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Hypergraphs

Hypergraph H:
- V(H): the set of vertices.

- E(H): the set of edges.
(A edge F'is a subset of V(H).)
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Hypergraphs

Hypergraph H:
- V(H): the set of vertices.

- E(H): the set of edges.
(A edge F'is a subset of V(H).)

H is r-uniform if | F'| = r for
every edge [’ of H.
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Property B

A hypergraph H has Property B (or 2-colorable) if there
1S a red-blue vertex-coloring with no monochromatic
edge.
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Property B

A hypergraph H has Property B (or 2-colorable) if there
1S a red-blue vertex-coloring with no monochromatic
edge.

With Property B
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Property B

A hypergraph H has Property B (or 2-colorable) if there
1S a red-blue vertex-coloring with no monochromatic
edge.

With Property B Without Property B
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Property 1s first introduced by Miller in 1937.

(1908) proved: Suppose an infinite hypergraph
H has countable edges and each edge has infinite
vertices. Then f has Property B.
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Property 1s first introduced by Miller in 1937.

(1908) proved: Suppose an infinite hypergraph
H has countable edges and each edge has infinite
vertices. Then f has Property B.

Erdos (1963) asked:

“What is the minimum edge number ms(r) of a r-uniform

hypergraph not having property 5?”
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cardinality matters!

2(1) = 1:



cardinality matters!



cardinality matters!



Erdos and Lovasz (1975)

Perhaps 72" is the correct order of magnitude of my(r); it
seems likely that
ma(r)
27“
A stronger conjecture would be: Let £, be a 3-chromatic

> OQ.

(not necessarily uniform) hypergraph. Let

1
f(r) = mmz Sk
k=1

where the minimum is extended over all hypergraphs with

min | Fy| = r. We conjecture that f(r) — oo as r — oc.
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Previous results
= Erd6s (1963)
2"t < ma(r) < (1 +¢)

m Beck (1978), Spencer (1981)

2In 2
= r2or.

Coloring Non-Uniform Hypergraphs

and

—p.7/38



Previous results

= Erdos (1963)

2In2 ,_

2" < ma(r) < (1 +¢) 2

m Beck (1978), Spencer (1981)

1

mo(r) > r3—o)or,

= Radhakrishnan and Srinivasan (2000)

V2
ma(r) > (5~ o(1)

2",
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Non-uniform hypergraphs

Let go(x) = z, gr(z) = logs(gr_1(x)) for k > 1. For all
x> 0, letlog™(x) = min{k: gr(z) < 1}.

proved

log*(r) — 100
f(r) > - .
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Non-uniform hypergraphs

Let go(x) = z, gr(z) = logs(gr_1(x)) for k > 1. For all
x> 0, letlog™(x) = min{k: gr(z) < 1}.

proved

log* () — 100
fr) = 22—

The function log™(x) grows very slowly since it is the
inverse function of the following tower function of
height n

n

~ N

2

n—>22. :
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Observation

» In Beck’s paper, the gap between the lower bound of
f(r) and the lower bound of = ( ) is huge.
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Observation

m In Beck’s paper, the gap between the lower bound of
f(r) and the lower bound of = ( ) i huge.

m Using probabilistic method, Spencer simplified
Beck’s proot for the uniform case, but not for the
non-uniform case.
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result

Theor For any € > 0, there is an ry = r¢(¢€), for
0, We have

1 Inr

fr) = (55— ¢

Inlnr



Main result

For any € > 0, there is an 7y = r((€), for
all » > ry, we have

1 Inr

F(r) > (55 — )

Inlnr

An obvious upper bound:

2In2 ,

ma(r) .
.

fry <™

< (1+¢)
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oring method

Theore Any r-hypergraph H with at most
12" edges has Property B.



Recoloring method

Any r-hypergraph H with at most
r1/3=0(D)9" edges has Property B.

» Randomly and independently color each vertex red
and blue with probability %

» With probability p, independently flip the color of
vertices lying in monochromatic edges.

Coloring Non-Uniform Hypergraphs and —p-11/38



Any r-hypergraph  with at most
r1/3=0(D)9" edges has Property B.

Randomly and independently color each vertex red
and blue with probability %

With probability p, independently flip the color of
vertices lying in monochromatic edges.

With positive probability, the recoloring
process destroys all monochromatic edges and does not

reate any new monochromatic edge.
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Type |l: a red edge survives.

Let h = |E(H)|27" be the expected number of red edges.

The probability of this event 1s

E(H)|27" (1 p)" < he ™.
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Type 11: a blue edge is created.

Y% 22r+z’z("“ ;L)pm

i>1 |[FNF|=i 5>0

= 27) (2p) Y (1+p)

11 |[FNF!|=i

o 2D
277" (1 + p) Ty E(H)|?

