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Hypergraphs

Hypergraph H:

- V (H): the set of vertices.

- E(H): the set of edges.
(A edge F is a subset of V (H).)
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Hypergraphs

Hypergraph H:

- V (H): the set of vertices.

- E(H): the set of edges.
(A edge F is a subset of V (H).)

H is r-uniform if |F | = r for
every edge F of H .
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Property B

A hypergraph H has Property B (or 2-colorable) if there
is a red-blue vertex-coloring with no monochromatic
edge.
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Property B

A hypergraph H has Property B (or 2-colorable) if there
is a red-blue vertex-coloring with no monochromatic
edge.

With Property B
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Property B

A hypergraph H has Property B (or 2-colorable) if there
is a red-blue vertex-coloring with no monochromatic
edge.

With Property B Without Property B
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History

Property B is first introduced by Miller in 1937.

Bernstein (1908) proved: Suppose an infinite hypergraph
H has countable edges and each edge has infinite
vertices. Then H has Property B.
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History

Property B is first introduced by Miller in 1937.

Bernstein (1908) proved: Suppose an infinite hypergraph
H has countable edges and each edge has infinite
vertices. Then H has Property B.

Erdős (1963) asked:

“What is the minimum edge numberm2(r) of a r-uniform

hypergraph not having property B?”
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Edge cardinality matters!

m2(1) = 1:
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Edge cardinality matters!

m2(1) = 1:

m2(2) = 3:
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Edge cardinality matters!

m2(1) = 1:

m2(2) = 3:

m2(3) = 7:

Fano plane

Coloring Non-Uniform HypergraphsRed and Blue – p.5/38



Erdős and Lovász (1975)

Perhaps r2r is the correct order of magnitude of m2(r); it

seems likely that

m2(r)

2r
→ ∞.

A stronger conjecture would be: Let Em

k=1 be a 3-chromatic

(not necessarily uniform) hypergraph. Let

f(r) = min

m∑

k=1

1

2|Ek|
,

where the minimum is extended over all hypergraphs with

min |Ek| = r. We conjecture that f(r) → ∞ as r → ∞.

Coloring Non-Uniform HypergraphsRed and Blue – p.6/38



Previous results

Erdős (1963)

2r−1 ≤ m2(r) ≤ (1 + ǫ)
2 ln 2

4
r22r.
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Previous results

Erdős (1963)

2r−1 ≤ m2(r) ≤ (1 + ǫ)
2 ln 2

4
r22r.

Beck (1978), Spencer (1981)

m2(r) > r
1
3−o(1)2r.
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Previous results

Erdős (1963)

2r−1 ≤ m2(r) ≤ (1 + ǫ)
2 ln 2

4
r22r.

Beck (1978), Spencer (1981)

m2(r) > r
1
3−o(1)2r.

Radhakrishnan and Srinivasan (2000)

m2(r) > (

√
2

2
− o(1))

√
r√

ln r
2r.
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Non-uniform hypergraphs

Let g0(x) = x, gk(x) = log2(gk−1(x)) for k ≥ 1. For all
x > 0, let log∗(x) = min{k: gk(x) ≤ 1}.
Beck (1978) proved

f(r) ≥ log∗(r) − 100

7
.
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Non-uniform hypergraphs

Let g0(x) = x, gk(x) = log2(gk−1(x)) for k ≥ 1. For all
x > 0, let log∗(x) = min{k: gk(x) ≤ 1}.
Beck (1978) proved

f(r) ≥ log∗(r) − 100

7
.

The function log∗(x) grows very slowly since it is the
inverse function of the following tower function of
height n

n → 2

n
︷︸︸︷

2·
··
2

.
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Observation

In Beck’s paper, the gap between the lower bound of

f(r) and the lower bound of
m2(r)

2r is huge.
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Observation

In Beck’s paper, the gap between the lower bound of

f(r) and the lower bound of
m2(r)

2r is huge.

