Math 776 Graph Theory Lecture Notes 10 Graph Coloring

Lectured by Lincoln Lu Transcribed by Rebecca Hughes

Definition: A proper k-coloring of a graph, G, is a labeling $f:V(G) \rightarrow S$ such that: $|\mathbf{S}| = \mathbf{k}$ $f(u) \neq f(v)$ if $uv \in E(G)$ Definition: The *chromatic number* of a graph, G, is the minimum k such that G is kcolorable and is noted: X(G)For any non-trivial bipartite graph, H, X(H)=2 cycle, $X(C_{2k+1})=3$ complete graph, $X(K_n)=n$ Definition: The *clique number* of a graph, G, is te maximum size of a set of pairwise adjacent vertices in G and is noted: $\omega(G)$ Examples of Lower Bounds: 1. $X(G) \ge X(H)$ for any subgraph H of G 2. $X(G) \ge \omega(G)$ 3. $X(G) \ge \frac{n(G)}{\alpha(G)}$ If G is k-colorable, then V(G) = $I_1 \cup ... \cup I_k$ where the I's are independent sets. Then $|I_i| \leq \alpha(G)$ $\mathbf{n}(\mathbf{G}) = \sum_{i=1}^{k} |\mathbf{I}_i| \le \mathbf{k} \, \boldsymbol{\alpha} \, (\mathbf{G})$ $\mathbf{k} \ge \frac{n(G)}{\alpha(G)}$ $X(G) \ge \frac{n(G)}{\alpha(G)}$ Examples of New Operators: 1. Disjoint union G + HV(G+H) = V(G) + V(H)E(G+H) = E(G) + E(H) $X(G+H) = \max{X(G), X(H)}$ 2. Join $G \lor H = \overline{G} + \overline{H}$ $V(G \lor H) = V(G) + V(H)$ $E(G \lor H) = E(G) \cup E(H) \cup \{uv \mid u \in V(G), v \in V(H)\}$ $X(G \lor H) = X(G) + X(H)$ 3. Cartesian product $G \square H$ $V(G \Box H) = \{(u,v) | u \in V(G), v \in V(H)\}$ $E(G \square H) = \{(u_1v_1)(u_2v_2) | u_1 = u_2, v_1v_2 \in E(H) \text{ or } v_1 = v_2, u_1u_2 \in E(G)\}$ $X(G \square H) = \max{X(G), X(H)}$

Proof that $X(G \square H) = max \{X(G), X(H)\}$: (Vizing, 1963, Aberth 1964)

- 1. $X(G \Box H) \ge X(G)$ $X(G \Box H) \ge X(H)$ $X(G \Box H) = \max \{X(G), X(H)\}$
- 2. Suppose G is k_1 -colorable and H is k_2 -colorable with $k_1 \le k_2$ f1: V(G) $\rightarrow [k_1]$ f2: V(H) $\rightarrow [k_2]$ f: V(G \square H) $\rightarrow k_2$ f(u,v) = f_1(u)+f_2(v)mod k_2 If (u_1,v_1) is adjacent to (u_2,v_2) then either: 1. $u_1 = u_2$ and $v_1v_2 \in E(H)$ or 2. $v_1 = v_2$ and $u_1u_2 \in E(G)$ In case (1.) consider f(u_1,v_1) - f(u_2,v_2) = f_2(v_1) - f_2(v_2) \neq 0 \mod k In case (2.) consider f(u_1,v_1) - f(u_2,v_2) = f_1(u_1) - f_1(u_2) \neq 0 \mod k So G \square H is k_2 -colorable So X(G \square H) $\le \max{X(G), X(H)}$

Example of an Upper Bound:

 X(G) ≤ Δ(G) + 1 (Δ(G) is the maximum degree of G) Proof: (Greedy Coloring) Order V(G) into any order v₁,...v_n. Suppose we color v₁,...v_k Since v_{k+1} has at most Δ(G) lower-index neighbors, we can always pick up a color which is not used in its neighbors and we color v_{k+1} by this color.