VAN

VAN

2phel".
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ygether

Property B if
2he P + dphef” < 1.

e h = r1=9/3 and p = (H? 1% Done!




ifficulty

al case:

O

is red while F’ \ S is blue.



The difficulty

A critical case:

= S is red while F’ \ S is blue.

= For any v € 5, there exists an red edge F' containing
V.

Coloring Non-Uniform Hypergraphs and —p-15/38



The difficulty

A critical case:

= S is red while F’ \ S is blue.

= For any v € 5, there exists an red edge F' containing
V.

m The size of F” is unbounded.
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The difficulty

A critical case:

= S is red while F’ \ S is blue.

= For any v € 5, there exists an red edge F' containing
V.

m The size of F” is unbounded.

= There are too many choices of S.
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Our approach

» Introduce a new concept “twin-hypergraph”.

m Adapt the recoloring method to twin-hypergraphs.
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Our approach

» Introduce a new concept “twin-hypergraph”.
m Adapt the recoloring method to twin-hypergraphs.

m Reduce the problem using irreducible core.
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Our approach

» Introduce a new concept “twin-hypergraph”.
m Adapt the recoloring method to twin-hypergraphs.
m Reduce the problem using irreducible core.

m Carefully separate independence relations between
random variables.
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Twin-hypergraphs

A twin-hypergraph is a pair of hypergraphs (H;, H>)
with the same vertex set V (H;) = V(H).
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Twin-hypergraphs

A twin-hypergraph is a pair of hypergraphs (H;, H>)
with the same vertex set V (H;) = V(H).

The twin-hypergraph (H;, H») is said to have Property B
if there exists a red-blue vertex-coloring satisfying

m [, has no red edge.
m 5 has no blue edge.
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Residue twin-hypergraphs

Let C' be a coloring of H = (H1, H>).

The Rc(H) is a twin-hypergraph (H{, H))
satistying
m V(H)) = V(H)) = R: the set of vertices lying in
red edges of H;.
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Residue twin-hypergraphs

Let C' be a coloring of H = (H1, H>).

The Rc(H) is a twin-hypergraph (H{, H))
satistying
m V(H)) = V(H)) = R: the set of vertices lying in
red edges of H;.

m E(H;) is the family of red edges.
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Residue twin-hypergraphs

Let C' be a coloring of H = (H1, H>).

The Rc(H) is a twin-hypergraph (H{, H))
satistying
m V(H)) = V(H)) = R: the set of vertices lying in
red edges of H;.

m E(H;) is the family of red edges.
w E(H)) ={FNR|F e E(H,y),F\ Risblue}.
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Residue twin-hypergraphs

Let C' be a coloring of H = (H1, H>).

The Rc(H) is a twin-hypergraph (H{, H))
satistying
m V(H)) = V(H)) = R: the set of vertices lying in
red edges of H;.

m E(H;) is the family of red edges.
w E(H)) ={FNR|F e E(H,y),F\ Risblue}.
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Residue twin-hypergraphs

Let C' be a coloring of H = (H1, H>).

The Rc(H) is a twin-hypergraph (H{, H))
satistying
m V(H)) = V(H)) = R: the set of vertices lying in
red edges of H;.

m E(H;) is the family of red edges.
w E(H)) ={FNR|F e E(H,y),F\ Risblue}.

Reo(H)
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Recoloring Lemma

residue B¢ (H) is defined similarly.

For any coloring C, the twin-hypergraph H
has Property B if both Rc(H) and
B (H) have Property B.
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Recoloring Lemma

residue B¢ (H) is defined similarly.

For any coloring C, the twin-hypergraph H
has Property B if both Rc(H) and
B (H) have Property B.

H Re(H)

Before recoloring
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Recoloring Lemma

residue B¢ (H) is defined similarly.

For any coloring C, the twin-hypergraph H
has Property B if both Rc(H) and
B (H) have Property B.

H Re(H)

After recoloring
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rties of Recoloring Lemma

A The number of edges of 1s reduced.



Properties of Recoloring Lemma

m The number of edges of 1s reduced.

m The minimum edge-cardinality of
one component hypergraph decreases.
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Properties of Recoloring Lemma

m The number of edges of 1s reduced.

m The minimum edge-cardinality of
one component hypergraph decreases.

Can not apply 1t recur-
sively unless one of the C
residues 1s empty.
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Irreducibility

A twin-hypergraph H = (Hy, H5) is called irreducible if

1. VI € E(Hy) andv € Fy, 3F; € E(H>) such that
F1 M F2 — {U}

2. VF, € E(HQ) and v € F5, dF| € E(Hl) such that
F1 M F2 {?)}

Coloring Non-Uniform Hypergraphs and - p-21/38



Reducibility

A twin-hypergraph H = (Hy, H,) is called reducible if
there is an evidence ([, v) satisfying

l. ve F,and F' € E(H;) fori =1 or 2.
2. VF' € E(Hs_;), ifv € F' then |F N F'| > 2.
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Reducing twin-hypergraphs

If H is reducible, there is an evidence (F, v). Removing
F from H we get a twin-hypergraph with one edge less.
Repeat this process until an irreducible twin-hypergraph
1s reached.