Using probabilistic method, Spencer simplified
Beck’s proof for the uniform case, but not for the
non-uniform case.
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Main result

Theorem (Lu) For any ǫ > 0, there is an r0 = r0(ǫ), for
all r > r0, we have

f(r) ≥ (
1

16
− ǫ)

ln r

ln ln r
.
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Main result

Theorem (Lu) For any ǫ > 0, there is an r0 = r0(ǫ), for
all r > r0, we have

f(r) ≥ (
1

16
− ǫ)

ln r

ln ln r
.

An obvious upper bound:

f(r) ≤ m2(r)

2r
≤ (1 + ǫ)

2 ln 2

4
r2.
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Recoloring method

Theorem (Beck 1978) Any r-hypergraph H with at most

r1/3−o(1)2r edges has Property B.

Coloring Non-Uniform HypergraphsRed and Blue – p.11/38



Recoloring method

Theorem (Beck 1978) Any r-hypergraph H with at most

r1/3−o(1)2r edges has Property B.

Spencer’s Proof:

Randomly and independently color each vertex red

and blue with probability 1
2 .

With probability p, independently flip the color of
vertices lying in monochromatic edges.

Coloring Non-Uniform HypergraphsRed and Blue – p.11/38



Recoloring method

Theorem (Beck 1978) Any r-hypergraph H with at most

r1/3−o(1)2r edges has Property B.

Spencer’s Proof:

Randomly and independently color each vertex red

and blue with probability 1
2 .

With probability p, independently flip the color of
vertices lying in monochromatic edges.

Observation: With positive probability, the recoloring

process destroys all monochromatic edges and does not

create any new monochromatic edge.
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Type I: a red edge survives.

Let h = |E(H)|2−r be the expected number of red edges.

The probability of this event is

|E(H)|2−r(1 − p)r ≤ he−rp.
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Type II: a blue edge is created.

∑

i≥1

∑

|F∩F ′|=i

2−2r+i
∑

s≥0

(
r − i

s

)

pi+s

= 2−2r
∑

i≥1

(2p)i
∑

|F∩F ′|=i

(1 + p)r−i

≤ 2−2r(1 + p)r 2p

1 + p
|E(H)|2

≤ 2ph2epr.

S

F F’
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Put together

H has Property B if

2he−rp + 4ph2epr < 1.

Choose h = r(1−ǫ)/3 and p = (1+ǫ) lnh
r . Done!
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The difficulty

A critical case:

S

F’

S is red while F ′ \ S is blue.
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The difficulty

A critical case:

S

F’

S is red while F ′ \ S is blue.

For any v ∈ S, there exists an red edge F containing
v.
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The difficulty

A critical case:

S

F’

S is red while F ′ \ S is blue.

For any v ∈ S, there exists an red edge F containing
v.

The size of F ′ is unbounded.
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The difficulty

A critical case:

S

F’

S is red while F ′ \ S is blue.

For any v ∈ S, there exists an red edge F containing
v.

The size of F ′ is unbounded.

There are too many choices of S.
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Our approach

Introduce a new concept “twin-hypergraph”.
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Our approach

Introduce a new concept “twin-hypergraph”.

Adapt the recoloring method to twin-hypergraphs.
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Our approach

Introduce a new concept “twin-hypergraph”.

Adapt the recoloring method to twin-hypergraphs.

Reduce the problem using irreducible core.
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Our approach

Introduce a new concept “twin-hypergraph”.

Adapt the recoloring method to twin-hypergraphs.

Reduce the problem using irreducible core.

Carefully separate independence relations between
random variables.
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Twin-hypergraphs

A twin-hypergraph is a pair of hypergraphs (H1, H2)
with the same vertex set V (H1) = V (H2).
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Twin-hypergraphs

A twin-hypergraph is a pair of hypergraphs (H1, H2)
with the same vertex set V (H1) = V (H2).

The twin-hypergraph (H1, H2) is said to have Property B
if there exists a red-blue vertex-coloring satisfying

H1 has no red edge.

