

The Giant Component in a Random Subgraph of a Given Graph

Linyuan Lu University of South Carolina

Coauthors: Fan Chung Graham, Paul Horn, Xing Peng

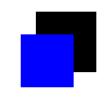
Atlanta Lecture Series in Combinatorics & Graph Theory IV Georgia State University, November 5-6, 2011.

Outline

- Percolation on graphs
 - Motivations
 - Previous results
 - Examples
 - Our results
 - Methods

- Percolation on graphs
 - Motivations
 - Previous results
 - Examples
 - Our results
 - Methods
- Ongoing projects on hypergraphs
 - Laplacians of hypergraphs
 - Random hypergraphs

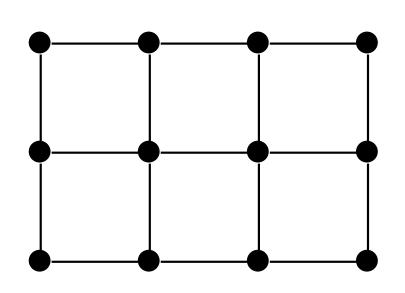
Part I: Graph percolation



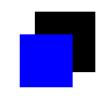
- G: a connected graph on n vertices
- p: a probability ($0 \le p \le 1$)

 G_p : a random spanning subgraph of G, obtained as follows: for each edge f of G, independently,

 $\Pr(f \text{ is an edge of } G_p) = p.$



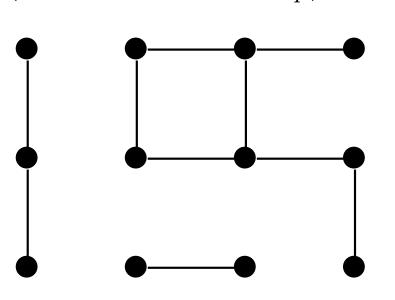
Part I: Graph percolation



- G: a connected graph on n vertices
- p: a probability ($0 \le p \le 1$)

 G_p : a random spanning subgraph of G, obtained as follows: for each edge f of G, independently,

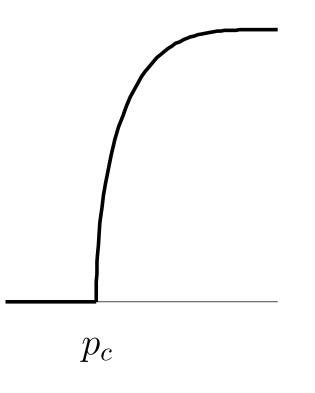
 $\Pr(f \text{ is an edge of } G_p) = p.$



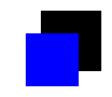
The Giant Component in a Random Subgraph of a Given Graph

Percolation threshold p_c

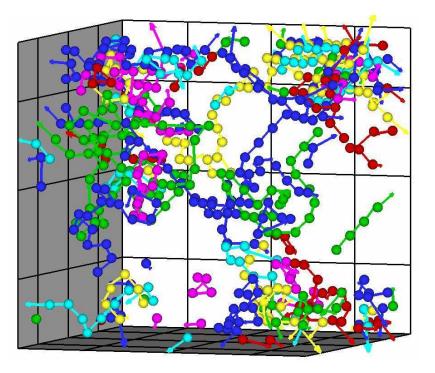
For p < p_c, almost surely there is no giant component
 For p > p_c, almost surely there is a giant component.



Motivations



- Graph theory: random graphs
- Theoretical physics: crystals melting
- Sociology: the spread of disease on contact networks



The Giant Component in a Random Subgraph of a Given Graph

The case $G = K_n$

For $G = K_n$, $G_p = G(n, p)$: Erdős-Rényi random graphs

The case $G = K_n$

For $G = K_n$, $G_p = G(n, p)$: Erdős-Rényi random graphs

- n nodes

The case $G = K_n$

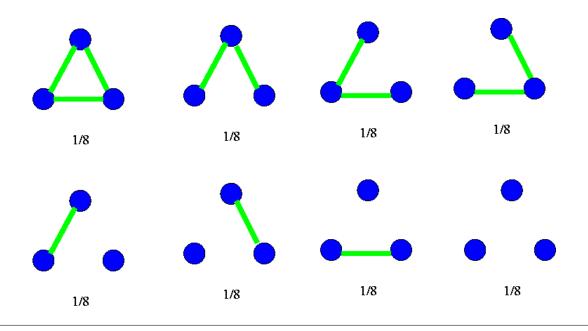
For $G = K_n$, $G_p = G(n, p)$: Erdős-Rényi random graphs

- n nodes
- For each pair of vertices, create an edge independently with probability p.

The case $G = K_n$

For $G = K_n$, $G_p = G(n, p)$: Erdős-Rényi random graphs

- n nodes
- For each pair of vertices, create an edge independently with probability p.
- An example $G(3, \frac{1}{2})$:



The Giant Component in a Random Subgraph of a Given Graph

Let $p \sim 1/n + \mu/n$.

■ If $\mu < 0$, the largest component has size $(\mu - \log(1 + \mu))^{-1} \log n + O(\log \log n)$.

Let $p \sim 1/n + \mu/n$.

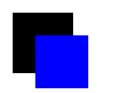
- If $\mu < 0$, the largest component has size $(\mu \log(1 + \mu))^{-1} \log n + O(\log \log n)$.
 - If $\mu = 0$, the largest component has size of order $n^{2/3}$.

Let $p \sim 1/n + \mu/n$.

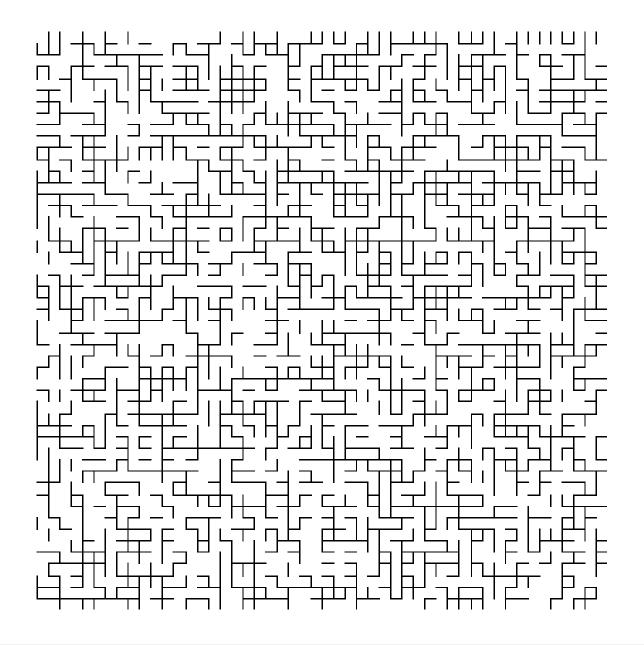
- If $\mu < 0$, the largest component has size $(\mu \log(1 + \mu))^{-1} \log n + O(\log \log n)$.
 - If $\mu = 0$, the largest component has size of order $n^{2/3}$.
- If $\mu > 0$, there is a unique giant component of size αn where $\mu = -\alpha^{-1} \log(1 - \alpha) - 1$.

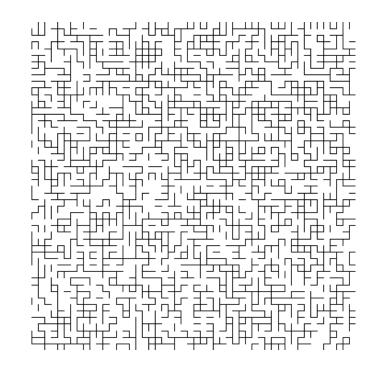
Let $p \sim 1/n + \mu/n$.

- If $\mu < 0$, the largest component has size $(\mu \log(1 + \mu))^{-1} \log n + O(\log \log n)$.
 - If $\mu = 0$, the largest component has size of order $n^{2/3}$.
- If $\mu > 0$, there is a unique giant component of size αn where $\mu = -\alpha^{-1} \log(1 - \alpha) - 1$.
- Bollobás showed that a component of size at least $n^{2/3}$ in $G_{n,p}$ is almost always unique if p exceeds $1/n + 4(\log n)^{1/2}n^{-4/3}$. (Later he removed the $\log n$ -factor.)