Furthermore, this upper bound is reachable for $G = K_n$ and $G = C_{2k+1}$.

Brook Theorem (1941)

If G is a connected graph other than a completed graph or odd cycle, then $X(G) \leq \Delta(G)$.

<u>Proof:</u> Let $k = \Delta(G)$.

```
Case 1: k = 1 G = K<sub>2</sub>
```

Case 2: k = 2 G a path or cycle

Since G is not an odd cycle (by hypothesis) G is either a path or an even cycle. In both cases, $X(G) = 2 = \Delta(G)$.

Case 3: $k \ge 3$

subcase a: G not a k-regular graph

Pick up a vertex, vn, with degree $\leq k - 1$.

Let T be any spanning tree of G.

Orient T such that T is an in-tree rooted at v_n .

We extend this partial ordering to a total ordering on V(G):

 $v_1, v_2, ..., v_n$

Color the vertices greedily according to this order. The number of lower-indexed neighbors of any v_i is at most k-1. Hence $X(G) \le k$.

subcase b: G is a k-regular graph If G has a cut-vertex, x, then by subcase a: $X(G_1 \cup \{x\}) \le k$ $X(G_2 \cup \{x\}) \le k$ Without loss of generality, suppose $f_1(x) = f_2(x)$. We define coloring of G by union of f_1 and f_2 . If $K(G) \ge 2$ (where K(G) is the connectivity of G) find $v_1v_2 \notin E(G)$ $v1v_n \in E(G)$ $v_2v_n \in E(G)$ $G - \{v_1, v_2\}$ is connected Find a spanning tree of $G - \{v_1, v_2\}$. Orient it and extend it to a total ordering of v_2, v_4, \ldots, v_n . v_n has k neighbors. v_1 and v_2 have same color. So v_n has k–1 different-colored neighbors. (i.e. greedy coloring gives a proper k-coloring) It is sufficient to find v_1 , v_2 , v_n satisfying $v_1v_2 \notin E(G)$ $v_1v_n \in E(G)$ $v_2v_n \in E(G)$

Borodinad and Kostocha (1977) conjectured that: $\omega(G) \le \Delta(G) \Rightarrow X(G) \le \Delta(G) \text{ if } \Delta(G) > 9$

Reed (1998) proved this conjecture for $\Delta(G) \ge 10^{10}$.

Reed's conjecture, still open:

$$X(G) \le \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil$$

<u>Definition</u>: A graph, G, is *color-critical* if X(H) < X(G) for any proper subgraph H of G. examples: C₅, K₅ (if G is color-critical and X(G)=k, then G is *k*-critical)

 $\begin{array}{l} \underline{\text{Theorem:}} & (\text{Szekeres-wilf 1968}) \\ \text{If G is a graph, then } X(G) \leq 1 + \max_{H \subseteq G} \delta(H) \\ \underline{\text{Lemma:}} & \text{If H is k-critical, then } \delta(H) \geq k-1 \\ \underline{\text{Proof:}} & \text{Assume there is a vertex, } v, \text{ with degree } dv \leq k-1 \\ & \text{Show that } H \setminus \{v\} \text{ is not k-critical.} \\ & \text{By definition of k-critical, we have } X(H \setminus \{v\}) \leq X(H) = k. \end{array}$

So we can properly color $H \setminus \{v\}$ using k - 1 colors. Since $dv \le k - 2$, only at most k - 2 colors are used for the neighbors of v. Coloring v with a different color results in using k - 1 colors. Then $X(H) \le k - 1$, which is a contradiction. Exercise: prove that a k-critical graph is k - 1 edge-connected.