H:H(O) DH(l) DREEE DH(S).
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Reducing twin-hypergraphs

If H is reducible, there is an evidence (F, v). Removing
F from H we get a twin-hypergraph with one edge less.
Repeat this process until an irreducible twin-hypergraph
18 reached.

H:H(O) DH(l) DREEE DH(S).
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Reducing twin-hypergraphs

If H is reducible, there is an evidence (F, v). Removing
F from H we get a twin-hypergraph with one edge less.
Repeat this process until an irreducible twin-hypergraph
1s reached.

H:H(O) DH(l) DREEE DH(S).
(\
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Reducing twin-hypergraphs

If H is reducible, there is an evidence (F, v). Removing
F from H we get a twin-hypergraph with one edge less.
Repeat this process until an irreducible twin-hypergraph
18 reached.

H:H(O) DH(l) DREEE DH(S).
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Irreducible core

In the above process, H*) is unique and does
not depend on the order of edges being removed.
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Irreducible core

In the above process, H*) is unique and does
not depend on the order of edges being removed.

m The 1rreducibility 1s closed under union.

» The maximum irreducible sub-twin-hypergraph
exists and 1s unique.
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Irreducible core

In the above process, H*) is unique and does
not depend on the order of edges being removed.

m The 1rreducibility 1s closed under union.

» The maximum irreducible sub-twin-hypergraph
exists and 1s unique.

» H®) is the maximum irreducible
sub-twin-hypergraph.

Coloring Non-Uniform Hypergraphs and —p-24/38



Irreducible core

In the above process, H*) is unique and does

not depend on the order of edges being removed.

m T

ne irreducibility 1s closed under union.

w T

ne maximum irreducible sub-twin-hypergraph

exists and 1s unique.

» H®) is the maximum irreducible
sub-twin-hypergraph.

Such a unique f1° 1s called the of H.
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L. emma on irreducible core

A twin-hypergraph H has Property B if and
only 1f its irreducible core has Property B.
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L. emma on irreducible core

A twin-hypergraph H has Property B if and
only 1f its irreducible core has Property B.

It suffices to add a removed edge F' back.

m If F' 1s not monochromatic, do nothing.

= Otherwise, flip the color of v. For any F’ containing

v, I’ contains another vertex of F'. Thus, F” is not
monochromatic.
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omized testing algorithm

>t C: V(H) — red, blue: (independently)

Pr(C(v) = red) = %, Pr(C(v) = blue) = %



Randomized testing algorithm

mLet C:V(H) — red, blue: (independently)

Pr(C(v) = red) = %, Pr(C(v) = blue) = %

m if an early termination condition 1s satisfied.
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Randomized testing algorithm

mLet C:V(H) — red, blue: (independently)

Pr(C(v) = red) = %, Pr(C(v) = blue) = %

m if an early termination condition 1s satisfied.

= Compute red residue R¢o(H ) and blue residue
Bo(H).
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Randomized testing algorithm

mLet C:V(H) — red, blue: (independently)

Pr(C(v) = red) = %, Pr(C(v) = blue) = %

m if an early termination condition 1s satisfied.

= Compute red residue R¢o(H ) and blue residue
Bo(H).

m Test Ro(H).
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Randomized testing algorithm

mLet C:V(H) — red, blue: (independently)

Pr(C(v) = red) = %, Pr(C(v) = blue) = %

m if an early termination condition 1s satisfied.

= Compute red residue R¢o(H ) and blue residue
Bo(H).

m Test Ro(H).
m Test Bo(H).
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dure to test R(H )

edge I has rank i if r2°1 < |F| < r2.



Procedure to test R (H )

m An edge F has rank 1 if 21 < |F| < r2.

m For each v lying 1n edges of rank i, flip the color of v
independently with probability 1. At this stage,

rot—1-

all red edges with rank ¢ should be destroyed.

Coloring Non-Uniform Hypergraphs and —p-27/38



Procedure to test R (H )

m An edge I has rank 1 if 21 < |F| < r2".

m For each v lying 1n edges of rank i, flip the color of v
independently with probability 1. At this stage,

rot—1-

all red edges with rank ¢ should be destroyed.

m Red edges with higher rank are destroyed first.
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Procedure to test R (H )

m An edge I has rank 1 if 21 < |F| < r2".

m For each v lying 1n edges of rank i, flip the color of v
independently with probability 1. At this stage,

rot—1-

all red edges with rank ¢ should be destroyed.

m Red edges with higher rank are destroyed first.

