Coloring Non-Uniform Hypergraphs Red and Blue

Lincoln Lu

lu@math.sc.edu

University of South Carolina

Coloring Non-Uniform HypergraphsRed and Blue – p.1/38

Hypergraphs

Hypergraph *H*:

- V(H): the set of vertices.
- E(H): the set of edges.
 (A edge F is a subset of V(H).)

Hypergraphs

Hypergraph *H*:

- V(H): the set of vertices.
- E(H): the set of edges.
 (A edge F is a subset of V(H).)

H is r -uniform if |F| = r forevery edge F of H.

Property B

A hypergraph *H* has Property B (or 2-colorable) if there is a red-blue vertex-coloring with no monochromatic edge.

Property B

A hypergraph H has Property B (or 2-colorable) if there is a red-blue vertex-coloring with no monochromatic edge.

With Property B

Property B

A hypergraph H has Property B (or 2-colorable) if there is a red-blue vertex-coloring with no monochromatic edge.

Without Property B

Property B is first introduced by Miller in 1937.

Hernstein (1908) proved: Suppose an infinite hypergraph H has countable edges and each edge has infinite vertices. Then H has Property B.

Property B is first introduced by Miller in 1937.

Bernstein (1908) proved: Suppose an infinite hypergraph *H* has countable edges and each edge has infinite vertices. Then *H* has Property B.

Erdős (1963) asked:

"What is the minimum edge number $m_2(r)$ of a r-uniform hypergraph not having property B?"

Edge cardinality matters!

$$m_2(1) = 1:$$

Edge cardinality matters!

Edge cardinality matters!

•
$$m_2(1) = 1$$
:
• $m_2(2) = 3$:
• $m_2(2) = 3$:
• $m_2(2) = 3$:
• $m_2(3) = 7$:
• $m_$

Perhaps $r2^r$ is the correct order of magnitude of $m_2(r)$; it seems likely that

$$\frac{m_2(r)}{2^r} \to \infty.$$

A stronger conjecture would be: Let $E_{k=1}^m$ be a 3-chromatic (not necessarily uniform) hypergraph. Let

$$f(r) = \min \sum_{k=1}^{m} \frac{1}{2^{|E_k|}},$$

where the minimum is extended over all hypergraphs with $\min |E_k| = r$. We conjecture that $f(r) \to \infty$ as $r \to \infty$.

Previous results

Erdős (1963)

 $|2^{r-1} \le m_2(r) \le (1+\epsilon) \frac{2\ln 2}{4} r^2 2^r.$

Previous results

Erdős (1963)

$$2^{r-1} \le m_2(r) \le (1+\epsilon)\frac{2\ln 2}{4}r^2 2^r.$$

Beck (1978), Spencer (1981)

 $\overline{m_2(r)} > r^{\frac{1}{3}} - o(1) 2^r.$

Previous results

Erdős (1963)

$$2^{r-1} \le m_2(r) \le (1+\epsilon)\frac{2\ln 2}{4}r^2 2^r.$$

Beck (1978), Spencer (1981)

$$m_2(r) > r^{\frac{1}{3}-o(1)}2^r.$$

Radhakrishnan and Srinivasan (2000)

$$m_2(r) > (\frac{\sqrt{2}}{2} - o(1)) \frac{\sqrt{r}}{\sqrt{\ln r}} 2^r.$$

Non-uniform hypergraphs

Let $g_0(x) = x$, $g_k(x) = \log_2(g_{k-1}(x))$ for $k \ge 1$. For all x > 0, let $\log^*(x) = \min\{k: g_k(x) \le 1\}$.

Beck (1978) proved

$$f(r) \ge \frac{\log^*(r) - 100}{7}$$
.

Non-uniform hypergraphs

Let $g_0(x) = x$, $g_k(x) = \log_2(g_{k-1}(x))$ for $k \ge 1$. For all x > 0, let $\log^*(x) = \min\{k: g_k(x) \le 1\}$.

Beck (1978) proved

$$f(r) \ge \frac{\log^*(r) - 100}{7}.$$

The function $\log^*(x)$ grows very slowly since it is the inverse function of the following tower function of height n

Observation

In Beck's paper, the gap between the lower bound of f(r) and the lower bound of $\frac{m_2(r)}{2^r}$ is huge.