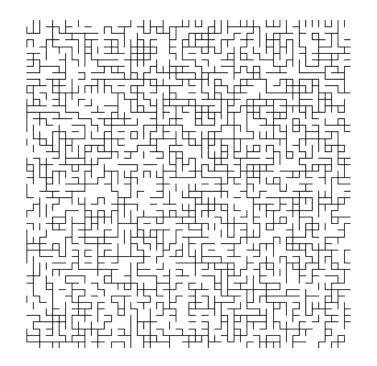


Percolation of Z^d

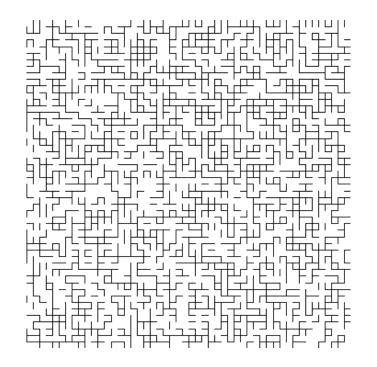




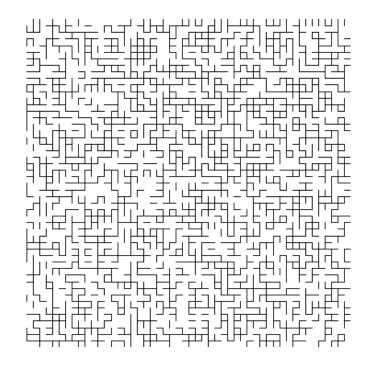
Percolation of Z^d



Kesten (1980): $p_c(\mathbb{Z}^2) = \frac{1}{2}$.



Kesten (1980): $p_c(\mathbb{Z}^2) = \frac{1}{2}$. Lorenz and Ziff (1997, simulation): $p_c(\mathbb{Z}^3) \approx 0.2488126 \pm 0.0000005$ if it exists.



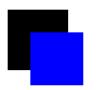
Kesten (1980): $p_c(\mathbb{Z}^2) = \frac{1}{2}$. Lorenz and Ziff (1997, simulation): $p_c(\mathbb{Z}^3) \approx 0.2488126 \pm 0.0000005$ if it exists.

Kesten (1990): $p_c(\mathbb{Z}^d) \sim \frac{1}{2d}$ as $d \to \infty$.

d-regular graphs

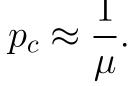
Alon, Benjamini, Stacey (2004): Suppose $d \ge 2$ and let (G_n) be a sequence of d-regular expanders with $girth(G_n) \to \infty$, then

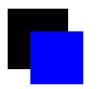
$$p_c = \frac{1}{d-1} + o(1).$$



Dense graphs

Bollobás, Borgs, Chayes, and Riordan (2008): Suppose that G is a dense graph (i.e., average degree $d = \Theta(n)$). Let μ be the largest eigenvalue of the adjacency matrix of G. Then



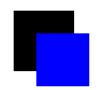


Dense graphs

Bollobás, Borgs, Chayes, and Riordan (2008): Suppose that *G* is a dense graph (i.e., average degree $d = \Theta(n)$). Let μ be the largest eigenvalue of the adjacency matrix of *G*. Then

 $p_c \approx \frac{1}{\mu}.$

Remark: The requirement of "dense graph" is essential. Their methods can not be extended to sparse graphs.

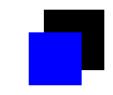


Is $p_c \approx \frac{1}{\mu}$?

Is $p_c \approx \frac{1}{\mu}$?

"Yes" for some regular graphs and for dense graphs.

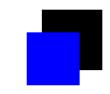
Questions



Is
$$p_c \approx \frac{1}{\mu}$$
?

"Yes" for some regular graphs and for dense graphs. "No" for general graphs.

Questions



Is
$$p_c \approx \frac{1}{\mu}$$
?

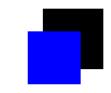
"Yes" for some regular graphs and for dense graphs. "No" for general graphs.

We ask

- $\blacksquare \quad \text{Is } p_c \geq \frac{1}{\mu}?$
- Under what conditions, $p_c \approx \frac{1}{\mu}$?

Degrees: d_1, d_2, \ldots, d_n .

Degrees: d₁, d₂, ..., d_n.
 d = (d₁, d₂, ..., d_n)*.



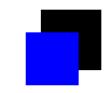
- Degrees: d_1, d_2, \ldots, d_n .
- **d** = $(d_1, d_2, \dots, d_n)^*$.
- I The volume: $\operatorname{vol}(S) = \sum_{i \in S} d_i$.

- Degrees: d_1, d_2, \ldots, d_n .
- **d** = $(d_1, d_2, \dots, d_n)^*$.
- The volume: $\operatorname{vol}(S) = \sum_{i \in S} d_i$.
- The k-th volume: $\operatorname{vol}_k(S) = \sum_{i \in S} d_i^k$.

- Degrees: d_1, d_2, \ldots, d_n .
- **d** = $(d_1, d_2, \dots, d_n)^*$.
- The volume: $\operatorname{vol}(S) = \sum_{i \in S} d_i$.
- The k-th volume: $\operatorname{vol}_k(S) = \sum_{i \in S} d_i^k$.
- Average degree: $d = \frac{\operatorname{vol}(G)}{n}$.

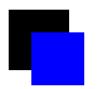


- Degrees: d_1, d_2, \ldots, d_n .
- **d** = $(d_1, d_2, \dots, d_n)^*$.
- The volume: $\operatorname{vol}(S) = \sum_{i \in S} d_i$.
- The k-th volume: $\operatorname{vol}_k(S) = \sum_{i \in S} d_i^k$.
- Average degree: $d = \frac{\operatorname{vol}(G)}{n}$.
- Second order average degree: $\tilde{d} = \frac{\operatorname{vol}_2(G)}{\operatorname{vol}(G)}$



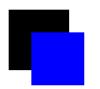
- Degrees: d_1, d_2, \ldots, d_n .
- $\mathbf{d} = (d_1, d_2, \dots, d_n)^*.$
- The volume: $\operatorname{vol}(S) = \sum_{i \in S} d_i$.
- The k-th volume: $\operatorname{vol}_k(S) = \sum_{i \in S} d_i^k$.
- Average degree: $d = \frac{\operatorname{vol}(G)}{n}$.
 - Second order average degree: $\tilde{d} = \frac{\operatorname{vol}_2(G)}{\operatorname{vol}(G)}$
 - Third order average degree: $\tilde{\tilde{d}} = \frac{\operatorname{vol}_3(G)}{\operatorname{vol}_2(G)}$.

- Degrees: d_1, d_2, \ldots, d_n .
- $\bullet \quad \mathbf{d} = (d_1, d_2, \dots, d_n)^*.$
- The volume: $\operatorname{vol}(S) = \sum_{i \in S} d_i$.
- The k-th volume: $\operatorname{vol}_k(S) = \sum_{i \in S} d_i^k$.
- Average degree: $d = \frac{\operatorname{vol}(G)}{n}$.
 - Second order average degree: $\tilde{d} = \frac{\operatorname{vol}_2(G)}{\operatorname{vol}(G)}$
 - I Third order average degree: $\tilde{d} = \frac{\operatorname{vol}_3(G)}{\operatorname{vol}_2(G)}$.
- A connected component is giant if its volume is $\Theta(vol(G))$.



Yes, $p_c \geq \frac{1}{\mu}$.

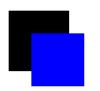
Chung, Lu, Horn 2008: For $p < \frac{1}{\mu}$, almost surely every connected component in G_p has volume at most $O(\sqrt{\text{vol}_2(G)}g(n))$, where g(n) is any slowly growing function as $n \to \infty$.



Yes, $p_c \geq \frac{1}{\mu}$.

Proof: Let A be the event that there exists a component S in G_p with $vol(S) > C\sqrt{vol_2(G)}$.

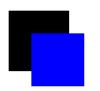
Claim A: $Pr(A) \leq \frac{1}{C^2(1-p\mu)}$.



Yes, $p_c \geq \frac{1}{n}$.

Proof: Let A be the event that there exists a component S in G_p with $\operatorname{vol}(S) > C\sqrt{\operatorname{vol}_2(G)}$. **Claim A:** $\Pr(A) \leq \frac{1}{C^2(1-p\mu)}$.

- *u*, *v*: two random vertices selected with probability proportional to their degrees.

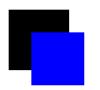


Yes, $p_c \geq \frac{1}{\mu}$.

