
The Giant Component in a

Random Subgraph of a

Given Graph

Linyuan Lu
University of South Carolina

Coauthors: Fan Chung Graham, Paul Horn, Xing Peng

Atlanta Lecture Series in Combinatorics & Graph Theory IV

Georgia State University, November 5-6, 2011.



Outline

The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 2 / 49

■ Percolation on graphs

◆ Motivations

◆ Previous results

◆ Examples

◆ Our results

◆ Methods



Outline

The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 2 / 49

■ Percolation on graphs

◆ Motivations

◆ Previous results

◆ Examples

◆ Our results

◆ Methods

■ Ongoing projects on hypergraphs

◆ Laplacians of hypergraphs
◆ Random hypergraphs



Part I: Graph percolation

The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 3 / 49

■ G: a connected graph on n vertices

■ p: a probability (0 ≤ p ≤ 1)

Gp: a random spanning subgraph of G, obtained as follows:
for each edge f of G, independently,

Pr(f is an edge of Gp) = p.
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■ For p < pc, almost surely there is no giant component

■ For p > pc, almost surely there is a giant component.

pc
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■ Graph theory: random graphs

■ Theoretical physics: crystals melting

■ Sociology: the spread of disease on contact networks
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For G = Kn, Gp = G(n, p): Erdős-Rényi random graphs

- n nodes
- For each pair of vertices, create an edge independently

with probability p.

An example G(3, 1
2):
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Let p ∼ 1/n + µ/n.

■ If µ < 0, the largest component has size
(µ − log(1 + µ))−1 log n + O(log log n).
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Let p ∼ 1/n + µ/n.

■ If µ < 0, the largest component has size
(µ − log(1 + µ))−1 log n + O(log log n).

■ If µ = 0, the largest component has size of order n2/3.

■ If µ > 0, there is a unique giant component of size αn
where µ = −α−1 log(1 − α) − 1.

■ Bollobás showed that a component of size at least n2/3

in Gn,p is almost always unique if p exceeds
1/n + 4(log n)1/2n−4/3. (Later he removed the
log n-factor.)



Percolation of Zd

The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 8 / 49



Percolation of Zd

The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 9 / 49



Percolation of Zd

The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 9 / 49

Kesten (1980): pc(Z
2) = 1

2 .



Percolation of Zd

The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 9 / 49

Kesten (1980): pc(Z
2) = 1

2 .

Lorenz and Ziff (1997, simulation):
pc(Z

3) ≈ 0.2488126 ± 0.0000005 if it exists.



Percolation of Zd

The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 9 / 49

Kesten (1980): pc(Z
2) = 1

2 .

Lorenz and Ziff (1997, simulation):
pc(Z

3) ≈ 0.2488126 ± 0.0000005 if it exists.

Kesten (1990): pc(Z
d) ∼ 1

2d as d → ∞.
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Alon, Benjamini, Stacey (2004): Suppose d ≥ 2 and let
(Gn) be a sequence of d-regular expanders with
girth(Gn) → ∞, then

pc =
1

d − 1
+ o(1).
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Bollobás, Borgs, Chayes, and Riordan (2008): Suppose
that G is a dense graph (i.e., average degree d = Θ(n)). Let
µ be the largest eigenvalue of the adjacency matrix of G.
Then

pc ≈
1

µ
.
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Bollobás, Borgs, Chayes, and Riordan (2008): Suppose
that G is a dense graph (i.e., average degree d = Θ(n)). Let
µ be the largest eigenvalue of the adjacency matrix of G.
Then

pc ≈
1

µ
.

Remark: The requirement of “dense graph” is essential.
Their methods can not be extended to sparse graphs.
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Is pc ≈ 1
µ?

“Yes” for some regular graphs and for dense graphs.

“No” for general graphs.

We ask

■ Is pc ≥ 1
µ?

■ Under what conditions, pc ≈ 1
µ?
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■ Degrees: d1, d2, . . . , dn.

■ d = (d1, d2, . . . , dn)
∗.

