –f (u2,v2) = f1(u1) – f1(u2) ≠ 0 mod k 

So G □ H is k2-colorable 
So X(G □ H)  max{X(G),X(H)}    ≤

■ 
Example of an Upper Bound: 

1. X(G) ≤  Δ (G) + 1  ( (G) is the maximum degree of G) Δ
Proof:  (Greedy Coloring) 
Order V(G) into any order v1,…vn. 
Suppose we color v1,…vk
Since vk+1 has at most Δ (G) lower-index neighbors, we can always pick up a 
color which is not used in its neighbors and we color vk+1 by this color.   

■     
Furthermore, this upper bound is reachable for G = Kn and G = C2k+1. 
 

Brook Theorem (1941) 
 If G is a connected graph other than a completed graph or odd cycle, then  

X(G) ≤  Δ (G). 
Proof:  Let k = (G). Δ
 Case 1:  k = 1  G = K2
 Case 2:  k = 2  G a path or cycle 

Since G is not an odd cycle (by hypothesis) G is either a path or an even 
cycle.  In both cases, X(G) = 2 = Δ (G). 

 Case 3:  k 3 ≥
  subcase a:  G not a k-regular graph 
   Pick up a vertex, vn, with degree≤  k – 1. 
   Let T be any spanning tree of G.  
   Orient T such that T is an in-tree rooted at vn. 
   We extend this partial ordering to a total ordering on V(G): 

v1, v2, …, vn



   Color the vertices greedily according to this order. 
   The number of lower-indexed neighbors of any vi is at most k-1. 
   Hence X(G)≤  k. 
 
 
  subcase b:  G is a k-regular graph   
   If G has a cut-vertex, x, then by subcase a: 

X(G1∪ {x})≤  k 
X(G2∪ {x})≤  k 

   Without loss of generality, suppose f1(x) = f2(x). 
   We define coloring of G by union of f1 and f2. 
   If K(G) ≥  2 (where K(G) is the connectivity of G) find 

v1v2 ∉E(G) 
v1vn ∈E(G) 
v2vn ∈E(G) 

G – {v1,v2} is connected 
   Find a spanning tree of G – {v1,v2}. 
   Orient it and extend it to a total ordering of v2, v4, …, vn.  
   vn has k neighbors.  v1 and v2 have same color. 

So vn has k–1 different-colored neighbors. 
(i.e. greedy coloring gives a proper k-coloring) 
It is sufficient to find v1, v2, vn satisfying 

v1v2 ∉E(G) 
v1vn ∈E(G) 
v2vn ∈E(G) 

■ 
 
Borodinad and Kostocha (1977) conjectured that: 

ω (G) < (G) X(G) < Δ ⇒ Δ (G) if Δ (G) > 9 
 
Reed (1998) proved this conjecture for Δ (G) ≥  1010. 
 
Reed’s conjecture, still open: 

X(G) ≤  ⎥⎥
⎤
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Definition: A graph, G, is color-critical if X(H) < X(G) for any proper subgraph H of G. 
 examples:  C5, K5

(if G is color-critical and X(G)=k, then G is k-critical) 
 
Theorem:  (Szekeres-wilf 1968) 
If G is a graph, then X(G) ≤  1 + maxH⊆ G δ (H) 
 Lemma:  If H is k-critical, then δ (H)  k – 1 ≥
 Proof:  Assume there is a vertex, v, with degree dv < k – 1 
  Show that H \ {v} is not k-critical. 
  By definition of k-critical, we have X(H \ {v}) < X(H) = k. 



  So we can properly color H \ {v} using k – 1 colors. 
  Since dv ≤  k – 2, only at most k – 2 colors are used for the neighbors of v. 
  Coloring v with a different color results in using k – 1 colors. 
  Then X(H) ≤  k – 1, which is a contradiction.              ▪ 
 Exercise:  prove that a k-critical graph is k – 1 edge-connected. 
 
Proof (of theorem) 
 Let H be a k-critical subgraph of G where k = X(G). 

X(G) = X(H) 
                ≤  δ (H) + 1 

                                ≤  maxH G⊆  δ (H) + 1 
Mycielski’s construction 
 

 
 
 
Construct G’ from G. 
Suppose V(G) = {v1,…,vn} 
Then  

V(G’) = {v1,…,vn}∪ {u1…un} {w} ∪
E(G’) = {vU

E(G)viuj∈
iuj, uivj, ujvi, uiw, ujw}. 

|V(G’)| = 2 |V(G)| + 1 
|E(G’)| = 3 |E(G)| + |V(G)| 

 
Grotzsch graph:  (smallest 4-critical graph) 
 
 
Mycielski’s Theorem (1955) 
From a k-chromatic triangle-free graph, G, Mycielski’s construction produces a k+1-
chromatic triangle-free graph, G’. 
Proof: 
 Suppose G’ has a triangle, T.  Since u1,…,un form an independent set, 

w∉V(T) 
 case 1: V(T) = {ui, uj, vk} 
  if k ≠ i, j  
  {vi, vj, vk} forms a triangle in G, which is a contradiction. 
  if k = i 
  viui would be an edge in G’, which doesn’t happen 
  if k≠ i 
  by construction we’d have an edge from vi to vk and one from vj to vk  



   so there’d be a triangle in G, which is a contradiction. 
 case 2: V(T) = {vi, uj, uk} 
  Suppose X(G) = k 
  Then X(G’)≤  X(G) + 1 

Now it is sufficient to prove X(G’)≥  X(G) + 1. 
 Suppose G’ has a proper k-coloring; X(G’) = k 

f: V(G)→ [k] 
 Without loss of generality, assume  

f(w) = k 
f(ui)≠ k 

f(ui) ∈  [k-1] 
 If f(vi) = k, we recolor it to f(ui) 
 For any vertex vj  v≠ i, if vivj ∈  E(G), 

f(vj)≠ k 
f(vj) ≠  f(ui) 

 After recoloring v1,…,vn it is still a proper coloring. 
 Hence, X(G) ≤  k + 1 
 So X(G) = X(G’) + 1.                        

■ 
 

Theorem: 
If G is k-critical, then G’ from Mycielski’s construction is k+1-critical. 
Proof: 
 X(G) = k,  X(G’) = k+1,  X(G \ {e})≤  k – 1 for any e 
 We will show  X(G \ {e}) ≤  k. 
 case 1: e’ = vivj
  Since X(G \ {e’})≤  k – 1 we have a proper coloring 

f: V(G)→ [k-1] 
  Extend f: V(G)→ [k] by assigning 

f(vi) = f(ui) 
f(w)=k 

  So true for case 1. 
 case 2: e’ = wui
  X(G \ {vi})≤  k-1 
  There exists a coloring: 

f: V(G \ {vi}) [k-1] →
  Extend f: V(G \ {vi}) [k] by assigning: →

f(uj) = f(vj) for any vj≠ vi 
f(ui) = f(vi) = f(w) = k 

  Then f is a proper k-coloring 
X(G’ \ {e’}) ≤  k 

 case 3: e’ = uivj
  Let e = vivj ∈E(G) 
  X(G \ {e}) ≤  k-1 
  There exists a coloring: 

f: V(G \ {e}) [k-1] →



  Extend f: V(G \ {e}) [k] by assigning: →
f(uk) = f(vk) if k≠ i 

f(ui) = k = f(vi) 
f(w) = f(vj) 

■ 