Proof: Let A be the event that there exists a component S in G_p with $\operatorname{vol}(S) > C\sqrt{\operatorname{vol}_2(G)}$. **Claim A:** $\Pr(A) \leq \frac{1}{C^2(1-p\mu)}$.

- *u*, *v*: two random vertices selected with probability proportional to their degrees.

-
$$|\{k \text{-path from } u \text{ to } v \text{ in } G\}| \leq \mathbf{1}_u^* A^k \mathbf{1}_v.$$

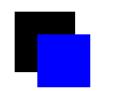


Yes, $p_c \geq \frac{1}{n}$.

Proof: Let A be the event that there exists a component S in G_p with $\operatorname{vol}(S) > C\sqrt{\operatorname{vol}_2(G)}$. **Claim A**: $\Pr(A) \leq \frac{1}{C^2(1-p\mu)}$.

- *u*, *v*: two random vertices selected with probability proportional to their degrees.

-
$$|\{k\text{-path from } u \text{ to } v \text{ in } G\}| \leq \mathbf{1}_u^* A^k \mathbf{1}_v.$$

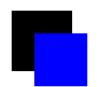


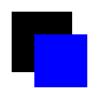
$$\leq \sum_{u,v} \frac{d_u}{\operatorname{vol}(G)} \frac{d_v}{\operatorname{vol}(G)} \sum_{k=0}^n p^k \mathbf{1}_u^* A^k \mathbf{1}_v$$

$$\leq \sum_{u,v} \frac{d_u}{\operatorname{vol}(G)} \frac{d_v}{\operatorname{vol}(G)} \sum_{k=0}^n p^k \mathbf{1}_u^* A^k \mathbf{1}_v$$
$$= \sum_{k=0}^n \frac{1}{\operatorname{vol}(G)^2} p^k \mathbf{d}^* A^k \mathbf{d}$$

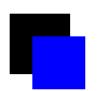
$$\leq \sum_{u,v} \frac{d_u}{\operatorname{vol}(G)} \frac{d_v}{\operatorname{vol}(G)} \sum_{k=0}^n p^k \mathbf{1}_u^* A^k \mathbf{1}_v$$
$$= \sum_{k=0}^n \frac{1}{\operatorname{vol}(G)^2} p^k \mathbf{d}^* A^k \mathbf{d}$$
$$\leq \sum_{k=0}^\infty \frac{p^k \mu^k \operatorname{vol}_2(G)}{\operatorname{vol}(G)^2}$$

 $\Pr(u, v \text{ are in the same component of } G_p)$ $\leq \sum_{u,v} \frac{d_u}{\operatorname{vol}(G)} \frac{d_v}{\operatorname{vol}(G)} \sum_{k=0}^n p^k \mathbf{1}_u^* A^k \mathbf{1}_v$ $= \sum_{\substack{k=0\\\infty}}^{n} \frac{1}{\operatorname{vol}(G)^2} p^k \mathbf{d}^* A^k \mathbf{d}$ $\leq \sum_{k=0}^{\infty} \frac{p^k \mu^k \operatorname{vol}_2(G)}{\operatorname{vol}(G)^2}$ $\leq \frac{\tilde{d}}{(1-p\mu)\operatorname{vol}(G)}.$





 $\Pr(u, v \text{ are in the same component of } G_p) \\ \geq \Pr(A \text{ and } u, v \in S)$



 $\Pr(u, v \text{ are in the same component of } G_p)$ $\geq \Pr(A \text{ and } u, v \in S)$ $> \Pr(A) \frac{C\sqrt{\operatorname{vol}_2(G)}}{\operatorname{vol}(G)} \frac{C\sqrt{\operatorname{vol}_2(G)}}{\operatorname{vol}(G)}$

 $\begin{aligned} &\Pr(u, v \text{ are in the same component of } G_p) \\ &\geq &\Pr(A \text{ and } u, v \in S) \\ &> &\Pr(A) \frac{C\sqrt{\operatorname{vol}_2(G)}}{\operatorname{vol}(G)} \frac{C\sqrt{\operatorname{vol}_2(G)}}{\operatorname{vol}(G)} \\ &= &\Pr(A) \frac{C^2 \tilde{d}}{\operatorname{vol}(G)}. \end{aligned}$

 $\Pr(u, v \text{ are in the same component of } G_p) \geq \Pr(A \text{ and } u, v \in S)$ > $\Pr(A) \frac{C\sqrt{\operatorname{vol}_2(G)}}{\operatorname{vol}(G)} \frac{C\sqrt{\operatorname{vol}_2(G)}}{\operatorname{vol}(G)}$ = $\Pr(A) \frac{C^2 \tilde{d}}{\operatorname{vol}(G)}.$

Thus,
$$\frac{d}{(1-p\mu)\mathrm{vol}(G)} > \Pr(A)\frac{C^2d}{\mathrm{vol}(G)}$$

The Giant Component in a Random Subgraph of a Given Graph

 $\begin{aligned} &\Pr(u, v \text{ are in the same component of } G_p) \\ &\geq &\Pr(A \text{ and } u, v \in S) \\ &> &\Pr(A) \frac{C\sqrt{\operatorname{vol}_2(G)}}{\operatorname{vol}(G)} \frac{C\sqrt{\operatorname{vol}_2(G)}}{\operatorname{vol}(G)} \\ &= &\Pr(A) \frac{C^2 \tilde{d}}{\operatorname{vol}(G)}. \end{aligned}$

Thus,
$$\frac{\tilde{d}}{(1-p\mu)\mathrm{vol}(G)} > \Pr(A)\frac{C^2\tilde{d}}{\mathrm{vol}(G)}$$
$$\Pr(A) < \frac{1}{C^2(1-p\mu)}.$$

The Giant Component in a Random Subgraph of a Given Graph

The target graphs

- Unevenly distributed degree sequence, like power law graphs.
- Some bounds on spectra, like expanders.

Model $G(w_1, w_2, ..., w_n)$

Random graph model with given expected degree sequence

- n nodes with weights w_1, w_2, \ldots, w_n .

Random graph model with given expected degree sequence

- n nodes with weights w_1, w_2, \ldots, w_n .
- For each pair (i, j), create an edge independently with probability $p_{ij} = w_i w_j \rho$, where $\rho = \frac{1}{\sum_{i=1}^n w_i}$.

Random graph model with given expected degree sequence

- n nodes with weights w_1, w_2, \ldots, w_n .
- For each pair (i, j), create an edge independently with probability $p_{ij} = w_i w_j \rho$, where $\rho = \frac{1}{\sum_{i=1}^n w_i}$.
- The graph H has probability

$$\prod_{ij\in E(H)} p_{ij} \prod_{ij\notin E(H)} (1-p_{ij}).$$

Random graph model with given expected degree sequence

- n nodes with weights w_1, w_2, \ldots, w_n .
- For each pair (i, j), create an edge independently with probability $p_{ij} = w_i w_j \rho$, where $\rho = \frac{1}{\sum_{i=1}^n w_i}$.
- The graph H has probability

$$\prod_{ij\in E(H)} p_{ij} \prod_{ij\notin E(H)} (1-p_{ij}).$$

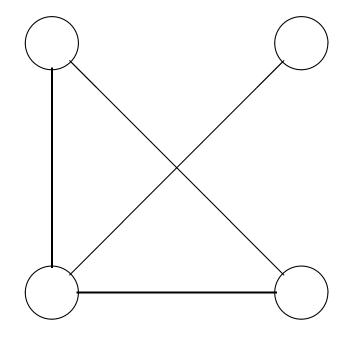
- The expected degree of vertex i is w_i .