Proof (of theorem)

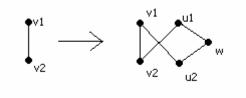
Let H be a k-critical subgraph of G where
$$k = X(G)$$
.

$$X(G) = X(H)$$

$$\leq \delta(H) + 1$$

$$\leq \max_{H \subseteq G} \delta(H) + 1$$

Mycielski's construction



Construct G' from G. Suppose $V(G) = \{v_1,...,v_n\}$ Then

$$V(G') = \{v_1, \dots, v_n\} \cup \{u_1 \dots u_n\} \cup \{w\}$$

$$E(G') = \bigcup_{viuj \in E(G)} \{v_iu_j, u_iv_j, u_jv_i, u_iw, u_jw\}.$$

$$|V(G')| = 2 |V(G)| + 1$$

$$|E(G')| = 3 |E(G)| + |V(G)|$$

Grotzsch graph: (smallest 4-critical graph)

Mycielski's Theorem (1955)

From a k-chromatic triangle-free graph, G, Mycielski's construction produces a k+1chromatic triangle-free graph, G'.

Proof:

Suppose G' has a triangle, T. Since u1,...,un form an independent set,

$$\label{eq:VT} \begin{split} & w \notin V(T) \\ \text{case 1: } V(T) = \{u_i, \, u_j, \, v_k\} \\ & \text{if } k \neq i, \, j \\ & \{v_i, \, v_j, \, v_k\} \text{ forms a triangle in G, which is a contradiction.} \\ & \text{if } k = i \\ & v_i u_i \text{ would be an edge in G', which doesn't happen} \\ & \text{if } k \neq i \\ & \text{by construction we'd have an edge from } v_i \text{ to } v_k \text{ and one from } v_j \text{ to } v_k \end{split}$$

so there'd be a triangle in G, which is a contradiction. case 2: $V(T) = \{v_i, u_i, u_k\}$ Suppose X(G) = kThen $X(G') \le X(G) + 1$ Now it is sufficient to prove $X(G') \ge X(G) + 1$. Suppose G' has a proper k-coloring; X(G') = kf: V(G) \rightarrow [k] Without loss of generality, assume f(w) = k $f(u_i) \neq k$ $f(u_i) \in [k-1]$ If f(vi) = k, we recolor it to $f(u_i)$ For any vertex $v_i \neq v_i$, if $v_i v_i \in E(G)$, $f(v_i) \neq k$ $f(v_i) \neq f(u_i)$ After recoloring v_1, \ldots, v_n it is still a proper coloring. Hence, $X(G) \le k + 1$ So X(G) = X(G') + 1.

Theorem:

If G is k-critical, then G' from Mycielski's construction is k+1-critical. <u>Proof:</u>

```
X(G) = k, X(G') = k+1, X(G \setminus \{e\}) \le k-1 for any e
We will show X(G \setminus \{e\}) \leq k.
case 1: e' = v_i v_i
          Since X(G \setminus \{e'\}) \le k - 1 we have a proper coloring
                                       f: V(G) \rightarrow [k-1]
          Extend f: V(G) \rightarrow [k] by assigning
                                          f(v_i) = f(u_i)
                                            f(w)=k
          So true for case 1.
case 2: e' = wu_i
          X(G \setminus \{v_i\}) \le k-1
          There exists a coloring:
                                   f: V(G \ {v<sub>i</sub>}) \rightarrow [k-1]
          Extend f: V(G \setminus \{v_i\}) \rightarrow [k] by assigning:
                                f(u_i) = f(v_i) for any v_i \neq v_i
                                   f(u_i) = f(v_i) = f(w) = k
          Then f is a proper k-coloring
                                      X(G' \setminus \{e'\}) \le k
case 3: e' = u_i v_i
          Let e = v_i v_i \in E(G)
          X(G \setminus \{e\}) \leq k-1
          There exists a coloring:
                                   f: V(G \ {e}) \rightarrow [k-1]
```

Extend f: V(G \ {e}) \rightarrow [k] by assigning: $f(u_k) = f(v_k) \text{ if } k \neq i$ $f(u_i) = k = f(v_i)$ $f(w) = f(v_j)$