■ The volume: vol(S) =
∑

i∈S di.

■ The k-th volume: volk(S) =
∑

i∈S dk
i .

■ Average degree: d = vol(G)
n .

■ Second order average degree: d̃ = vol2(G)
vol(G)

■ Third order average degree: ˜̃d = vol3(G)
vol2(G).

A connected component is giant if its volume is Θ(vol(G)).
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vol2(G)g(n)), where g(n) is any slowly growing

function as n → ∞.



Yes, pc ≥ 1
µ.

The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 14 / 49

Chung, Lu, Horn 2008: For p < 1
µ , almost surely every

connected component in Gp has volume at most

O(
√

vol2(G)g(n)), where g(n) is any slowly growing

function as n → ∞.

Proof: Let A be the event that there exists a component S
in Gp with vol(S) > C

√

vol2(G).

Claim A: Pr(A) ≤ 1
C2(1−pµ).



Yes, pc ≥ 1
µ.

The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 14 / 49

Chung, Lu, Horn 2008: For p < 1
µ , almost surely every

connected component in Gp has volume at most

O(
√

vol2(G)g(n)), where g(n) is any slowly growing

function as n → ∞.

Proof: Let A be the event that there exists a component S
in Gp with vol(S) > C

√

vol2(G).

Claim A: Pr(A) ≤ 1
C2(1−pµ).

- u, v: two random vertices selected with probability
proportional to their degrees.



Yes, pc ≥ 1
µ.

The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 14 / 49

Chung, Lu, Horn 2008: For p < 1
µ , almost surely every

connected component in Gp has volume at most

O(
√

vol2(G)g(n)), where g(n) is any slowly growing

function as n → ∞.

Proof: Let A be the event that there exists a component S
in Gp with vol(S) > C

√

vol2(G).

Claim A: Pr(A) ≤ 1
C2(1−pµ).

- u, v: two random vertices selected with probability
proportional to their degrees.

- |{k-path from u to v in G}| ≤ 1
∗
uA

k
1v.



Yes, pc ≥ 1
µ.

The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 14 / 49

Chung, Lu, Horn 2008: For p < 1
µ , almost surely every

connected component in Gp has volume at most

O(
√

vol2(G)g(n)), where g(n) is any slowly growing

function as n → ∞.

Proof: Let A be the event that there exists a component S
in Gp with vol(S) > C

√

vol2(G).

Claim A: Pr(A) ≤ 1
C2(1−pµ).

- u, v: two random vertices selected with probability
proportional to their degrees.

- |{k-path from u to v in G}| ≤ 1
∗
uA

k
1v.

- The probability of a k-path survived in Gp is pk.
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Pr(u, v are in the same component of Gp)

≤
∑

u,v

du

vol(G)

dv

vol(G)

n
∑

k=0

pk
1
∗
uA

k
1v

=
n

∑

k=0

1

vol(G)2
pk

d
∗Ak

d

≤
∞

∑

k=0

pkµkvol2(G)

vol(G)2
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Pr(u, v are in the same component of Gp)

≤
∑

u,v

du

vol(G)

dv

vol(G)

n
∑

k=0

pk
1
∗
uA

k
1v

=
n

∑

k=0

1

vol(G)2
pk

d
∗Ak

d

≤
∞

∑

k=0

pkµkvol2(G)

vol(G)2

≤ d̃

(1 − pµ)vol(G)
.



Continue

The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 16 / 49

Pr(u, v are in the same component of Gp)



Continue

The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 16 / 49

Pr(u, v are in the same component of Gp)

≥ Pr(A and u, v ∈ S)



Continue

The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 16 / 49

Pr(u, v are in the same component of Gp)

≥ Pr(A and u, v ∈ S)

> Pr(A)
C

√

vol2(G)

vol(G)

C
√

vol2(G)

vol(G)



Continue

The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 16 / 49

Pr(u, v are in the same component of Gp)

≥ Pr(A and u, v ∈ S)

> Pr(A)
C

√

vol2(G)

vol(G)

C
√

vol2(G)

vol(G)

= Pr(A)
C2d̃

vol(G)
.
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Pr(u, v are in the same component of Gp)

≥ Pr(A and u, v ∈ S)

> Pr(A)
C

√

vol2(G)

vol(G)

C
√

vol2(G)

vol(G)

= Pr(A)
C2d̃

vol(G)
.