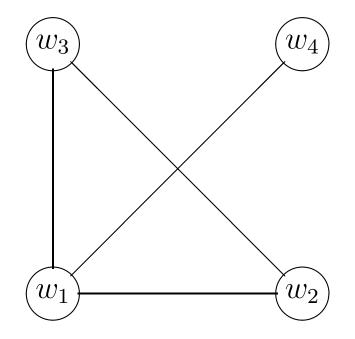
Random graph model with given expected degree sequence

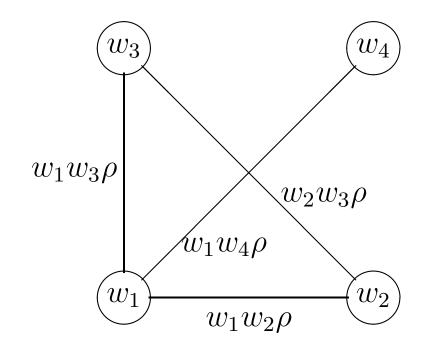
- n nodes with weights w_1, w_2, \ldots, w_n .
- For each pair (i, j), create an edge independently with probability $p_{ij} = w_i w_j \rho$, where $\rho = \frac{1}{\sum_{i=1}^n w_i}$.
- The graph H has probability

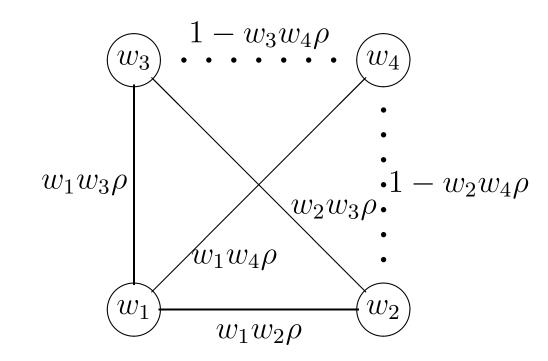
$$\prod_{ij\in E(H)} p_{ij} \prod_{ij\notin E(H)} (1-p_{ij}).$$

- The expected degree of vertex i is w_i .
- Erdős-Rényi model G(n, p) = G(np, ..., np).

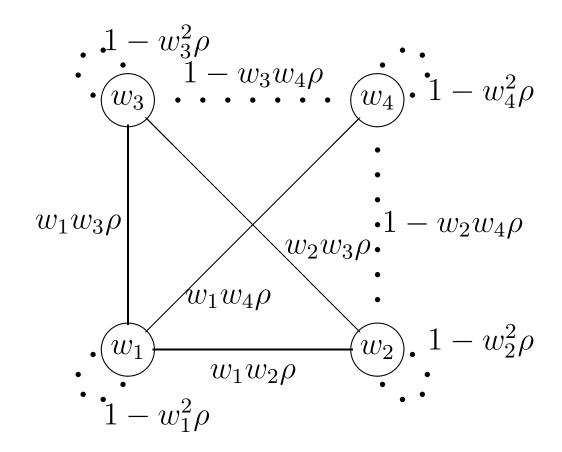




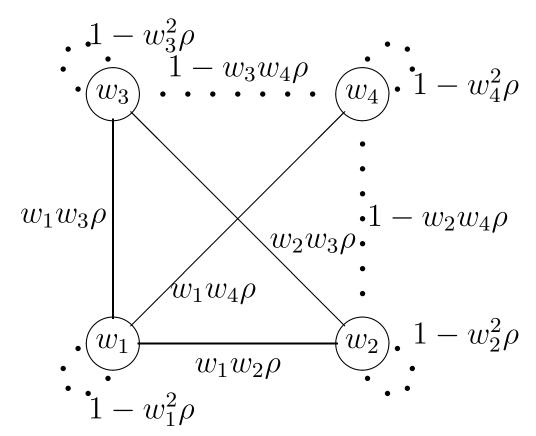




An example: $G(w_1, w_2, w_3, w_4)$



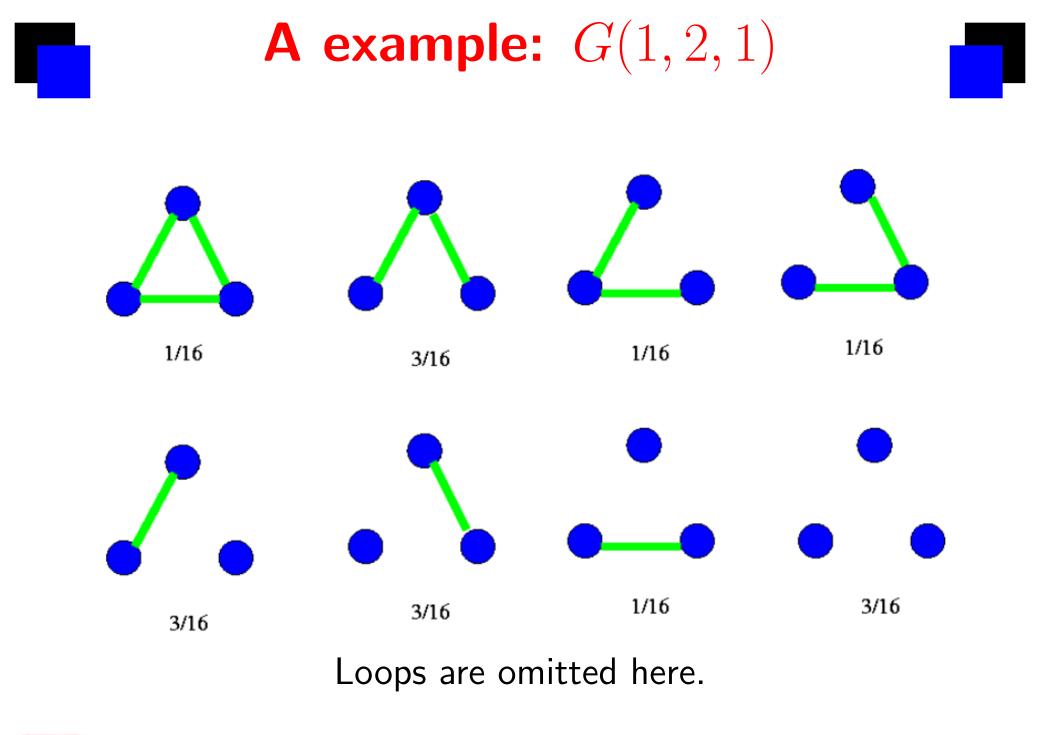
An example: $G(w_1, w_2, w_3, w_4)$

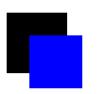


The probability of the graph is

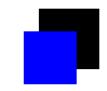
$$w_1^3 w_2^2 w_3^2 w_4 \rho^4 (1 - w_2 w_4 \rho) \times (1 - w_3 w_4 \rho) \prod_{i=1}^4 (1 - w_i^2 \rho).$$

The Giant Component in a Random Subgraph of a Given Graph





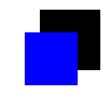
Notations



For $G = G(w_1, \ldots, w_n)$, let

- $d = \frac{1}{n} \sum_{i=1}^{n} w_i$ - $\tilde{d} = \frac{\sum_{i=1}^{n} w_i^2}{\sum_{i=1}^{n} w_i}$.
 - The volume of S: $\operatorname{vol}(S) = \sum_{i \in S} w_i$.

Notations



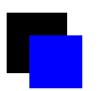
For
$$G = G(w_1, \ldots, w_n)$$
, let

- $d = \frac{1}{n} \sum_{i=1}^{n} w_i$ - $\tilde{d} = \frac{\sum_{i=1}^{n} w_i^2}{\sum_{i=1}^{n} w_i}$.
 - The volume of S: $\operatorname{vol}(S) = \sum_{i \in S} w_i$.

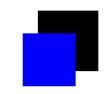
We have

$$\tilde{d} \geq d$$

"=" holds if and only if $w_1 = \cdots = w_n$.



Notations



For
$$G = G(w_1, \ldots, w_n)$$
, let

- $d = \frac{1}{n} \sum_{i=1}^{n} w_i$ - $\tilde{d} = \frac{\sum_{i=1}^{n} w_i^2}{\sum_{i=1}^{n} w_i}$.
 - The volume of S: $\operatorname{vol}(S) = \sum_{i \in S} w_i$.

We have

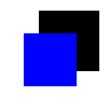
$$\tilde{d} \geq d$$

"=" holds if and only if
$$w_1 = \cdots = w_n$$
.

A connected component \boldsymbol{S} is called a giant component if

$$\operatorname{vol}(S) = \Theta(\operatorname{vol}(G)).$$

Connected components



Chung and Lu (2001) For $G = G(w_1, ..., w_n)$,

If $\tilde{d} < 1 - \epsilon$, then almost surely, all components have volume at most $O(\sqrt{n} \log n)$.