H2 has no blue edge.
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Residue twin-hypergraphs

Let C be a coloring of H = (H1, H2).
The red residue RC(H) is a twin-hypergraph (H ′

1, H
′
2)

satisfying

V (H ′
1) = V (H ′

2) = R: the set of vertices lying in
red edges of H1.
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Residue twin-hypergraphs

Let C be a coloring of H = (H1, H2).
The red residue RC(H) is a twin-hypergraph (H ′

1, H
′
2)

satisfying

V (H ′
1) = V (H ′

2) = R: the set of vertices lying in
red edges of H1.

E(H ′
1) is the family of red edges.
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Residue twin-hypergraphs

Let C be a coloring of H = (H1, H2).
The red residue RC(H) is a twin-hypergraph (H ′

1, H
′
2)

satisfying

V (H ′
1) = V (H ′

2) = R: the set of vertices lying in
red edges of H1.

E(H ′
1) is the family of red edges.

E(H ′
2) = {F ∩ R|F ∈ E(H2), F \ R is blue}.
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Residue twin-hypergraphs

Let C be a coloring of H = (H1, H2).
The red residue RC(H) is a twin-hypergraph (H ′

1, H
′
2)

satisfying

V (H ′
1) = V (H ′

2) = R: the set of vertices lying in
red edges of H1.

E(H ′
1) is the family of red edges.

E(H ′
2) = {F ∩ R|F ∈ E(H2), F \ R is blue}.
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Residue twin-hypergraphs

Let C be a coloring of H = (H1, H2).
The red residue RC(H) is a twin-hypergraph (H ′

1, H
′
2)

satisfying

V (H ′
1) = V (H ′

2) = R: the set of vertices lying in
red edges of H1.

E(H ′
1) is the family of red edges.

E(H ′
2) = {F ∩ R|F ∈ E(H2), F \ R is blue}.

RC(H)
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Recoloring Lemma

Blue residue BC(H) is defined similarly.

Lemma 1 For any coloring C, the twin-hypergraph H
has Property B if both red residue RC(H) and blue

residue BC(H) have Property B.
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Recoloring Lemma

Blue residue BC(H) is defined similarly.

Lemma 1 For any coloring C, the twin-hypergraph H
has Property B if both red residue RC(H) and blue

residue BC(H) have Property B.

H RC(H)

Before recoloring
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Recoloring Lemma

Blue residue BC(H) is defined similarly.

Lemma 1 For any coloring C, the twin-hypergraph H
has Property B if both red residue RC(H) and blue

residue BC(H) have Property B.

H RC(H)

After recoloring
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Properties of Recoloring Lemma

Advantage: The number of edges of is reduced.
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Properties of Recoloring Lemma

Advantage: The number of edges of is reduced.

Disadvantage: The minimum edge-cardinality of
one component hypergraph decreases.
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Properties of Recoloring Lemma

Advantage: The number of edges of is reduced.

Disadvantage: The minimum edge-cardinality of
one component hypergraph decreases.

Can not apply it recur-
sively unless one of the
residues is empty.

H

C

RC(H) BC(H)
�
�
�
�
��

A
A

A
A

AA
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Irreducibility

A twin-hypergraph H = (H1, H2) is called irreducible if

1. ∀F1 ∈ E(H1) and v ∈ F1, ∃F2 ∈ E(H2) such that

F1 ∩ F2 = {v}.
2. ∀F2 ∈ E(H2) and v ∈ F2, ∃F1 ∈ E(H1) such that

F1 ∩ F2 = {v}.
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Reducibility

A twin-hypergraph H = (H1, H2) is called reducible if

there is an evidence (F, v) satisfying

1. v ∈ F , and F ∈ E(Hi) for i = 1 or 2.

2. ∀F ′ ∈ E(H3−i), if v ∈ F ′ then |F ∩ F ′| ≥ 2.
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Reducing twin-hypergraphs

If H is reducible, there is an evidence (F, v). Removing
F from H we get a twin-hypergraph with one edge less.
Repeat this process until an irreducible twin-hypergraph
is reached.

