Math 776 Graph Theory Lecture Notes 10
Graph Coloring

Lectured by Lincoln Lu
Transcribed by Rebecca Hughes

Definition: A proper k-coloring of a graph, G, is a labeling f:V(G) — S such that:
IS| =k
f(u) # f(v) if uv e E(G)
Definition: The chromatic number of a graph, G, is the minimum k such that G is k-
colorable and is noted: X(G)
For any non-trivial bipartite graph, H, X(H)=2
cycle, X(Co+1)=3
complete graph, X(K;)=n
Definition: The clique number of a graph, G, is te maximum size of a set of pairwise
adjacent vertices in G and is noted: @ (G)
Examples of Lower Bounds:
1. X(G)=X(H) for any subgraph H of G
2. X(G)=2 w(G)
3. X(G) 2 e
a(G
If G is k-colorable, then V(G) =l U ... U I
where the I’s are independent sets. Then
[ Ii|< a(G)
K

n(G)=p, || <ka(G)

i=1

1> NG)
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X(G) >

Examples of New Operators:
1. Disjoint union G + H
V(G+H) = V(G) +V(H)
E(G+H) = E(G) + E(H)
X(G+H) = max{X(G), X(H)}

2. JomGvH=G+H
V(GvH)=V(G)+ V(H)
E (GvH)=E(G) VEH) U {uv|ueV(G),ve V(H)}
X(Gv H)=X(G)+ X(H)
3. Cartesian product G o H
V(GoH)={(uv)|ueV(G),v e V(H)}
E(GoH)= {(uv)(uvy)|u=u, vivoe E(H) or vi = v, , uju, € E(G)}
X(G o H) =max{X(G),X(H)}




Proof that X(G o H) = max {X(G),X(H)}: (Vizing, 1963, Aberth 1964)
1. X(GoH) > X(G) X(G o H) > X(H)
X(G o H) = max{X(G),X(H)}
2. Suppose G is k;-colorable and H is k,-colorable with k; < k;
fl: V(G) > [ki]
2: VH) — [k]
f: V(GoH)—>k,
f(u,v) = fi(u)+f2(v)mod k;
If (u;,vy) is adjacent to (uz,v,) then either:
1. uy=u;and viv,€E(H) or
2. V=V, and Ujup e E(G)
In case (1.) consider f(u;,vi) — f(uy,v2) = fo(vy) — f 2(v2) # 0 mod k
In case (2.) consider f(u;,vy) —f (uz,v2) = fi(u;) — fi(uz) #0 mod k
So G o H is kj-colorable
So X(G o H) £ max{X(G),X(H)}
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Example of an Upper Bound:
I. X(G) £ A(G)+1 (A(G) is the maximum degree of G)

Proof: (Greedy Coloring)

Order V(G) into any order vy,...Vy.

Suppose we color vy,... v

Since vy has at most A (G) lower-index neighbors, we can always pick up a

color which is not used in its neighbors and we color vy by this color.
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Furthermore, this upper bound is reachable for G = K, and G = Cy;.

Brook Theorem (1941)
If G is a connected graph other than a completed graph or odd cycle, then
X(G) £ A(G).
Proof: Letk =A(G).
Casel: k=1 G=K,
Case 2: k=2 G apath or cycle
Since G is not an odd cycle (by hypothesis) G is either a path or an even
cycle. In both cases, X(G) =2 = A(Q).
Case 3: k>3
subcase a: G not a k-regular graph
Pick up a vertex, vn, with degree< k — 1.
Let T be any spanning tree of G.
Orient T such that T is an in-tree rooted at vy,.
We extend this partial ordering to a total ordering on V(QG):
Vi, V2, ..., Vp



Color the vertices greedily according to this order.
The number of lower-indexed neighbors of any v; is at most k-1.
Hence X(G)< k.

subcase b: G is a k-regular graph
If G has a cut-vertex, x, then by subcase a:
X(Gu{xh)<k
X(Gyu {x})<k
Without loss of generality, suppose fj(x) = f3(x).
We define coloring of G by union of f; and f,.
If K(G) > 2 (where K(G) is the connectivity of G) find
viva ¢ E(G)
vlvy, € E(G)
vovy € E(G)
G — {vy,v} is connected
Find a spanning tree of G — {v;,v»}.
Orient it and extend it to a total ordering of vy, Va, ..., Vy.
vy has k neighbors. v; and v, have same color.
So v, has k-1 different-colored neighbors.
(i.e. greedy coloring gives a proper k-coloring)
It is sufficient to find vy, v,, v, satisfying
viva ¢ E(G)
vivh € E(G)
vovy € E(G)

Borodinad and Kostocha (1977) conjectured that:
0(G)< AG) =2X(G)<AGQ)IfAG)>9
Reed (1998) proved this conjecture for A (G) > 10'.