Observation

- In Beck's paper, the gap between the lower bound of f(r) and the lower bound of $\frac{m_2(r)}{2^r}$ is huge.
- Using probabilistic method, Spencer simplified Beck's proof for the uniform case, but not for the non-uniform case.

Main result

Theorem (Lu) For any $\epsilon > 0$, there is an $r_0 = r_0(\epsilon)$, for all $r > r_0$, we have

$$f(r) \ge \left(\frac{1}{16} - \epsilon\right) \frac{\ln r}{\ln \ln r}.$$

Main result

Theorem (Lu) For any $\epsilon > 0$, there is an $r_0 = r_0(\epsilon)$, for all $r > r_0$, we have

$$f(r) \ge \left(\frac{1}{16} - \epsilon\right) \frac{\ln r}{\ln \ln r}.$$

An obvious upper bound:

$$f(r) \le \frac{m_2(r)}{2^r} \le (1+\epsilon)\frac{2\ln 2}{4}r^2.$$

Recoloring method

Theorem (Beck 1978) Any *r*-hypergraph *H* with at most $r^{1/3-o(1)}2^r$ edges has Property B.

Theorem (Beck 1978) Any *r*-hypergraph *H* with at most $r^{1/3-o(1)}2^r$ edges has Property B.

Spencer's Proof:

- Randomly and independently color each vertex red and blue with probability $\frac{1}{2}$.
- With probability *p*, independently flip the color of vertices lying in monochromatic edges.

Theorem (Beck 1978) Any *r*-hypergraph *H* with at most $r^{1/3-o(1)}2^r$ edges has Property B.

Spencer's Proof:

Randomly and independently color each vertex red and blue with probability $\frac{1}{2}$.

 With probability p, independently flip the color of vertices lying in monochromatic edges.

Observation: With positive probability, the recoloring process destroys all monochromatic edges and does not create any new monochromatic edge.

Type I: a red edge survives.

Let $h = |E(H)|2^{-r}$ be the expected number of red edges.

The probability of this event is

 $|E(H)|2^{-r}(1-p)^r \le he^{-rp}.$

Type II: a blue edge is created.

$$\begin{split} \sum_{i \ge 1} \sum_{|F \cap F'| = i} 2^{-2r+i} \sum_{s \ge 0} \binom{r-i}{s} p^{i+s} \\ &= 2^{-2r} \sum_{i \ge 1} (2p)^i \sum_{|F \cap F'| = i} (1+p)^{r-i} \\ &\le 2^{-2r} (1+p)^r \frac{2p}{1+p} |E(H)|^2 \\ &\le 2ph^2 e^{pr}. \end{split}$$

Put together

H has Property B if

 $2he^{-rp} + 4ph^2e^{pr} < 1.$ Choose $h = r^{(1-\epsilon)/3}$ and $p = \frac{(1+\epsilon)\ln h}{r}$. Done!

A critical case:

$\blacksquare S$ is red while $F' \setminus S$ is blue.

Coloring Non-Uniform HypergraphsRed and Hue – p.15/38

A critical case:

$\blacksquare S$ is red while $F' \setminus S$ is blue.

For any $v \in S$, there exists an red edge F containing v.

A critical case:

$\blacksquare S$ is red while $F' \setminus S$ is blue.

For any $v \in S$, there exists an red edge F containing v.

The size of F' is unbounded.

A critical case:

- $\blacksquare S$ is red while $F' \setminus S$ is blue.
- For any $v \in S$, there exists an red edge F containing v.
- **The size of** F' is unbounded.
- **There are too many choices of** S.

Introduce a new concept "twin-hypergraph".

Introduce a new concept "twin-hypergraph".

Adapt the recoloring method to twin-hypergraphs.

Introduce a new concept "twin-hypergraph".

- Adapt the recoloring method to twin-hypergraphs.
- Reduce the problem using irreducible core.

- Introduce a new concept "twin-hypergraph".
- Adapt the recoloring method to twin-hypergraphs.
- **R**educe the problem using irreducible core.
- Carefully separate independence relations between random variables.