H = H(0) ⊃ H(1) ⊃ · · · ⊃ H(s).
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If H is reducible, there is an evidence (F, v). Removing
F from H we get a twin-hypergraph with one edge less.
Repeat this process until an irreducible twin-hypergraph
is reached.

H = H(0) ⊃ H(1) ⊃ · · · ⊃ H(s).

Coloring Non-Uniform HypergraphsRed and Blue – p.23/38



Reducing twin-hypergraphs

If H is reducible, there is an evidence (F, v). Removing
F from H we get a twin-hypergraph with one edge less.
Repeat this process until an irreducible twin-hypergraph
is reached.

H = H(0) ⊃ H(1) ⊃ · · · ⊃ H(s).
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Irreducible core

Lemma 2 In the above process, H(s) is unique and does
not depend on the order of edges being removed.
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Irreducible core

Lemma 2 In the above process, H(s) is unique and does
not depend on the order of edges being removed.

Sketch of Proof:

The irreducibility is closed under union.

The maximum irreducible sub-twin-hypergraph
exists and is unique.
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Irreducible core

Lemma 2 In the above process, H(s) is unique and does
not depend on the order of edges being removed.

Sketch of Proof:

The irreducibility is closed under union.

The maximum irreducible sub-twin-hypergraph
exists and is unique.

H(s) is the maximum irreducible
sub-twin-hypergraph.
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Irreducible core

Lemma 2 In the above process, H(s) is unique and does
not depend on the order of edges being removed.

Sketch of Proof:

The irreducibility is closed under union.

The maximum irreducible sub-twin-hypergraph
exists and is unique.

H(s) is the maximum irreducible
sub-twin-hypergraph.

Such a unique Hs is called the irreducible core of H .

Coloring Non-Uniform HypergraphsRed and Blue – p.24/38



Lemma on irreducible core

Lemma 3 A twin-hypergraph H has Property B if and
only if its irreducible core has Property B.
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Lemma on irreducible core

Lemma 3 A twin-hypergraph H has Property B if and
only if its irreducible core has Property B.

Proof: It suffices to add a removed edge F back.

If F is not monochromatic, do nothing.

Otherwise, flip the color of v. For any F ′ containing
v, F ′ contains another vertex of F . Thus, F ′ is not
monochromatic.

Coloring Non-Uniform HypergraphsRed and Blue – p.25/38



Randomized testing algorithm

Let C:V (H) → red, blue: (independently)

Pr(C(v) = red) =
1

2
, Pr(C(v) = blue) =

1

2
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Randomized testing algorithm

Let C:V (H) → red, blue: (independently)

Pr(C(v) = red) =
1

2
, Pr(C(v) = blue) =

1

2

Abort if an early termination condition is satisfied.
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Randomized testing algorithm

Let C:V (H) → red, blue: (independently)

Pr(C(v) = red) =
1

2
, Pr(C(v) = blue) =

1

2

Abort if an early termination condition is satisfied.

Compute red residue RC(H) and blue residue

BC(H).
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Randomized testing algorithm

Let C:V (H) → red, blue: (independently)

Pr(C(v) = red) =
1

2
, Pr(C(v) = blue) =

1

2

Abort if an early termination condition is satisfied.

Compute red residue RC(H) and blue residue

BC(H).

Test RC(H).
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Randomized testing algorithm

Let C:V (H) → red, blue: (independently)

Pr(C(v) = red) =
1

2
, Pr(C(v) = blue) =

1

2

Abort if an early termination condition is satisfied.

Compute red residue RC(H) and blue residue

BC(H).

Test RC(H).

Test BC(H).
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Procedure to test RC(H)

An edge F has rank i if r2i−1 ≤ |F | < r2i.
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Procedure to test RC(H)

An edge F has rank i if r2i−1 ≤ |F | < r2i.