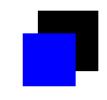
Connected components

Chung and Lu (2001) For $G = G(w_1, ..., w_n)$,

- If $\tilde{d} < 1 \epsilon$, then almost surely, all components have volume at most $O(\sqrt{n} \log n)$.
- If d > 1 + ϵ, then almost surely there is a unique giant component of volume Θ(vol(G)). All other components have size at most

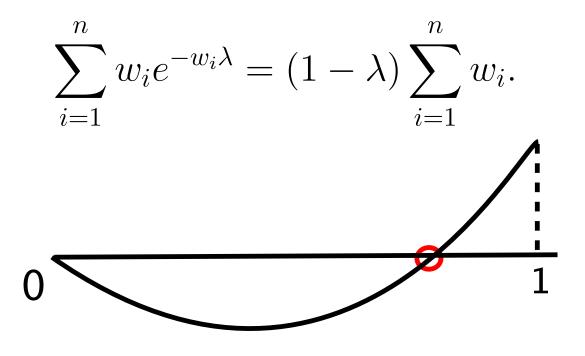
$$\left\{ \begin{array}{ll} \frac{\log n}{d-1-\log d-\epsilon d} & \text{ if } \frac{1}{1-\epsilon} < d < \frac{2}{1-\epsilon} \\ \frac{\log n}{1+\log d-\log 4+2\log(1-\epsilon)} & \text{ if } d > \frac{4}{e(1-\epsilon)^2}. \end{array} \right.$$

Volume of Giant Component



Chung and Lu (2004)

If the average degree is strictly greater than 1, then almost surely the giant component in a graph G in $G(\mathbf{w})$ has volume $(\lambda_0 + O(\sqrt{n \frac{\log^{3.5} n}{\operatorname{vol}(G)}}))\operatorname{vol}(G)$, where λ_0 is the unique positive root of the following equation:



Percolation on $G(w_1, w_2, \ldots, w_n)$

 $G_p = G(w_1 p, \ldots, w_n p).$

$$G_p = G(w_1p,\ldots,w_np).$$

We have

If $p < \frac{1}{\tilde{d}}$, there is no giant component.

$$G_p = G(w_1 p, \ldots, w_n p).$$

We have

If p < ¹/_d, there is no giant component.
 If p > ¹/_d, there is a giant component.

$$G_p = G(w_1p,\ldots,w_np).$$

We have

If p < ¹/_d, there is no giant component.
 If p > ¹/_d, there is a giant component.
 For ¹/_d 1</sup>/_d, no conclusion.

Sub-dense graphs

For any big constant C and any $\epsilon_n \to 0,$ there exists a graph $G = G_n$ satisfying

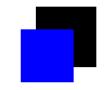
 $\bullet \quad d = \Omega(\epsilon_n n)$

Sub-dense graphs

For any big constant C and any $\epsilon_n \to 0,$ there exists a graph $G=G_n$ satisfying

- $\bullet \quad d = \Omega(\epsilon_n n)$
- $\blacksquare \quad \mu \approx \Theta(\sqrt{\epsilon_n}n)$

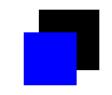
Sub-dense graphs



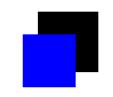
For any big constant C and any $\epsilon_n \to 0,$ there exists a graph $G=G_n$ satisfying

- $\bullet \quad d = \Omega(\epsilon_n n)$
- $\blacksquare \quad \mu \approx \Theta(\sqrt{\epsilon_n}n)$
- For $p = \frac{C}{\mu}$, the volume of all components is at most $O(\epsilon_n n)$.

Conclusion: In general, $\frac{1}{\mu}$ is not the threshold function for the giant component appearing.

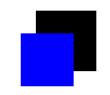


• $\mathcal{L} = I - D^{-1/2}AD^{-1/2}$: normalized Laplacian



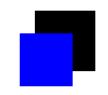
■ $\mathcal{L} = I - D^{-1/2}AD^{-1/2}$: normalized Laplacian ■ $0 = \lambda_0 \le \lambda_1 \le \dots, \le \lambda_{n-1}$: Laplacian spectra

\widetilde{d} and μ



 $\mathcal{L} = I - D^{-1/2}AD^{-1/2}$: normalized Laplacian $0 = \lambda_0 \le \lambda_1 \le \dots, \le \lambda_{n-1}$: Laplacian spectra $\sigma = \max_{i=1}^{n-1} |1 - \lambda_i|$: spectral bound

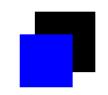
\tilde{d} and μ



■ $\mathcal{L} = I - D^{-1/2}AD^{-1/2}$: normalized Laplacian ■ $0 = \lambda_0 \le \lambda_1 \le \dots, \le \lambda_{n-1}$: Laplacian spectra

- $\sigma = \max_{i=1}^{n-1} |1 \lambda_i|$: spectral bound
- I Δ : maximum degree

\tilde{d} and μ



• $\mathcal{L} = I - D^{-1/2}AD^{-1/2}$: normalized Laplacian

- $0 = \lambda_0 \le \lambda_1 \le \dots, \le \lambda_{n-1}$: Laplacian spectra
 - $\sigma = \max_{i=1}^{n-1} |1 \lambda_i|$: spectral bound
- Δ : maximum degree

Lemma:

$$|\mu - \tilde{d}| \le \sigma \Delta.$$

A set U is a (ϵ, M) -admissible set if (i) $\operatorname{vol}_2(U) \ge (1 - \epsilon)\operatorname{vol}_2(G)$. (ii) $\operatorname{vol}_3(U) \le Md\operatorname{vol}_2(G)$

A set U is a (ϵ, M) -admissible set if (i) $\operatorname{vol}_2(U) \ge (1 - \epsilon)\operatorname{vol}_2(G)$. (ii) $\operatorname{vol}_3(U) \le Md\operatorname{vol}_2(G)$

We say G is (ϵ, M) -admissible.

A set U is a (ϵ, M) -admissible set if (i) $\operatorname{vol}_2(U) \ge (1 - \epsilon)\operatorname{vol}_2(G)$. (ii) $\operatorname{vol}_3(U) \le Md\operatorname{vol}_2(G)$

We say G is (ϵ, M) -admissible.

"
$$\Delta \leq Md$$
" implies " $\tilde{\tilde{d}} \leq Md$ "

A set U is a (ϵ, M) -admissible set if (i) $\operatorname{vol}_2(U) \ge (1 - \epsilon)\operatorname{vol}_2(G)$. (ii) $\operatorname{vol}_3(U) \le Md\operatorname{vol}_2(G)$

We say G is (ϵ, M) -admissible.

"
$$\Delta \leq Md$$
" implies " $\tilde{d} \leq Md$ ".
" $\tilde{d} \leq Md$ " implies "G is (ϵ, M) -admissible".

Our result (II)

Chung, Lu, Horn (2008): Suppose $p \ge \frac{1+c}{\tilde{d}}$ for some $c \le \frac{1}{20}$. Suppose G satisfies $\Delta = o(\frac{\tilde{d}}{\sigma}), \Delta = o(\frac{d\sqrt{n}}{\log n})$ and $\sigma = o(n^{-\kappa})$ for some $\kappa > 0$, and G is $(\frac{c\kappa}{10}, M)$ -admissible. Then almost surely there is a unique giant connected component in G_p with volume $\Theta(\operatorname{vol}(G))$, and no other component has volume more than $\max(2d \log n, \omega(\sigma\sqrt{\operatorname{vol}(G)})).$

Our result (II)

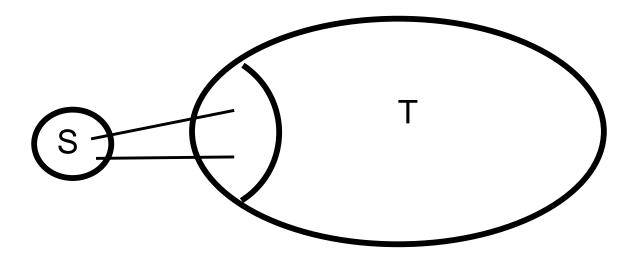
Chung, Lu, Horn (2008): Suppose $p \ge \frac{1+c}{\tilde{d}}$ for some $c \le \frac{1}{20}$. Suppose G satisfies $\Delta = o(\frac{\tilde{d}}{\sigma}), \Delta = o(\frac{d\sqrt{n}}{\log n})$ and $\sigma = o(n^{-\kappa})$ for some $\kappa > 0$, and G is $(\frac{c\kappa}{10}, M)$ -admissible. Then almost surely there is a unique giant connected component in G_p with volume $\Theta(\operatorname{vol}(G))$, and no other component has volume more than $\max(2d \log n, \omega(\sigma\sqrt{\operatorname{vol}(G)})).$

If
$$\Delta = O(d)$$
 and $\sigma = o(\frac{1}{\log n})$, then $p_c = (1 + o(1))\frac{1}{\mu}$.