Twin-hypergraphs

A *twin-hypergraph* is a pair of hypergraphs (H_1, H_2) with the same vertex set $V(H_1) = V(H_2)$.

A *twin-hypergraph* is a pair of hypergraphs (H_1, H_2) with the same vertex set $V(H_1) = V(H_2)$.

The twin-hypergraph (H_1, H_2) is said to have Property B if there exists a red-blue vertex-coloring satisfying

- \blacksquare H_1 has no red edge.
- \blacksquare H_2 has no blue edge.

Let C be a coloring of $H = (H_1, H_2)$. The red residue $R_C(H)$ is a twin-hypergraph (H'_1, H'_2) satisfying

• $V(H'_1) = V(H'_2) = R$: the set of vertices lying in red edges of H_1 .

- $V(H'_1) = V(H'_2) = R$: the set of vertices lying in red edges of H_1 .
- $E(H'_1)$ is the family of red edges.

- $V(H'_1) = V(H'_2) = R$: the set of vertices lying in red edges of H_1 .
- $\blacksquare E(H'_1)$ is the family of red edges.
- $\blacksquare E(H'_2) = \{F \cap R | F \in E(H_2), F \setminus R \text{ is blue}\}.$

- $V(H'_1) = V(H'_2) = R$: the set of vertices lying in red edges of H_1 .
- $\blacksquare E(H'_1)$ is the family of red edges.
- $\blacksquare E(H'_2) = \{F \cap R | F \in E(H_2), F \setminus R \text{ is blue}\}.$

- $V(H'_1) = V(H'_2) = R$: the set of vertices lying in red edges of H_1 .
- $\blacksquare E(H'_1)$ is the family of red edges.
- $\blacksquare E(H'_2) = \{F \cap R | F \in E(H_2), F \setminus R \text{ is blue}\}.$

Recoloring Lemma

Blue residue $B_C(H)$ is defined similarly.

Lemma 1 For any coloring C, the twin-hypergraph H has Property B if both red residue $R_C(H)$ and blue residue $B_C(H)$ have Property B.

Recoloring Lemma

Blue residue $B_C(H)$ is defined similarly.

Lemma 1 For any coloring C, the twin-hypergraph H has Property B if both red residue $R_C(H)$ and blue residue $B_C(H)$ have Property B.

 $R_C(H)$

Recoloring Lemma

Blue residue $B_C(H)$ is defined similarly.

Lemma 1 For any coloring C, the twin-hypergraph H has Property B if both red residue $R_C(H)$ and blue residue $B_C(H)$ have Property B.

 $R_C(H)$

Properties of Recoloring Lemma

Advantage: The number of edges of is reduced.

Properties of Recoloring Lemma

Advantage: The number of edges of is reduced.
 Disadvantage: The minimum edge-cardinality of one component hypergraph decreases.

Properties of Recoloring Lemma

Advantage: The number of edges of is reduced.
Disadvantage: The minimum edge-cardinality of one component hypergraph decreases.

Can not apply it recursively unless one of the residues is empty.

Irreducibility

A twin-hypergraph H = (H₁, H₂) is called *irreducible* if
1. ∀F₁ ∈ E(H₁) and v ∈ F₁, ∃F₂ ∈ E(H₂) such that F₁ ∩ F₂ = {v}.
2. ∀F₂ ∈ E(H₂) and v ∈ F₂ ∃F₁ ∈ E(H₁) such that

2. $\forall F_2 \in E(H_2) \text{ and } v \in F_2, \exists F_1 \in E(H_1) \text{ such that } F_1 \cap F_2 = \{v\}.$

Reducibility

A twin-hypergraph $H = (H_1, H_2)$ is called *reducible* if there is an evidence (F, v) satisfying

1. $v \in F$, and $F \in E(H_i)$ for i = 1 or 2.

2. $\forall F' \in E(H_{3-i})$, if $v \in F'$ then $|F \cap F'| \ge 2$.

Lemma 2 In the above process, $H^{(s)}$ is unique and does not depend on the order of edges being removed.