Thus,
d̃

(1 − pµ)vol(G)
> Pr(A)

C2d̃

vol(G)
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Pr(u, v are in the same component of Gp)

≥ Pr(A and u, v ∈ S)

> Pr(A)
C

√

vol2(G)

vol(G)

C
√

vol2(G)

vol(G)

= Pr(A)
C2d̃

vol(G)
.

Thus,
d̃

(1 − pµ)vol(G)
> Pr(A)

C2d̃

vol(G)

Pr(A) <
1

C2(1 − pµ)
. �
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■ Not dense graphs.

■ Unevenly distributed degree sequence, like power law
graphs.

■ Some bounds on spectra, like expanders.
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Random graph model with given expected degree sequence

- n nodes with weights w1, w2, . . . , wn.

- For each pair (i, j), create an edge independently with
probability pij = wiwjρ, where ρ = 1

∑

n

i=1
wi

.

- The graph H has probability

∏

ij∈E(H)

pij

∏

ij 6∈E(H)

(1 − pij).

- The expected degree of vertex i is wi.

- Erdős-Rényi model G(n, p) = G(np, . . . , np).
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qqq q q
q qqqq

q qqqq
qqq q q
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1
ρ
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2
ρ
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3
ρ

1 − w2

4
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The probability of the graph is

w3
1w

2
2w

2
3w4ρ

4(1 − w2w4ρ) × (1 − w3w4ρ)
4

∏

i=1

(1 − w2
i ρ).
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Loops are omitted here.
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∑
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- The volume of S: vol(S) =
∑

i∈S wi.
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For G = G(w1, . . . , wn), let

- d = 1
n

∑n
i=1 wi

- d̃ =
∑

n

i=1
w2

i
∑

n

i=1
wi

.

- The volume of S: vol(S) =
∑

i∈S wi.

We have
d̃ ≥ d

“=” holds if and only if w1 = · · · = wn.

A connected component S is called a giant component if

vol(S) = Θ(vol(G)).
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Chung and Lu (2001) For G = G(w1, . . . , wn),

■ If d̃ < 1 − ǫ, then almost surely, all components have
volume at most O(

√
n log n).
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Chung and Lu (2001) For G = G(w1, . . . , wn),

■ If d̃ < 1 − ǫ, then almost surely, all components have
volume at most O(

√
n log n).

■ If d > 1 + ǫ, then almost surely there is a unique giant
component of volume Θ(vol(G)). All other components
have size at most

{

log n
d−1−log d−ǫd if 1

1−ǫ < d < 2
1−ǫ

log n
1+log d−log 4+2 log(1−ǫ) if d > 4

e(1−ǫ)2 .
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Chung and Lu (2004)
If the average degree is strictly greater than 1, then almost
surely the giant component in a graph G in G(w) has

volume (λ0 + O(
√

n log3.5 n
vol(G) ))vol(G), where λ0 is the unique

positive root of the following equation:

n
∑

i=1

wie
−wiλ = (1 − λ)

n
∑

i=1

wi.
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Gp = G(w1p, . . . , wnp).

We have

■ If p < 1
d̃
, there is no giant component.

■ If p > 1
d , there is a giant component.
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Gp = G(w1p, . . . , wnp).

We have

■ If p < 1
d̃
, there is no giant component.

■ If p > 1
d , there is a giant component.

■ For 1
d̃

< p < 1
d , no conclusion.
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For any big constant C and any ǫn → 0, there exists a graph
G = Gn satisfying

■ d = Ω(ǫnn)

■ µ ≈ Θ(
√

ǫnn)

■ For p = C
µ , the volume of all components is at most

O(ǫnn).