Neighborhood expansion in G_p

If $\operatorname{vol}(S) \ge \Theta(\sigma^2 \operatorname{vol}(G))$, and $\operatorname{vol}_2(T) > (1 - \delta) \operatorname{vol}_2(G)$, then

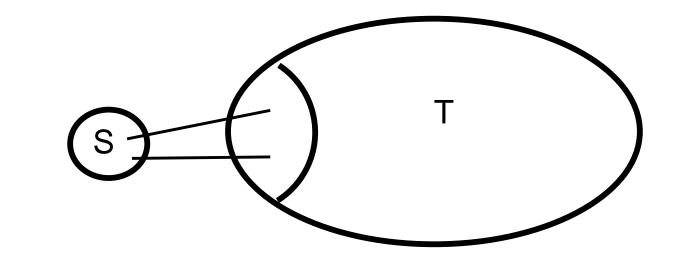
 $\operatorname{vol}(\Gamma(S) \cap T) \ge (1 - \delta) p \tilde{d} \operatorname{vol}(S).$



Neighborhood expansion in G_p

If $\operatorname{vol}(S) \ge \Theta(\sigma^2 \operatorname{vol}(G))$, and $\operatorname{vol}_2(T) > (1 - \delta) \operatorname{vol}_2(G)$, then

$$\operatorname{vol}(\Gamma(S) \cap T) \ge (1 - \delta) p d \operatorname{vol}(S).$$



Since $p > \frac{1+c}{\tilde{d}}$, $(1-\delta)p\tilde{d} > 1$ for small δ .

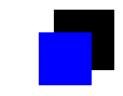
The difficulty

The spectral bound gives a good control of neighborhood expansion of S if $vol(S) = \Omega(\sigma^2 vol(G))$.

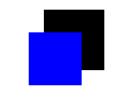
The difficulty

The spectral bound gives a good control of neighborhood expansion of S if $vol(S) = \Omega(\sigma^2 vol(G))$.

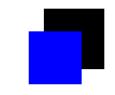
Question: How to find a large connect set S with $vol(S) = \Omega(\sigma^2 vol(G))$?



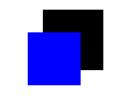
• Choose S_0 with $vol(S_0) = \Theta(\sigma^2 vol(G))$.



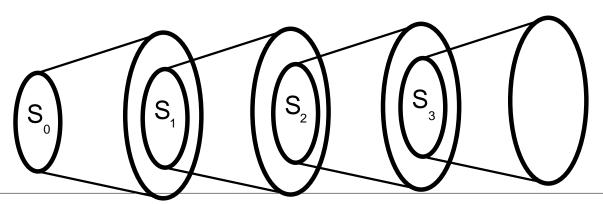
- Choose S_0 with $vol(S_0) = \Theta(\sigma^2 vol(G))$.
- Grow the neighborhood of S_0 so that the second volume of exposed vertices is about $x\sigma \operatorname{vol}_2(G)$. By the admissible condition, its volume reaches $\frac{1}{C}x^2\sigma^2\operatorname{vol}(S)$.



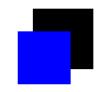
- Choose S_0 with $vol(S_0) = \Theta(\sigma^2 vol(G))$.
- Grow the neighborhood of S_0 so that the second volume of exposed vertices is about $x\sigma \operatorname{vol}_2(G)$. By the admissible condition, its volume reaches $\frac{1}{C}x^2\sigma^2\operatorname{vol}(S)$.
- Pick up vertices in big components with volume about $\Theta(\sigma^2 \text{vol}(G))$ and call this set S_1 .



- Choose S_0 with $vol(S_0) = \Theta(\sigma^2 vol(G))$.
- Grow the neighborhood of S_0 so that the second volume of exposed vertices is about $x\sigma \operatorname{vol}_2(G)$. By the admissible condition, its volume reaches $\frac{1}{C}x^2\sigma^2\operatorname{vol}(S)$.
- Pick up vertices in big components with volume about $\Theta(\sigma^2 \text{vol}(G))$ and call this set S_1 .
- Repeat this process until we we find the giant connected component.



The Giant Component in a Random Subgraph of a Given Graph



Let f(S) be the number of connected pieces in S. We have

$$f(S_0) \leq \frac{\sigma^2}{\sqrt{\epsilon}}n$$

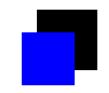
$$f(S_1) \leq f(S_0)Cx^{-2}$$

$$f(S_2) \leq f(S_1)Cx^{-2}$$

$$\vdots$$

After at most $t = \frac{\log n}{\log(x^2/C)}$ step, S_t is connected $\operatorname{vol}(S_t) = \Theta(\sigma^2 \operatorname{vol}(G)).$

Continue



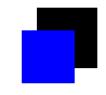
The unexposed vertices have second volume at least

$$(1 - tx\sigma)\operatorname{vol}_2(G) > (1 - \delta)\operatorname{vol}_2(G).$$

Here we assume $\sigma = o(\frac{1}{\log n})$.

Apply the neighborhood expansion lemma once again. We find the giant connected component.

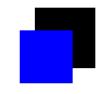
Summary



If $p < \frac{1}{\mu}$, almost surely G_p has no giant component. Suppose $p \ge \frac{1+c}{\tilde{d}}$ for some $c \le \frac{1}{20}$. Suppose G satisfies $\Delta = o(\frac{\tilde{d}}{\sigma}), \Delta = o(\frac{d\sqrt{n}}{\log n})$ and $\sigma = o(n^{-\kappa})$ for some $\kappa > 0$, and G is $(\frac{c\kappa}{10}, M)$ -admissible. Then almost surely G_p has giant components.

If
$$\Delta = O(d)$$
 and $\sigma = o(\frac{1}{\log n})$, then $p_c \approx \frac{1}{\mu}$.

Summary



- If $p < \frac{1}{\mu}$, almost surely G_p has no giant component.
- Suppose $p \ge \frac{1+c}{\tilde{d}}$ for some $c \le \frac{1}{20}$. Suppose G satisfies $\Delta = o(\frac{\tilde{d}}{\sigma})$, $\Delta = o(\frac{d\sqrt{n}}{\log n})$ and $\sigma = o(n^{-\kappa})$ for some $\kappa > 0$, and G is $(\frac{c\kappa}{10}, M)$ -admissible. Then almost surely G_p has giant components.

If
$$\Delta = O(d)$$
 and $\sigma = o(\frac{1}{\log n})$, then $p_c \approx \frac{1}{\mu}$.

Question: For any dense graph G, is it true that there exists a dense subgraph H with $|V(H)| > \epsilon |V(G)|$ and $\sigma_H < \epsilon$?

Part II: Hypergraphs

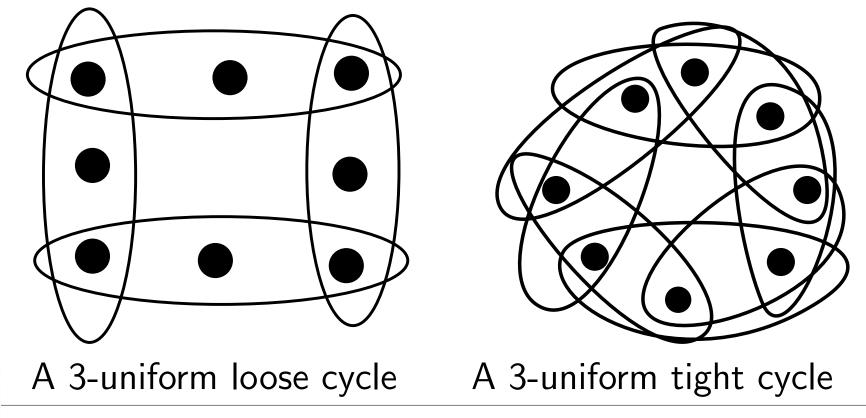
H = (V, E) is an *r*-uniform hypergraph (*r*-graph, for short).

- V: the set of vertices
- E: the set of edges, each edge has cardinality r.

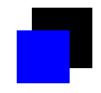
Part II: Hypergraphs

H = (V, E) is an *r*-uniform hypergraph (*r*-graph, for short).