Lemma 2 In the above process, $H^{(s)}$ is unique and does not depend on the order of edges being removed. Sketch of Proof:

The irreducibility is closed under union.
The maximum irreducible sub-twin-hypergraph exists and is unique.

Lemma 2 In the above process, $H^{(s)}$ is unique and does not depend on the order of edges being removed. Sketch of Proof:

- The irreducibility is closed under union.
- The maximum irreducible sub-twin-hypergraph exists and is unique.
- *H*^(s) is the maximum irreducible sub-twin-hypergraph.

Lemma 2 In the above process, $H^{(s)}$ is unique and does not depend on the order of edges being removed. Sketch of Proof:

- The irreducibility is closed under union.
- The maximum irreducible sub-twin-hypergraph exists and is unique.
- *H*^(s) is the maximum irreducible sub-twin-hypergraph.

Such a unique H^s is called the irreducible core of H.

Lemma on irreducible core

Lemma 3 A twin-hypergraph *H* has Property B if and only if its irreducible core has Property B.

Lemma on irreducible core

Lemma 3 A twin-hypergraph *H* has Property B if and only if its irreducible core has Property B.

Proof: It suffices to add a removed edge F back.

■ If *F* is not monochromatic, do nothing.

Otherwise, flip the color of v. For any F' containing v, F' contains another vertex of F. Thus, F' is not monochromatic.

Let $C: V(H) \rightarrow red, blue$: (independently)

$$\Pr(C(v) = red) = \frac{1}{2}, \quad \Pr(C(v) = blue) = \frac{1}{2}$$

Let
$$C: V(H) \rightarrow red, blue:$$
 (independently)

$$\Pr(C(v) = red) = \frac{1}{2}, \quad \Pr(C(v) = blue) = \frac{1}{2}$$

Abort if an early termination condition is satisfied.

Let
$$C: V(H) \rightarrow red, blue$$
: (independently)

$$\Pr(C(v) = red) = \frac{1}{2}, \quad \Pr(C(v) = blue) = \frac{1}{2}$$

Abort if an early termination condition is satisfied.
Compute red residue R_C(H) and blue residue B_C(H).

Let
$$C: V(H) \rightarrow red, blue$$
: (independently)

$$\Pr(C(v) = red) = \frac{1}{2}, \quad \Pr(C(v) = blue) = \frac{1}{2}$$

- Abort if an early termination condition is satisfied.
 Compute red residue R_C(H) and blue residue B_C(H).
- Test $R_C(H)$.

Let $C: V(H) \rightarrow red, blue$: (independently)

$$\Pr(C(v) = red) = \frac{1}{2}, \quad \Pr(C(v) = blue) = \frac{1}{2}$$

Abort if an early termination condition is satisfied.
Compute red residue R_C(H) and blue residue B_C(H).

Test $R_C(H)$. Test $B_C(H)$.

An edge F has rank i if $r2^{i-1} \leq |F| < r2^i$.

Coloring Non-Uniform Hypergraphs Red and Blue – p.27/38

An edge F has rank i if $r2^{i-1} \leq |F| < r2^i$.

For each v lying in edges of rank i, flip the color of v independently with probability $\frac{q}{r2^{i-1}}$. At this stage, all red edges with rank i should be destroyed.

An edge F has rank i if $r2^{i-1} \leq |F| < r2^i$.

For each v lying in edges of rank i, flip the color of v independently with probability $\frac{q}{r2^{i-1}}$. At this stage, all red edges with rank i should be destroyed.

Red edges with higher rank are destroyed first.

An edge F has rank i if $r2^{i-1} \leq |F| < r2^i$.

- For each v lying in edges of rank i, flip the color of v independently with probability $\frac{q}{r2^{i-1}}$. At this stage, all red edges with rank i should be destroyed.
- **Red edges with higher rank are destroyed first.**
- Always reduce it to the irreducible core after recoloring.

An edge F has rank i if $r2^{i-1} \leq |F| < r2^i$.

- For each v lying in edges of rank i, flip the color of v independently with probability $\frac{q}{r2^{i-1}}$. At this stage, all red edges with rank i should be destroyed.
- **Red edges with higher rank are destroyed first.**
- Always reduce it to the irreducible core after recoloring.
- Abort the program if a red edge survives or a blue edge is created.