Conclusion: In general, 1
µ is not the threshold function for

the giant component appearing.
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■ L = I − D−1/2AD−1/2: normalized Laplacian

■ 0 = λ0 ≤ λ1 ≤ . . . ,≤ λn−1: Laplacian spectra

■ σ = maxn−1
i=1 |1 − λi|: spectral bound

■ ∆: maximum degree

Lemma:
|µ − d̃| ≤ σ∆.
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A set U is a (ǫ, M)-admissible set if

(i) vol2(U) ≥ (1 − ǫ)vol2(G).
(ii) vol3(U) ≤ Mdvol2(G)

We say G is (ǫ, M)-admissible.

“∆ ≤ Md” implies “˜̃d ≤ Md”.

“˜̃d ≤ Md” implies “G is (ǫ, M)-admissible”.
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Chung, Lu, Horn (2008):
Suppose p ≥ 1+c

d̃
for some c ≤ 1

20 . Suppose G satisfies

∆ = o( d̃
σ), ∆ = o( d

√
n

log n) and σ = o(n−κ) for some κ > 0, and

G is (cκ
10 , M)-admissible. Then almost surely there is a

unique giant connected component in Gp with volume

Θ(vol(G)), and no other component has volume more than

max(2d log n, ω(σ
√

vol(G))).
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Chung, Lu, Horn (2008):
Suppose p ≥ 1+c

d̃
for some c ≤ 1

20 . Suppose G satisfies

∆ = o( d̃
σ), ∆ = o( d

√
n

log n) and σ = o(n−κ) for some κ > 0, and

G is (cκ
10 , M)-admissible. Then almost surely there is a

unique giant connected component in Gp with volume

Θ(vol(G)), and no other component has volume more than

max(2d log n, ω(σ
√

vol(G))).

If ∆ = O(d) and σ = o( 1
log n), then pc = (1 + o(1)) 1

µ.
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If vol(S) ≥ Θ(σ2vol(G)), and vol2(T ) > (1 − δ)vol2(G),
then

vol(Γ(S) ∩ T ) ≥ (1 − δ)pd̃vol(S).

S
T
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If vol(S) ≥ Θ(σ2vol(G)), and vol2(T ) > (1 − δ)vol2(G),
then

vol(Γ(S) ∩ T ) ≥ (1 − δ)pd̃vol(S).

S
T

Since p > 1+c
d̃

, (1 − δ)pd̃ > 1 for small δ.
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The spectral bound gives a good control of neighborhood
expansion of S if vol(S) = Ω(σ2vol(G)).

Question: How to find a large connect set S with
vol(S) = Ω(σ2vol(G))?
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Θ(σ2vol(G)) and call this set S1.
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■ Choose S0 with vol(S0) = Θ(σ2vol(G)).

■ Grow the neighborhood of S0 so that the second volume
of exposed vertices is about xσvol2(G). By the
admissible condition, its volume reaches 1

Cx2σ2vol(S).

■ Pick up vertices in big components with volume about
Θ(σ2vol(G)) and call this set S1.

■ Repeat this process until we we find the giant connected
component.

S S S S
0 1 2 3
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Let f(S) be the number of connected pieces in S. We have

f(S0) ≤ σ2

√
ǫ
n

f(S1) ≤ f(S0)Cx−2

f(S2) ≤ f(S1)Cx−2

...

After at most t = log n
log(x2/C) step, St is connected

vol(St) = Θ(σ2vol(G)).



Continue
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The unexposed vertices have second volume at least

(1 − txσ)vol2(G) > (1 − δ)vol2(G).

Here we assume σ = o( 1
log n).

Apply the neighborhood expansion lemma once again. We
find the giant connected component. �
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The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 34 / 49

■ If p < 1
µ , almost surely Gp has no giant component.