For each v lying in edges of rank i, flip the color of v
independently with probability q

r2i−1 . At this stage,

all red edges with rank i should be destroyed.
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Procedure to test RC(H)

An edge F has rank i if r2i−1 ≤ |F | < r2i.

For each v lying in edges of rank i, flip the color of v
independently with probability q

r2i−1 . At this stage,

all red edges with rank i should be destroyed.

Red edges with higher rank are destroyed first.
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Procedure to test RC(H)

An edge F has rank i if r2i−1 ≤ |F | < r2i.

For each v lying in edges of rank i, flip the color of v
independently with probability q

r2i−1 . At this stage,

all red edges with rank i should be destroyed.

Red edges with higher rank are destroyed first.

Always reduce it to the irreducible core after
recoloring.
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Procedure to test RC(H)

An edge F has rank i if r2i−1 ≤ |F | < r2i.

For each v lying in edges of rank i, flip the color of v
independently with probability q

r2i−1 . At this stage,

all red edges with rank i should be destroyed.

Red edges with higher rank are destroyed first.

Always reduce it to the irreducible core after
recoloring.

Abort the program if a red edge survives or a blue
edge is created.
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Claims

If the program succeeds, then H has Property B.
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Claims

If the program succeeds, then H has Property B.

Suppose a twin-hypergraph H = (H1, H2) with
minimum edge-cardinality r satisfies

hi
def
=

∑

F∈E(Hi)

1

2|F | ≤ (
1

16
− o(1))

ln r

ln ln r

for i = 1, 2. Then the program succeeds with
positive probability.
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Random variables

XF ′ = #{F ∈ E(H1) | |F ∩ F ′| = 1, F \ F ′ is red.}
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Random variables

XF ′ = #{F ∈ E(H1) | |F ∩ F ′| = 1, F \ F ′ is red.}

X
(i)
F ′ = #{F ∈ E(H1) | |F | = i, |F ∩F ′| = 1, F \F ′ is red.}
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Random variables

XF ′ = #{F ∈ E(H1) | |F ∩ F ′| = 1, F \ F ′ is red.}

X
(i)
F ′ = #{F ∈ E(H1) | |F | = i, |F ∩ F ′| = 1, F \ F ′ is red.}

X(i) = #{(v, F ) | v ∈ F, F ∈ E(H1), |F | = i, F \{v} is red.}
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Random variables

XF ′ = #{F ∈ E(H1) | |F ∩ F ′| = 1, F \ F ′ is red.}

X
(i)
F ′ = #{F ∈ E(H1) | |F | = i, |F ∩ F ′| = 1, F \ F ′ is red.}

X(i) = #{(v, F ) | v ∈ F, F ∈ E(H1), |F | = i, F \{v} is red.}

X =
∑

i≥r
X(i)

i .
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Early Termination Condition

Lemma 4 With probability at least 1 − 1
M , we have

∀F ′,
∑

i≥r

X
(i)
F ′

i
≤ 2Mh1.
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Early Termination Condition

Lemma 4 With probability at least 1 − 1
M , we have

∀F ′,
∑

i≥r

X
(i)
F ′

i
≤ 2Mh1.

Sketch of Proof:
∑

i≥r

X
(i)

F ′

i ≤
∑

i≥r
X(i)

i = X.

E(X(i)) =
∑

F∈E(H1)

|F |=i

2i
2i .
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Early Termination Condition

Lemma 4 With probability at least 1 − 1
M , we have

∀F ′,
∑

i≥r

X
(i)
F ′

i
≤ 2Mh1.

Sketch of Proof:
∑

i≥r

X
(i)

F ′

i ≤
∑

i≥r
X(i)

i = X.

E(X(i)) =
∑

F∈E(H1)

|F |=i

2i
2i .

E(X) =
∑

F∈E(H1)
2

2|F | = 2h1.
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Early Termination Condition

Lemma 4 With probability at least 1 − 1
M , we have

∀F ′,
∑

i≥r

X
(i)
F ′

i
≤ 2Mh1.

