Laplacian of Random Hypergraphs

Linyuan Lu

University of South Carolina
Collaborator: Xing Peng
Selected Topics on Spectral Graph Theory (V) Nankai University, Tianjin, June 12, 2014

Five talks

Selected Topics on Spectral Graph Theory

1. Graphs with Small Spectral Radius Time: Friday (May 16) 4pm.-5:30p.m.
2. Laplacian and Random Walks on Graphs Time: Thursday (May 22) 4pm.-5:30p.m.
3. Spectra of Random Graphs Time: Thursday (May 29) 4pm.-5:30p.m.
4. Hypergraphs with Small Spectral Radius Time: Friday (June 6) 4pm.-5:30p.m.
5. Laplacian of Random Hypergraphs Time: Thursday (June 12) 4pm.-5:30p.m.

Backgrounds

I: Spectral Graph Theory II: Random Graph Theory III: Random Matrix Theory

The Laplacians of graphs

■ $G=(V, E)$: a weighted graph; each edge $x y$ is associated with a positive integer weight $w(x, y)$. $(w(x, y)=0$ if $x y \notin E(G)$.)

The Laplacians of graphs

■ $G=(V, E)$: a weighted graph; each edge $x y$ is associated with a positive integer weight $w(x, y)$. ($w(x, y)=0$ if $x y \notin E(G)$.)
A : adjacency matrix, $A(x, y)=w(x, y)$.

The Laplacians of graphs

■ $G=(V, E)$: a weighted graph; each edge $x y$ is associated with a positive integer weight $w(x, y)$. ($w(x, y)=0$ if $x y \notin E(G)$.)

- A : adjacency matrix, $A(x, y)=w(x, y)$.
- $d_{u}=\sum_{v} w(u, v)$: the degree of u.

The Laplacians of graphs

■ $G=(V, E)$: a weighted graph; each edge $x y$ is associated with a positive integer weight $w(x, y)$. ($w(x, y)=0$ if $x y \notin E(G)$.)

- A : adjacency matrix, $A(x, y)=w(x, y)$.

■ $d_{u}=\sum_{v} w(u, v)$: the degree of u.

- $T=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$: the diagonal matrix of degrees.

The Laplacians of graphs

■ $G=(V, E)$: a weighted graph; each edge $x y$ is associated with a positive integer weight $w(x, y)$. ($w(x, y)=0$ if $x y \notin E(G)$.)

- A : adjacency matrix, $A(x, y)=w(x, y)$.

■ $d_{u}=\sum_{v} w(u, v)$: the degree of u.

- $T=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$: the diagonal matrix of degrees.

■ $\mathcal{L}=I-T^{-1 / 2} A T^{-1 / 2}$: the (normalized) Laplacian.

The Laplacians of graphs

■ $G=(V, E)$: a weighted graph; each edge $x y$ is associated with a positive integer weight $w(x, y)$. ($w(x, y)=0$ if $x y \notin E(G)$.)

- A : adjacency matrix, $A(x, y)=w(x, y)$.

■ $d_{u}=\sum_{v} w(u, v)$: the degree of u.

- $T=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$: the diagonal matrix of degrees.
- $\mathcal{L}=I-T^{-1 / 2} A T^{-1 / 2}$: the (normalized) Laplacian.
- Laplacian spectrum: $\operatorname{LSP}(G):=\left\{\lambda_{0}, \ldots, \lambda_{n-1}\right\}$

$$
0=\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{n-1} \leq 2
$$

An example

$$
A=\left(\begin{array}{llll}
0 & 2 & 1 & 1 \\
2 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

An example

An example

Laplacian eigenvalues: $\lambda_{0}=0, \lambda_{1}=\lambda_{2}=1, \lambda_{3}=2$

Some properties

- $\quad \lambda_{1}>0$ if and only if G is connected.

Some properties

■ $\quad \lambda_{1}>0$ if and only if G is connected.
■ $\quad \lambda_{n-1}=2$ if and only if G is bipartite.

Some properties

- $\lambda_{1}>0$ if and only if G is connected.
- $\lambda_{n-1}=2$ if and only if G is bipartite.
- $\lambda_{1}=\lambda_{n-1}$ if and only if G is a complete graph (with the same weight).