■ If the program succeeds, then *H* has Property B.

Claims

If the program succeeds, then *H* has Property B.

Suppose a twin-hypergraph $H = (H_1, H_2)$ with minimum edge-cardinality r satisfies

$$h_i \stackrel{def}{=} \sum_{F \in E(H_i)} \frac{1}{2^{|F|}} \le \left(\frac{1}{16} - o(1)\right) \frac{\ln r}{\ln \ln r}$$

for i = 1, 2. Then the program succeeds with positive probability.

$X_{F'} = \# \{ F \in E(H_1) \mid |F \cap F'| = 1, F \setminus F' \text{ is red.} \}$

$$X_{F'} = \#\{F \in E(H_1) \mid |F \cap F'| = 1, F \setminus F' \text{ is red.}\}$$
$$X_{F'}^{(i)} = \#\{F \in E(H_1) \mid |F| = i, |F \cap F'| = 1, F \setminus F' \text{ is red.}\}$$

$$X_{F'} = \#\{F \in E(H_1) \mid |F \cap F'| = 1, F \setminus F' \text{ is red.}\}$$
$$X_{F'}^{(i)} = \#\{F \in E(H_1) \mid |F| = i, |F \cap F'| = 1, F \setminus F' \text{ is red.}\}$$
$$X_{F'}^{(i)} = \#\{(v, F) \mid v \in F, F \in E(H_1), |F| = i, F \setminus \{v\} \text{ is red.}\}$$

$$X_{F'} = \#\{F \in E(H_1) \mid |F \cap F'| = 1, F \setminus F' \text{ is red.}\}$$
$$X_{F'}^{(i)} = \#\{F \in E(H_1) \mid |F| = i, |F \cap F'| = 1, F \setminus F' \text{ is red.}\}$$
$$X_{F'}^{(i)} = \#\{(v, F) \mid v \in F, F \in E(H_1), |F| = i, F \setminus \{v\} \text{ is red.}\}$$

$$\blacksquare X = \sum_{i \ge r} \frac{X^{(i)}}{i}.$$

Lemma 4 With probability at least $1 - \frac{1}{M}$, we have

$$\forall F', \qquad \sum_{i \ge r} \frac{X_{F'}^{(i)}}{i} \le 2Mh_1.$$

Lemma 4 With probability at least $1 - \frac{1}{M}$, we have

$$\forall F', \qquad \sum_{i\geq r} \frac{X_{F'}^{(i)}}{i} \leq 2Mh_1.$$

Sketch of Proof:

$$\sum_{i \ge r} \frac{X_{F'}^{(i)}}{i} \le \sum_{i \ge r} \frac{X^{(i)}}{i} = X$$
$$E(X^{(i)}) = \sum_{\substack{F \in E(H_1) \\ |F| = i}} \frac{2i}{2^i}.$$

Lemma 4 With probability at least $1 - \frac{1}{M}$, we have

$$\forall F', \qquad \sum_{i\geq r} \frac{X_{F'}^{(i)}}{i} \leq 2Mh_1.$$

Sketch of Proof:

$$\sum_{i \ge r} \frac{X_{F'}^{(i)}}{i} \le \sum_{i \ge r} \frac{X^{(i)}}{i} = X.$$

$$E(X^{(i)}) = \sum_{\substack{F \in E(H_1) \\ |F| = i}} \frac{2i}{2^i}.$$

$$E(X) = \sum_{F \in E(H_1)} \frac{2}{2^{|F|}} = 2h_1.$$

Lemma 4 With probability at least $1 - \frac{1}{M}$, we have

$$\forall F', \qquad \sum_{i\geq r} \frac{X_{F'}^{(i)}}{i} \leq 2Mh_1.$$

Sketch of Proof:

$$\sum_{i \ge r} \frac{X_{F'}^{(i)}}{i} \le \sum_{i \ge r} \frac{X^{(i)}}{i} = X.$$

$$E(X^{(i)}) = \sum_{\substack{F \in E(H_1) \\ |F| = i}} \frac{2i}{2^i}.$$

$$E(X) = \sum_{F \in E(H_1)} \frac{2}{2^{|F|}} = 2h_1.$$

Markov's inequality.