» Always reduce it to the irreducible core after
recoloring.
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Procedure to test R (H )

m An edge I has rank 1 if 21 < |F| < r2".

m For each v lying 1n edges of rank i, flip the color of v
independently with probability 1. At this stage,

rot—1-

all red edges with rank ¢ should be destroyed.

m Red edges with higher rank are destroyed first.

» Always reduce it to the irreducible core after
recoloring.

= Abort the program if a red edge survives or a blue
edge 1s created.
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the program succeeds, then /{ has Property B.



It the program succeeds, then H has Property B.

Suppose a twin-hypergraph H = (H;, H,) with
minimum edge-cardinality r satisfies

def Z LFS __0(1)) Inr

Inlnr
FEE

for 2+ = 1, 2. Then the program succeeds with
positive probability.
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om variables

m=#{F e E(H) | |FNF'|=1,F\ F'isred.}



om variables

m=#{F e E(H) | |FNF'|=1,F\ F'isred.}

O — 4 {F e E(H,) | |F|=i,|FNF|=1,F\ Fisred.}



Random variables

WXy =#{FeEH)||FNF'|=1,F\ F'isred.}
IXF, #{F e E(H,) | |F|=14|FNF|=1F\ Fisred.}

mXO =y F)|veF,FcEWH)I|F|=iF\{v}isred.}
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Random variables

WXy =#{FeEH)||FNF'|=1,F\ F'isred.}
IXF, #{F e E(H,) | |F|=14|FNF|=1F\ Fisred.}

mXO =y F)|veF,FcEWH)I|F|=iF\{v}isred.}

e X @
mX = ZiZ’r Fa
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Termination Condition

. With probability at least 1 — <=, we have

X\
VE', Y S <oMby.

_ (
1>



Early Termination Condition

With probability at least 1 — -, we have

X
VI, Z < 2Mbhy.

()
1>T
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Early Termination Condition

With probability at least 1 — -, we have

/ x 0
VE - < .
, Z £ < 2Mhy
1>r
Xy ()
- Zz’ZT 7 < Zz’Zr Xz = X
— E(X(i)) = D rem(uy) 33
\F'|=i
m E(X) =2 penm) 37 = 2ha.

(@)
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Early Termination Condition

With probability at least 1 — -, we have

x 0

VI, Z F’ < 2Mh;.

m E(X) =2 penm) 37 = 2ha.
» Markov’s inequality.
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Type |l: a red edge survives.

The failure probability of type I event is at most

1
>

FeFE(H,)

<

<

2

FeFE(H,)

2

FeFE(Hy)

hle_q.

q )IF

1
L

o,

2| F|

9 llog, 7|

i)m
a
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I1: a blue edge is created.

is ~ while F"\ S is in C.

O



Type 11: a blue edge is created.

mSis  while F'\ S'is in C'.

w For any v € S, dF, such that
F, N I = {v}. Moreover, F, sur-
vives until v 1s recolored into blue.
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Type 11: a blue edge is created.

mSis  while F'\ S'is in C'.

w For any v € S, dF, such that
F, N I = {v}. Moreover, F, sur-
vives until v 1s recolored into blue.

= All vertices in .S are changed into blue eventually.

Let x be the rank of F),. For any v € §,

Pr(v is recolored into blue) < Z

— r2s—1
~ 4q  4q
r2® |F,|
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Random variable /

Let F, = {F | FNF' = {v}, F\ {v}is red}.

YYIY #

scr! veS FelF,

1S|>1
= JJa+ Z
vel’ FeF,

S 62 eF’ ZFE]:U |F| — 1

(%)
- 4q Zz>'r 7 1 )
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14,7

VAN

VAN

2Mh1 T <
[/
68Mh1q

2Mh17“
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Probability of type 11 event

e
Z E 1AZ \F’\ = Z 2\F’|E(2Mh17a
F'eE(H,) F'eE(H>)
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Put together

The probability of success 1s at least

2 2heMha
1 2he 1 -
M Mr

Choose M = 2(1 4 ¢€),q =Inlnr, and h = 1587

16 Inlnr*

The above probability 1s

€ 2h 2h

> ()
l1+¢ Inr Mr€

for sufficiently large r.

Therefore, 1 has Property B.

Coloring Non-Uniform Hypergraphs

and

—p.36/38



Problems

it true f(r) = m;—ff)?



Open Problems

m Is it true f(r) = m;(f“)?

= Find a better upper bound for f(r) using
non-uniform hypergraph.
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Open Problems

m Is it true f(r) = m;(f“)?

= Find a better upper bound for f(r) using
non-uniform hypergraph.

m Prove of disprove Erdos-Lovasz’s stronger
conjecture mo(r) = O(r2").
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