Some properties

- $\lambda_{1}>0$ if and only if G is connected.
- $\lambda_{n-1}=2$ if and only if G is bipartite.
- $\lambda_{1}=\lambda_{n-1}$ if and only if G is a complete graph (with the same weight).
■ Rayleigh quotients :

$$
\begin{aligned}
\lambda_{1} & =\inf _{f \perp T 1} \frac{\sum_{x \sim y}(f(x)-f(y))^{2} w(x, y)}{\sum_{x} f(x)^{2} d_{x}}, \\
\lambda_{n-1} & =\sup _{f \perp T 1} \frac{\sum_{x \sim y}(f(x)-f(y))^{2} w(x, y)}{\sum_{x} f(x)^{2} d_{x}} .
\end{aligned}
$$

An important parameter

λ_{1} is related to

- the mixing rate of random walks

An important parameter

λ_{1} is related to

- the mixing rate of random walks diameter

An important parameter

λ_{1} is related to

- the mixing rate of random walks
- diameter
- neighborhood/edge expansion

An important parameter

λ_{1} is related to

- the mixing rate of random walks
- diameter
- neighborhood/edge expansion
- conductance

An important parameter

λ_{1} is related to

- the mixing rate of random walks
- diameter
- neighborhood/edge expansion
- conductance
- Cheeger's constant

An important parameter

λ_{1} is related to

- the mixing rate of random walks
- diameter
- neighborhood/edge expansion
- conductance
- Cheeger's constant

■ quasi-randomness

An important parameter

λ_{1} is related to

- the mixing rate of random walks
- diameter
- neighborhood/edge expansion
- conductance
- Cheeger's constant

■ quasi-randomness

- many other applications.

Random walks

A walk on a graph is a sequence of vertices together a sequence of edges:

$$
\begin{gathered}
v_{0}, v_{1}, v_{2}, v_{3}, \ldots, v_{k}, v_{k+1}, \ldots \\
v_{0} v_{1}, v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{k} v_{k+1}, \ldots
\end{gathered}
$$

Random walks

A walk on a graph is a sequence of vertices together a sequence of edges:

$$
\begin{gathered}
v_{0}, v_{1}, v_{2}, v_{3}, \ldots, v_{k}, v_{k+1}, \ldots \\
v_{0} v_{1}, v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{k} v_{k+1}, \ldots
\end{gathered}
$$

Random walks on a graph G :

$$
\begin{gathered}
f_{k+1}=f_{k} T^{-1} A . \\
\left\|\left(f_{k}-\pi\right) T^{-1 / 2}\right\| \leq \bar{\lambda}^{k}\left\|\left(f_{0}-\pi\right) T^{-1 / 2}\right\| . \\
T^{-1} A \sim T^{-1 / 2} A T^{-1 / 2}=I-\mathcal{L} .
\end{gathered}
$$

$\bar{\lambda}$ determines the mixing rate of random walks.

α-lazy random walks

For $0 \leq \alpha \leq 1$, at time t, with probability α, stay at the current vertex; with probability $1-\alpha$, move to a neighbor vertex randomly.

α-lazy random walks

For $0 \leq \alpha \leq 1$, at time t, with probability α, stay at the current vertex; with probability $1-\alpha$, move to a neighbor vertex randomly.

- Transition matrix

$$
P_{\alpha}:=\alpha I+(1-\alpha) T^{-1} A=T^{-1 / 2} \mathcal{L}_{\alpha} T^{1 / 2} .
$$

α-lazy random walks

For $0 \leq \alpha \leq 1$, at time t, with probability α, stay at the current vertex; with probability $1-\alpha$, move to a neighbor vertex randomly.

- Transition matrix

$$
P_{\alpha}:=\alpha I+(1-\alpha) T^{-1} A=T^{-1 / 2} \mathcal{L}_{\alpha} T^{1 / 2} .
$$

- $\quad \mathcal{L}_{\alpha}:=I-(1-\alpha) \mathcal{L}$, its second largest eigenvalue is

$$
\bar{\lambda}_{\alpha}=\max \left\{\left|1-(1-\alpha) \lambda_{1}\right|,\left|1-(1-\alpha) \lambda_{n-1}\right|\right\} .
$$

α-lazy random walks

For $0 \leq \alpha \leq 1$, at time t, with probability α, stay at the current vertex; with probability $1-\alpha$, move to a neighbor vertex randomly.

- Transition matrix

$$
P_{\alpha}:=\alpha I+(1-\alpha) T^{-1} A=T^{-1 / 2} \mathcal{L}_{\alpha} T^{1 / 2} .
$$

- $\quad \mathcal{L}_{\alpha}:=I-(1-\alpha) \mathcal{L}$, its second largest eigenvalue is

$$
\bar{\lambda}_{\alpha}=\max \left\{\left|1-(1-\alpha) \lambda_{1}\right|,\left|1-(1-\alpha) \lambda_{n-1}\right|\right\} .
$$

- Stationary distribution $\pi:=\frac{1}{\operatorname{vol}(G)}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.

α-lazy random walks

For $0 \leq \alpha \leq 1$, at time t, with probability α, stay at the current vertex; with probability $1-\alpha$, move to a neighbor vertex randomly.