Type I: a red edge survives.

The failure probability of type I event is at most

Type II: a blue edge is created.

 $\blacksquare S$ is red while $F' \setminus S$ is blue in C.

Type II: a blue edge is created.

S is red while F' \ S is blue in C.
For any v ∈ S, ∃F_v such that F_v ∩ F = {v}. Moreover, F_v survives until v is recolored into blue.

Type II: a blue edge is created.

S is red while F' \ S is blue in C.
For any v ∈ S, ∃F_v such that F_v ∩ F = {v}. Moreover, F_v survives until v is recolored into blue.

All vertices in S are changed into blue eventually. Let x be the rank of F_v . For any $v \in S$,

Pr(v is recolored into blue)

Coloring Non-Uniform HypergraphsRed and Eluc – p.32/38

Let
$$\mathcal{F}_v = \{F \mid F \cap F' = \{v\}, F \setminus \{v\} \text{ is red}\}.$$

Upper-bound Z over
$$A_{F'} = (\sum_{i \ge r} \frac{X_{F'}^{(i)}}{i} \le 2Mh_1)$$

$$\begin{split} \mathbf{h}_{A_{F'}} Z &= \mathbf{1}_{A_{F'}} \frac{e^{4q \sum_{i \ge r} \frac{X_{F'}^{(i)}}{i}} - 1}{\sum_{i \ge r} \frac{X_{F'}^{(i)}}{i}} \sum_{i \ge r} \frac{X_{F'}^{(i)}}{i}}{i} \\ &\leq \frac{e^{8Mh_1q} - 1}{2Mh_1} \sum_{i \ge r} \frac{X_{F'}^{(i)}}{i}}{i} \\ &\leq \frac{e^{8Mh_1q}}{2Mh_1} \frac{1}{r} \sum_{i \ge r} X_{F'}^{(i)}}{i} \\ &= \frac{e^{8Mh_1q}}{2Mh_1 r} X_{F'}. \end{split}$$

Probability of type II event

 $\sum_{\in E(H_2)} \mathcal{E}(\mathbf{1}_A Z) \frac{1}{2^{|F'|}} \leq \sum_{F' \in E(H_2)} \frac{1}{2^{|F'|}} \mathcal{E}(\frac{e^{8Mh_1 q}}{2Mh_1 r} X_{F'})$ $F' \in E(H_2)$ $= \sum_{F' \in E(H_2)} \frac{1}{2^{|F'|}} \frac{e^{8Mh_1q}}{2Mh_1r} \mathcal{E}(X_{F'})$ $\leq h_2 \frac{e^{8Mh_1q}}{2Mh_1r} 2h_1$ $= \frac{h_2 e^{8Mh_1 q}}{Mr}.$

Put together

The probability of success is at least

$$1 - \frac{2}{M} - 2he^{-q} - \frac{2he^{8Mhq}}{Mr}.$$

Choose $M = 2(1 + \epsilon)$, $q = \ln \ln r$, and $h = \frac{1-\epsilon}{16} \frac{\ln r}{\ln \ln r}$. The above probability is

$$\frac{\epsilon}{1+\epsilon} - \frac{2h}{\ln r} - \frac{2h}{Mr^{\epsilon^2}} > 0$$

for sufficiently large r. Therefore, H has Property B.

Open Problems

Is it true
$$f(r) = \frac{m_2(r)}{2^r}$$
?

Coloring Non-Uniform HypergraphsRed and Blue – p.37/38

Open Problems

• Is it true
$$f(r) = \frac{m_2(r)}{2^r}$$
?

Find a better upper bound for f(r) using non-uniform hypergraph.

Open Problems

• Is it true
$$f(r) = \frac{m_2(r)}{2^r}$$
?

Find a better upper bound for f(r) using non-uniform hypergraph.

Prove of disprove Erdős-Lovász's stronger conjecture $m_2(r) = \Theta(r2^r)$.

The End