- V: the set of vertices
- E: the set of edges, each edge has cardinality r.



The Giant Component in a Random Subgraph of a Given Graph



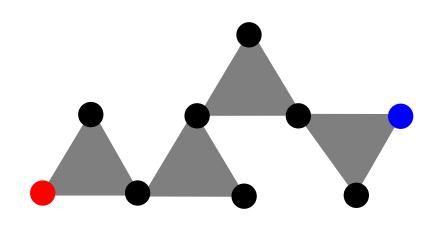
How to define "connected components" for hypergraphs?

How to define "connected components" for hypergraphs?
 How to define "Laplacians" for hypergraphs?

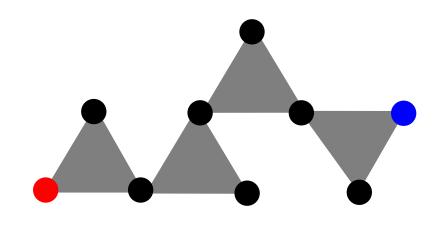
- How to define "connected components" for hypergraphs?
- How to define "Laplacians" for hypergraphs?
- Phase transition for random hypergraphs?

- How to define "connected components" for hypergraphs?
- How to define "Laplacians" for hypergraphs?
- Phase transition for random hypergraphs?
- Percolation on hypergraphs?
- The remaining talk will focus on Question 1 and 2.

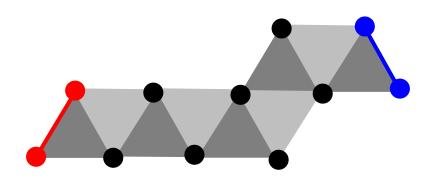
Vertex to Vertex



Vertex to Vertex



Pair to Pair



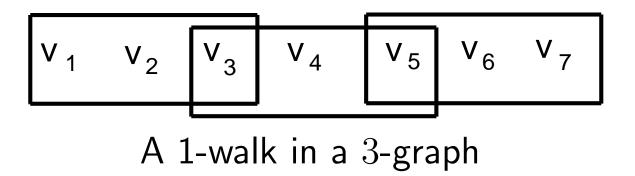
The Giant Component in a Random Subgraph of a Given Graph

Linyuan Lu (University of South Carolina) – 37 / 49

For $1 \le s \le r - 1$, an *s*-walk on *H* consists of

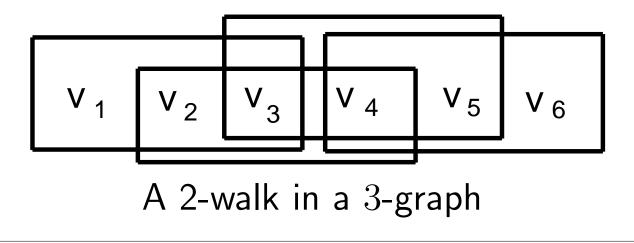
For $1 \leq s \leq r-1$, an s-walk on H consists of

$$|F_i \cap F_{i+1}| = s$$



For $1 \leq s \leq r-1$, an s-walk on H consists of

$$|F_i \cap F_{i+1}| = s$$



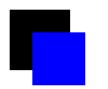
For $1 \leq s \leq r-1$, an s-walk on H consists of

$$|F_i \cap F_{i+1}| = s$$

Loose random walks

Loose walk: $1 \le s \le \frac{r}{2}$.

$$V_1$$
 V_2 V_3 V_4 V_5 V_6 V_7 V_8



Loose random walks

Loose walk: $1 \le s \le \frac{r}{2}$.

$$V_1 V_2 V_3 V_4 V_5 V_6 V_7 V_8$$

Observation: an s-th random walk on H is essentially a random walk on an auxiliary weighted graph $G^{(s)}$.

Loose random walks

Loose walk: $1 \le s \le \frac{r}{2}$.

$$V_1 V_2 V_3 V_4 V_5 V_6 V_7 V_8$$

Observation: an s-th random walk on H is essentially a random walk on an auxiliary weighted graph $G^{(s)}$.

- Vertex set $V(G^s) = {V \choose s}$
- Weight function $w: \binom{V}{s} \times \binom{V}{s} \to \mathbb{Z}$:

$$w(S,T) = \begin{cases} 0 & \text{if } S \cap T \neq \emptyset \\ d_{[S] \cup [T]} & \text{if } S \cap T = \emptyset. \end{cases}$$

For $1 \le s \le r/2$, the *s*-th Laplacian of *H*, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $G^{(s)}$.

For $1 \le s \le r/2$, the *s*-th Laplacian of *H*, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $G^{(s)}$.

- $\lambda_1^{(s)}$: the smallest non-trivial eigenvalue of $\mathcal{L}^{(s)}$.

For $1 \leq s \leq r/2$, the *s*-th Laplacian of *H*, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $G^{(s)}$.

- $\lambda_1^{(s)}$: the smallest non-trivial eigenvalue of $\mathcal{L}^{(s)}$.
- $\lambda_{max}^{(s)}$: the largest eigenvalue of $\mathcal{L}^{(s)}$.

For $1 \leq s \leq r/2$, the *s*-th Laplacian of *H*, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $G^{(s)}$.

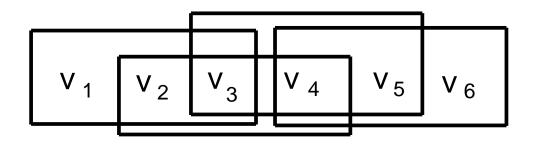
- $\lambda_1^{(s)}$: the smallest non-trivial eigenvalue of $\mathcal{L}^{(s)}$.
- $\lambda_{max}^{(s)}$: the largest eigenvalue of $\mathcal{L}^{(s)}$.
- $\bar{\lambda}^{(s)}$: the spectral bound $\max\{|1 \lambda_1^{(s)}|, |\lambda_{max}^{(s)} 1|\}$.

For $1 \leq s \leq r/2$, the *s*-th Laplacian of *H*, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $G^{(s)}$.

- $\lambda_1^{(s)}$: the smallest non-trivial eigenvalue of $\mathcal{L}^{(s)}$.
- $\lambda_{max}^{(s)}$: the largest eigenvalue of $\mathcal{L}^{(s)}$.
- $\bar{\lambda}^{(s)}$: the spectral bound $\max\{|1 \lambda_1^{(s)}|, |\lambda_{max}^{(s)} 1|\}$.

 $\mathcal{L}^{(1)}$ is the same as the Laplacian of hypergraph introduced by **Rodríguez [2009]**.

Tight walk: $\frac{r}{2} < s \leq r - 1$.



Tight random walks

Tight walk: $\frac{r}{2} < s \leq r - 1$.

$$V_1$$
 V_2 V_3 V_4 V_5 V_6

Observation: an s-th random walk on H is "essentially" a random walk on an auxiliary directed graph $D^{(s)}$.

Tight walk: $\frac{r}{2} < s \leq r - 1$.

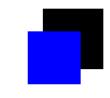
$$V_1$$
 V_2 V_3 V_4 V_5 V_6

Observation: an s-th random walk on H is "essentially" a random walk on an auxiliary directed graph $D^{(s)}$.

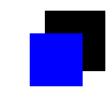
■ Vertex set V(G^(s)) = V^s
 ■ For x = (x₁,...,x_s) and y = (y₁,...,y_s), xy is a directed edge if

-
$$x_{r-s+j} = y_j$$
 for $1 \le j \le 2s - r$.

 $\{x_1, \ldots, x_s, y_{2s-r+1}, y_s\}$ is an edge of H.

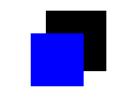


For $r/2 < s \leq r - 1$, the *s*-th Laplacian of *H*, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $D^{(s)}$.



For $r/2 < s \leq r - 1$, the *s*-th Laplacian of *H*, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $D^{(s)}$.

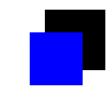
 \square $D^{(s)}$ is Eulerian, i.e., indegree=outdegree at any vertex.



For $r/2 < s \leq r - 1$, the *s*-th Laplacian of *H*, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $D^{(s)}$.