Sketch of Proof:
∑

i≥r

X
(i)

F ′

i ≤
∑

i≥r
X(i)

i = X.

E(X(i)) =
∑

F∈E(H1)

|F |=i

2i
2i .

E(X) =
∑

F∈E(H1)
2

2|F | = 2h1.

Markov’s inequality.
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Type I: a red edge survives.

The failure probability of type I event is at most

∑

F∈E(H1)

1

2|F | (1 − q

r2⌊log2
|F |
r
⌋
)|F |

≤
∑

F∈E(H1)

1

2|F | (1 − q

|F |)
|F |

≤
∑

F∈E(H1)

1

2|F |e
−q

= h1e
−q.
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Type II: a blue edge is created.

S is red while F ′ \ S is blue in C.

S

F’
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Type II: a blue edge is created.

S is red while F ′ \ S is blue in C.

For any v ∈ S, ∃Fv such that

Fv ∩ F = {v}. Moreover, Fv sur-
vives until v is recolored into blue.

S

F’
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Type II: a blue edge is created.

S is red while F ′ \ S is blue in C.

For any v ∈ S, ∃Fv such that

Fv ∩ F = {v}. Moreover, Fv sur-
vives until v is recolored into blue.

S

F’

All vertices in S are changed into blue eventually.
Let x be the rank of Fv. For any v ∈ S,

Pr(v is recolored into blue) <

∞∑

s=x

q

r2s−1

=
4q

r2x
<

4q

|Fv|
.
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Random variable Z

Let Fv = {F | F ∩ F ′ = {v}, F \ {v}is red}.

Z
def
=

∑

S⊂F ′

|S|≥1

∏

v∈S

∑

F∈Fv

4q

|F |

=
∏

v∈F ′

(1 +
∑

F∈Fv

4q

|F |) − 1

≤ e
∑

v∈F ′
∑

F∈Fv

4q

|F | − 1

= e4q
∑

i≥r

X
(i)

F ′
i − 1.
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Upper-bound Z over AF ′ = (
∑

i≥r

X
(i)

F ′

i
≤ 2Mh1)

1AF ′Z = 1AF ′

e4q
∑

i≥r

X
(i)

F ′
i − 1

∑

i≥r

X
(i)

F ′

i

∑

i≥r

X
(i)
F ′

i

≤ e8Mh1q − 1

2Mh1

∑

i≥r

X
(i)
F ′

i

≤ e8Mh1q

2Mh1

1

r

∑

i≥r

X
(i)
F ′

=
e8Mh1q

2Mh1r
XF ′.
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Probability of type II event

∑

F ′∈E(H2)

E(1AZ)
1

2|F ′| ≤
∑

F ′∈E(H2)

1

2|F ′|E(
e8Mh1q

2Mh1r
XF ′)

=
∑

F ′∈E(H2)

1

2|F ′|
e8Mh1q

2Mh1r
E(XF ′)

≤ h2
e8Mh1q

2Mh1r
2h1

=
h2e

8Mh1q

Mr
.
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Put together

The probability of success is at least

1 − 2

M
− 2he−q − 2he8Mhq

Mr
.

Choose M = 2(1 + ǫ), q = ln ln r, and h = 1−ǫ
16

ln r
ln ln r .

The above probability is

ǫ

1 + ǫ
− 2h

ln r
− 2h

Mrǫ2
> 0

for sufficiently large r.

Therefore, H has Property B.
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Open Problems

Is it true f(r) = m2(r)
2r ?
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Open Problems

Is it true f(r) = m2(r)
2r ?

Find a better upper bound for f(r) using
non-uniform hypergraph.
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Open Problems

Is it true f(r) = m2(r)
2r ?

Find a better upper bound for f(r) using
non-uniform hypergraph.

Prove of disprove Erdős-Lovász’s stronger

conjecture m2(r) = Θ(r2r).
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The End
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