■ Suppose p ≥ 1+c
d̃

for some c ≤ 1
20 . Suppose G satisfies

∆ = o( d̃
σ), ∆ = o( d

√
n

log n) and σ = o(n−κ) for some κ > 0,

and G is (cκ
10 , M)-admissible. Then almost surely Gp has

giant components.

■ If ∆ = O(d) and σ = o( 1
log n), then pc ≈ 1

µ.
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■ If p < 1
µ , almost surely Gp has no giant component.

■ Suppose p ≥ 1+c
d̃

for some c ≤ 1
20 . Suppose G satisfies

∆ = o( d̃
σ), ∆ = o( d

√
n

log n) and σ = o(n−κ) for some κ > 0,

and G is (cκ
10 , M)-admissible. Then almost surely Gp has

giant components.

■ If ∆ = O(d) and σ = o( 1
log n), then pc ≈ 1

µ.

Question: For any dense graph G, is it true that there exists
a dense subgraph H with |V (H)| > ǫ|V (G)| and σH < ǫ?
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■ E: the set of edges, each edge has cardinality r.
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H = (V, E) is an r-uniform hypergraph (r-graph, for short).

■ V : the set of vertices
■ E: the set of edges, each edge has cardinality r.

A 3-uniform loose cycle A 3-uniform tight cycle
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■ How to define “connected components” for hypergraphs?

■ How to define “Laplacians” for hypergraphs?

■ Phase transition for random hypergraphs?

■ Percolation on hypergraphs?

The remaining talk will focus on Question 1 and 2.
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■ Vertex to Vertex

■ Pair to Pair
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For 1 ≤ s ≤ r − 1, an s-walk on H consists of

■ a vertex sequence: v1, v2, . . . , v(k−1)(r−s)+r

■ an edge sequence: F1, F2, . . . , Fk satisfying
Fi = {v(r−s)(i−1)+1, v(r−s)(i−1)+2, . . . , v(r−s)(i−1)+r} for
1 ≤ i ≤ k.
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For 1 ≤ s ≤ r − 1, an s-walk on H consists of

■ a vertex sequence: v1, v2, . . . , v(k−1)(r−s)+r

■ an edge sequence: F1, F2, . . . , Fk satisfying
Fi = {v(r−s)(i−1)+1, v(r−s)(i−1)+2, . . . , v(r−s)(i−1)+r} for
1 ≤ i ≤ k.

|Fi ∩ Fi+1| = s

v 1 vv 3
v v 5 v v 7642

A 1-walk in a 3-graph
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For 1 ≤ s ≤ r − 1, an s-walk on H consists of

■ a vertex sequence: v1, v2, . . . , v(k−1)(r−s)+r

■ an edge sequence: F1, F2, . . . , Fk satisfying
Fi = {v(r−s)(i−1)+1, v(r−s)(i−1)+2, . . . , v(r−s)(i−1)+r} for
1 ≤ i ≤ k.

|Fi ∩ Fi+1| = s

v 1 vv 32 v 4 v 5 v 6 v 7
v 8

A 2-walk in a 4-graph



Loose random walks

The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 39 / 49

Loose walk: 1 ≤ s ≤ r
2 .

v 1 vv 32 v 4 v 5 v 6 v 7
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Loose walk: 1 ≤ s ≤ r
2 .

v 1 vv 32 v 4 v 5 v 6 v 7
v 8

Observation: an s-th random walk on H is essentially a
random walk on an auxiliary weighted graph G(s).

- Vertex set V (Gs) =
(

V
s

)

- Weight function w:
(

V
s

)

×
(

V
s

)

→ Z:

w(S, T ) =

{

0 if S ∩ T 6= ∅
d[S]∪[T ] if S ∩ T = ∅.
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For 1 ≤ s ≤ r/2, the s-th Laplacian of H, denoted by L(s),
is defined as the Laplacian of G(s).
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For 1 ≤ s ≤ r/2, the s-th Laplacian of H, denoted by L(s),
is defined as the Laplacian of G(s).
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1 : the smallest non-trivial eigenvalue of L(s).
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max: the largest eigenvalue of L(s).
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For 1 ≤ s ≤ r/2, the s-th Laplacian of H, denoted by L(s),
is defined as the Laplacian of G(s).