Reed’s conjecture, still open:

X(G) < [A(G)+1+a)(G)-|
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Definition: A graph, G, is color-critical if X(H) < X(G) for any proper subgraph H of G.
examples: Cs, Ks
(if G is color-critical and X(G)=k, then G is k-critical)

Theorem: (Szekeres-wilf 1968)
If G is a graph, then X(G) < 1 + maxucg 6 (H)
Lemma: IfH is k-critical, then 6 (H) > k—1
Proof: Assume there is a vertex, v, with degree dv <k — 1
Show that H \ {v} is not k-critical.
By definition of k-critical, we have X(H \ {v}) < X(H) = k.



So we can properly color H\ {v} using k — 1 colors.
Since dv < k— 2, only at most k — 2 colors are used for the neighbors of v.
Coloring v with a different color results in using k — 1 colors.
Then X(H) < k— 1, which is a contradiction. .
Exercise: prove that a k-critical graph is k — 1 edge-connected.

Proof (of theorem)
Let H be a k-critical subgraph of G where k = X(G).
X(G) = X(H)
<OoH)+1

<maxucg o (H)+1
Mycielski’s construction
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I 2 i : 1
WE
ve uz

Construct G’ from G.
Suppose V(G) = {vi,...,Vn}
Then
V(G) = {V1,...,Vn} U {ur...un} U {W}
E(G") = U {viuj, uivj, Ujvi, Giw, Ujw}.
viujeE(G)
IV(G)[=2 [V(G)[ + 1
[E(G”)| =3 [E(G)| + V(G|

Grotzsch graph: (smallest 4-critical graph)
Mycielski’s Theorem (1955)

From a k-chromatic triangle-free graph, G, Mycielski’s construction produces a k+1-
chromatic triangle-free graph, G’.

Proof:
Suppose G’ has a triangle, T. Since ul,...,un form an independent set,
we V(T)

case 1: V(T) = {u;, u;, vi}
ifk #1,]
{vi, vj, vi} forms a triangle in G, which is a contradiction.
ifk=1i
viu; would be an edge in G’, which doesn’t happen
ifk#1i

by construction we’d have an edge from v; to v and one from v; to vy



so there’d be a triangle in G, which is a contradiction.
case 2: V(T) = {vi, u;, ux}
Suppose X(G) =k
Then X(G")< X(G) + 1
Now it is sufficient to prove X(G’)> X(G) + 1.
Suppose G’ has a proper k-coloring; X(G”) =k
f: V(G)—>[k]
Without loss of generality, assume
flw) =k
f(u) =k
f(u) e [k-1]
If f(vi) = k, we recolor it to f(u;)
For any vertex v; # vi, if viv; € E(G),
f(Vj) #k
f(v;)) # f(u))
After recoloring vy,...,vy it is still a proper coloring.
Hence, X(G) < k+1
So X(G) =X(G*) + 1.

Theorem:
If G is k-critical, then G* from Mycielski’s construction is k+1-critical.

Proof:

X(G)=k, X(G’)=k+1, X(G\ {e})< k—1foranye
We will show X(G\ {e}) < k.
case l: e’ = vjv;
Since X(G\ {e’})< k — 1 we have a proper coloring
f: V(G) > [k-1]
Extend f: V(G)— [k] by assigning
f(vi) = f(w)
fiw)=k
So true for case 1.
case 2: €’ = wu;
X(G\ {vi}) < k-1
There exists a coloring:
f: V(G \ {vi}) > [k-1]
Extend f: V(G \ {vi})—[k] by assigning:
f(u;) = f(v;) for any vj# vi
f(uj) = f(vi) = f(lw) =k
Then f'is a proper k-coloring
X(G\{e’'}) <k
case 3: €’ = u;v;
Let e = viv; € E(G)
X(G\ {e}) < k-1
There exists a coloring:
f: V(G\ {e})—[k-1]



Extend f: V(G \ {e})—[k] by assigning:
f(uy) = f(vy) if k=1
f(u) =k = f(vi)
f(w) = f(vj)