- $D^{(s)}$ is Eulerian, i.e., indegree=outdegree at any vertex.
- Chung [2005] defined the Laplacian of directed graphs. Let $\vec{\mathcal{L}} = T^{-1/2}AT^{-1/2}$. Define the Laplacian

$$\mathcal{L}^{(s)} = \frac{\mathcal{L} + \mathcal{L}'}{2}$$

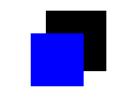


For $r/2 < s \leq r-1$, the *s*-th Laplacian of *H*, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $D^{(s)}$.

- $D^{(s)}$ is Eulerian, i.e., indegree=outdegree at any vertex.
- Chung [2005] defined the Laplacian of directed graphs. Let $\vec{\mathcal{L}} = T^{-1/2}AT^{-1/2}$. Define the Laplacian

$$\mathcal{L}^{(s)} = \frac{\mathcal{L} + \mathcal{L}'}{2}$$

• $\mathcal{L}^{(r-1)}$ is close related to the Laplacian of a regular hypergraph introduced by **Chung** [1993].



For $r/2 < s \leq r-1$, the *s*-th Laplacian of *H*, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $D^{(s)}$.

- $D^{(s)}$ is Eulerian, i.e., indegree=outdegree at any vertex.
- Chung [2005] defined the Laplacian of directed graphs. Let $\vec{\mathcal{L}} = T^{-1/2}AT^{-1/2}$. Define the Laplacian

$$\mathcal{L}^{(s)} = \frac{\mathcal{L} + \mathcal{L}'}{2}$$

• $\mathcal{L}^{(r-1)}$ is close related to the Laplacian of a regular hypergraph introduced by **Chung** [1993].

 $\lambda_1^{(s)}$, $\lambda_{max}^{(s)}$, and $ar{\lambda}^{(s)}$ are defined in the same way.

Application: Edge expansion

-
$$S \subseteq {\binom{V}{s}}, T \subseteq {\binom{V}{t}}.$$

- $E(S,T)$: the set of edges containing $x \cup y$ for some $x \in S, y \in T$ with $x \cap y = \emptyset.$
- $e(S) := \frac{\operatorname{vol}(S)}{\operatorname{vol}({\binom{V}{s}})}, e(T) := \frac{\operatorname{vol}(T)}{\operatorname{vol}({\binom{V}{t}})}.$
- $e(S,T) := \frac{|E(S,T)|}{|E({\binom{V}{s}},{\binom{V}{t}})|}.$

Application: Edge expansion

-
$$S \subseteq {V \choose s}, T \subseteq {V \choose t}$$
.
- $E(S,T)$: the set of edges containing $x \cup y$ for some $x \in S, y \in T$ with $x \cap y = \emptyset$.
- $e(S) := \frac{\operatorname{vol}(S)}{\operatorname{vol}({V \choose s})}, e(T) := \frac{\operatorname{vol}(T)}{\operatorname{vol}({V \choose t})}$.
- $e(S,T) := \frac{|E(S,T)|}{|E({V \choose s},{V \choose t})|}$.

Theorem [Lu-Peng 2011]: If $1 \le t \le s \le r/2$, then

$$|e(S,T) - e(S)e(T)| \le \bar{\lambda}^{(s)}\sqrt{e(S)e(T)e(\bar{S})e(\bar{T})}.$$

Connections of different $\mathcal{L}^{(s)}$

Theorem [Lu, Peng 2011] We have the following inequalities for the "loose" Laplacian eigenvalues.

$$\lambda_1^{(1)} \ge \lambda_1^{(2)} \ge \dots \ge \lambda_1^{(\lfloor r/2 \rfloor)};$$
$$\lambda_{\max}^{(1)} \le \lambda_{\max}^{(2)} \le \dots \le \lambda_{\max}^{(\lfloor r/2 \rfloor)}.$$

Complete hypergraph K_n^r

Theorem: For $1 \le s \le r/2$, the *s*-th Laplacian eigenvalues of K_n^r is the eigenvalues of *s*-th Laplacian of K_n^r are given by

$$1 - \frac{(-1)^i \binom{n-s-i}{s-i}}{\binom{n-s}{s}}$$
 with multiplicity $\binom{n}{i} - \binom{n}{i-1}$

for $0 \leq i \leq s$.

Complete hypergraph K_n^r

Theorem: For $1 \le s \le r/2$, the *s*-th Laplacian eigenvalues of K_n^r is the eigenvalues of *s*-th Laplacian of K_n^r are given by

$$1 - \frac{(-1)^{i} \binom{n-s-i}{s-i}}{\binom{n-s}{s}} \text{ with multiplicity } \binom{n}{i} - \binom{n}{i-1}$$

for $0 \leq i \leq s$.

Observation: $G^{(s)'}$ is essentially the Kneser graph K(n, s). The vertices are s-sets in [n]. A pair of s-sets S and T forms an edge of $S \cap T = \emptyset$.

Laplacians of $H^r(n,p)$

Random *r*-uniform random hypergraph $H^r(n, p)$:

- *n*: the number of vertices.
- p: the probability; each r-set is an edge with probability p independently.
- $\{\lambda_k^{(s)}(H)\}$: the s-the Laplacian spectrum of H.

Laplacians of $H^r(n,p)$

Random *r*-uniform random hypergraph $H^r(n, p)$:

- *n*: the number of vertices.
- p: the probability; each r-set is an edge with probability p independently.

 $\{\lambda_k^{(s)}(H)\}$: the s-the Laplacian spectrum of H.

Theorem [Lu and Peng 2011+]: For $1 \le s \le r/2$, if $p(1-p) \gg \frac{\log^4 n}{\binom{n}{s}}$ and $1-p \gg \frac{\log^2 n}{n^2}$, the almost surely for $0 \le k \le \binom{n}{s} - 1$, $|\lambda_k^{(s)}(H^r(n,p)) - \lambda_k^{(s)}(K_n^r)| \le (3+o(1)) \sqrt{\frac{1-p}{\binom{n-s}{r-s}p}}.$

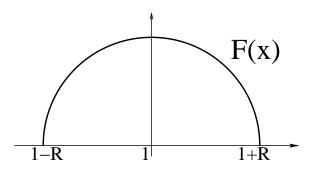
Semicircle Law

- $F_n(x)$: $\frac{1}{\binom{n}{s}}$ of the number of *s*-th Laplacian of $H^r(n,p)$ less than *x*.
- $R := (2 + o(1)) \sqrt{\frac{1-p}{\binom{r-s}{s}\binom{n-s}{r-s}p}}.$

Semicircle Law

- $F_n(x)$: $\frac{1}{\binom{n}{s}}$ of the number of *s*-th Laplacian of $H^r(n,p)$ less than *x*.
- $R := (2 + o(1)) \sqrt{\frac{1-p}{\binom{r-s}{s}\binom{n-s}{r-s}p}}.$

Theorem [Lu and Peng 2011+]: For $1 \le s \le r/2$, if $p(1-p) \gg \frac{\log n}{n^{r-s}}$, then almost surely

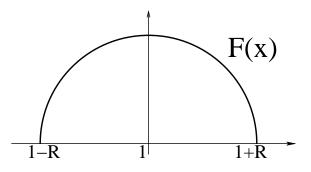


 $F_n(x) \xrightarrow{p} F(x).$

Semicircle Law

- $F_n(x)$: $\frac{1}{\binom{n}{s}}$ of the number of *s*-th Laplacian of $H^r(n, p)$ less than *x*.
- $R := (2 + o(1)) \sqrt{\frac{1-p}{\binom{r-s}{s}\binom{n-s}{r-s}p}}.$

Theorem [Lu and Peng 2011+]: For $1 \le s \le r/2$, if $p(1-p) \gg \frac{\log n}{n^{r-s}}$, then almost surely



$$F_n(x) \xrightarrow{p} F(x).$$

Previously known similar results:

- on G(n, p) [Füredi-Komlós 1981].
- on $G(w_1,\ldots,w_n)$ Chung-Lu-Vu 2002.

Phase transition of $H^r(n,p)$

Vertex to vertex : Karoński-Luczak (2002) determines the threshold

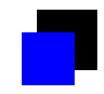
$$p_c \approx \frac{1}{(r-1)\binom{n-1}{r-1}}.$$

Phase transition of $H^r(n,p)$

Vertex to vertex : Karoński-Luczak (2002) determines the threshold

$$p_c \approx \frac{1}{(r-1)\binom{n-1}{r-1}}.$$

Pair to pair? In general, s-tuple to s-tuple? (Ongoing project with Peng.)



Thank you.

The Giant Component in a Random Subgraph of a Given Graph