- λ
(s)
1 : the smallest non-trivial eigenvalue of L(s).

- λ
(s)
max: the largest eigenvalue of L(s).

- λ̄(s): the spectral bound max{|1 − λ
(s)
1 |, |λ(s)

max − 1|}.

L(1) is the same as the Laplacian of hypergraph introduced
by Rodŕıguez [2009].
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Tight walk: r
2 < s ≤ r − 1.

v 1 vv 32 v 4 v 5 v 6

Observation: an s-th random walk on H is “essentially” a
random walk on an auxiliary directed graph D(s).

■ Vertex set V (G(s)) = Vs

■ For x = (x1, . . . , xs) and y = (y1, . . . , ys), xy is a
directed edge if

- xr−s+j = yj for 1 ≤ j ≤ 2s − r.
- {x1, . . . , xs, y2s−r+1, ys} is an edge of H.
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For r/2 < s ≤ r − 1, the s-th Laplacian of H, denoted by
L(s), is defined as the Laplacian of D(s).
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■ D(s) is Eulerian, i.e., indegree=outdegree at any vertex.
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For r/2 < s ≤ r − 1, the s-th Laplacian of H, denoted by
L(s), is defined as the Laplacian of D(s).

■ D(s) is Eulerian, i.e., indegree=outdegree at any vertex.

■ Chung [2005] defined the Laplacian of directed graphs.

Let ~L = T−1/2AT−1/2. Define the Laplacian

L(s) =
L + L′

2
.
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For r/2 < s ≤ r − 1, the s-th Laplacian of H, denoted by
L(s), is defined as the Laplacian of D(s).

■ D(s) is Eulerian, i.e., indegree=outdegree at any vertex.

■ Chung [2005] defined the Laplacian of directed graphs.

Let ~L = T−1/2AT−1/2. Define the Laplacian

L(s) =
L + L′

2
.

■ L(r−1) is close related to the Laplacian of a regular
hypergraph introduced by Chung [1993].
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For r/2 < s ≤ r − 1, the s-th Laplacian of H, denoted by
L(s), is defined as the Laplacian of D(s).

■ D(s) is Eulerian, i.e., indegree=outdegree at any vertex.

■ Chung [2005] defined the Laplacian of directed graphs.

Let ~L = T−1/2AT−1/2. Define the Laplacian

L(s) =
L + L′

2
.

■ L(r−1) is close related to the Laplacian of a regular
hypergraph introduced by Chung [1993].

λ
(s)
1 , λ

(s)
max, and λ̄(s) are defined in the same way.
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- S ⊆
(

V
s

)

, T ⊆
(

V
t

)

.
- E(S, T ): the set of edges containing x ∪ y for some

x ∈ S, y ∈ T with x ∩ y = ∅.
- e(S) := vol(S)

vol((V

s))
, e(T ) := vol(T )

vol((V

t ))
.

- e(S, T ) := |E(S,T )|
|E((V

s),(V

t ))| .
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- S ⊆
(

V
s

)

, T ⊆
(

V
t

)

.
- E(S, T ): the set of edges containing x ∪ y for some

x ∈ S, y ∈ T with x ∩ y = ∅.
- e(S) := vol(S)

vol((V

s))
, e(T ) := vol(T )

vol((V

t ))
.

- e(S, T ) := |E(S,T )|
|E((V

s),(V

t ))| .

Theorem [Lu-Peng 2011]: If 1 ≤ t ≤ s ≤ r/2, then

|e(S, T ) − e(S)e(T )| ≤ λ̄(s)
√

e(S)e(T )e(S̄)e(T̄ ).



Connections of different L(s)
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Theorem [Lu, Peng 2011] We have the following
inequalities for the “loose” Laplacian eigenvalues.

λ
(1)
1 ≥ λ

(2)
1 ≥ . . . ≥ λ

(⌊r/2⌋)
1 ;

λ(1)
max ≤ λ(2)

max ≤ . . . ≤ λ(⌊r/2⌋)
max .



Complete hypergraph Kr
n
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Theorem: For 1 ≤ s ≤ r/2, the s-th Laplacian eigenvalues
of Kr

n is the eigenvalues of s-th Laplacian of Kr
n are given by

1 −
(−1)i

(

n−s−i)
s−i

)

(

n−s
s

) with multiplicity

(

n

i

)

−
(

n

i − 1

)

for 0 ≤ i ≤ s.
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Theorem: For 1 ≤ s ≤ r/2, the s-th Laplacian eigenvalues
of Kr

n is the eigenvalues of s-th Laplacian of Kr
n are given by

1 −
(−1)i

(

n−s−i)
s−i

)

(

n−s
s

) with multiplicity

(

n

i

)

−
(

n

i − 1

)

for 0 ≤ i ≤ s.

Observation: G(s)′ is essentially the Kneser graph K(n, s).
The vertices are s-sets in [n]. A pair of s-sets S and T forms
an edge of S ∩ T = ∅.



Laplacians of Hr(n, p)
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Random r-uniform random hypergraph Hr(n, p):

- n: the number of vertices.
- p: the probability; each r-set is an edge with probability p

independently.

{λ(s)
k (H)}: the s-the Laplacian spectrum of H.
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Random r-uniform random hypergraph Hr(n, p):

- n: the number of vertices.
- p: the probability; each r-set is an edge with probability p

independently.

{λ(s)
k (H)}: the s-the Laplacian spectrum of H.

Theorem [Lu and Peng 2011+]: For 1 ≤ s ≤ r/2, if

p(1 − p) ≫ log4 n

(n

s)
and 1 − p ≫ log2 n

n2 , the almost surely for

0 ≤ k ≤
(

n
s

)

− 1,

|λ(s)
k (Hr(n, p)) − λ

(s)
k (Kr

n)| ≤ (3 + o(1))
√

1−p

(n−s

r−s)p
.



Semicircle Law
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- Fn(x): 1

(n

s)
of the number of s-th Laplacian of Hr(n, p)

less than x.
- R := (2 + o(1))

√

1−p

(r−s

s )(n−s

r−s)p
.
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- Fn(x): 1

(n

s)
of the number of s-th Laplacian of Hr(n, p)

less than x.
- R := (2 + o(1))

√

1−p

(r−s

s )(n−s

r−s)p
.

Theorem [Lu and Peng 2011+]:
For 1 ≤ s ≤ r/2, if p(1 − p) ≫ log n

nr−s ,
then almost surely

Fn(x)
p→ F (x).

1−R 1+R

F(x)

1
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- Fn(x): 1

(n

s)
of the number of s-th Laplacian of Hr(n, p)

less than x.
- R := (2 + o(1))

√

1−p

(r−s

s )(n−s

r−s)p
.

Theorem [Lu and Peng 2011+]:
For 1 ≤ s ≤ r/2, if p(1 − p) ≫ log n

nr−s ,
then almost surely

Fn(x)
p→ F (x).

1−R 1+R

F(x)

1

Previously known similar results:

- on G(n, p) [Füredi-Komlós 1981].
- on G(w1, . . . , wn) Chung-Lu-Vu 2002.



Phase transition of Hr(n, p)
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■ Vertex to vertex :
Karoński-Luczak (2002) determines the threshold

pc ≈
1

(r − 1)
(

n−1
r−1

).



Phase transition of Hr(n, p)

The Giant Component in a Random Subgraph of a Given Graph Linyuan Lu (University of South Carolina) – 48 / 49

■ Vertex to vertex :
Karoński-Luczak (2002) determines the threshold

pc ≈
1

(r − 1)
(

n−1
r−1

).

■ Pair to pair? In general, s-tuple to s-tuple? (Ongoing
project with Peng.)
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Thank you.
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