- Transition matrix

$$
P_{\alpha}:=\alpha I+(1-\alpha) T^{-1} A=T^{-1 / 2} \mathcal{L}_{\alpha} T^{1 / 2} .
$$

- $\quad \mathcal{L}_{\alpha}:=I-(1-\alpha) \mathcal{L}$, its second largest eigenvalue is

$$
\bar{\lambda}_{\alpha}=\max \left\{\left|1-(1-\alpha) \lambda_{1}\right|,\left|1-(1-\alpha) \lambda_{n-1}\right|\right\} .
$$

- Stationary distribution $\pi:=\frac{1}{\operatorname{vol}(G)}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
- Let f_{k} be the distribution at time k.

Proof

Theorem:

$$
\left\|\left(f_{k}-\pi\right) T^{-1 / 2}\right\| \leq \bar{\lambda}_{\alpha}^{k}\left\|\left(f_{0}-\pi\right) T^{-1 / 2}\right\| .
$$

Proof:

$$
\left\|\left(f_{k}-\pi\right) T^{-1 / 2}\right\|=\left\|\left(f_{0} P_{\alpha}^{k}-\pi P_{\alpha}^{k}\right) T^{-1 / 2}\right\|
$$

Proof

Theorem:

$$
\left\|\left(f_{k}-\pi\right) T^{-1 / 2}\right\| \leq \bar{\lambda}_{\alpha}^{k}\left\|\left(f_{0}-\pi\right) T^{-1 / 2}\right\| .
$$

Proof:

$$
\begin{aligned}
\left\|\left(f_{k}-\pi\right) T^{-1 / 2}\right\| & =\left\|\left(f_{0} P_{\alpha}^{k}-\pi P_{\alpha}^{k}\right) T^{-1 / 2}\right\| \\
& =\left\|\left(f_{0}-\pi\right) P_{\alpha}^{k} T^{-1 / 2}\right\|
\end{aligned}
$$

Proof

Theorem:

$$
\left\|\left(f_{k}-\pi\right) T^{-1 / 2}\right\| \leq \bar{\lambda}_{\alpha}^{k}\left\|\left(f_{0}-\pi\right) T^{-1 / 2}\right\|
$$

Proof:

$$
\begin{aligned}
\left\|\left(f_{k}-\pi\right) T^{-1 / 2}\right\| & =\left\|\left(f_{0} P_{\alpha}^{k}-\pi P_{\alpha}^{k}\right) T^{-1 / 2}\right\| \\
& =\left\|\left(f_{0}-\pi\right) P_{\alpha}^{k} T^{-1 / 2}\right\| \\
& =\left\|\left(f_{0}-\pi\right) T^{-1 / 2} \mathcal{L}_{\alpha}^{k}\right\|
\end{aligned}
$$

Proof

Theorem:

$$
\left\|\left(f_{k}-\pi\right) T^{-1 / 2}\right\| \leq \bar{\lambda}_{\alpha}^{k}\left\|\left(f_{0}-\pi\right) T^{-1 / 2}\right\|
$$

Proof:

$$
\begin{aligned}
\left\|\left(f_{k}-\pi\right) T^{-1 / 2}\right\| & =\left\|\left(f_{0} P_{\alpha}^{k}-\pi P_{\alpha}^{k}\right) T^{-1 / 2}\right\| \\
& =\left\|\left(f_{0}-\pi\right) P_{\alpha}^{k} T^{-1 / 2}\right\| \\
& =\left\|\left(f_{0}-\pi\right) T^{-1 / 2} \mathcal{L}_{\alpha}^{k}\right\| \\
& \leq \bar{\lambda}_{\alpha}^{k}\left\|\left(f_{0}-\pi\right) T^{-1 / 2}\right\| .
\end{aligned}
$$

Diameter

Theorem [Chung (1989)]

If G is not a complete weighted graph, then we have

$$
\operatorname{diam}(G) \leq\left\lceil\frac{\log (\operatorname{vol}(G) / \delta)}{\log \frac{\lambda_{n-1}+\lambda_{1}}{\lambda_{n-1}-\lambda_{1}}}\right\rceil
$$

where δ is the minimum degree of G.

Edge discrepancy

For any two subsets X and Y, we have $\left||E(X, Y)|-\frac{\operatorname{vol}(X) \operatorname{vol}(Y)}{\operatorname{vol}(G)}\right| \leq \bar{\lambda} \frac{\sqrt{\operatorname{vol}(X) \operatorname{vol}(Y) \operatorname{vol}(\bar{X}) \operatorname{vol}(\bar{Y})}}{\operatorname{vol}(G)}$.
where
$\operatorname{vol}(X)=\sum_{x \in X} d_{x}$
$\operatorname{vol}(G)=\sum_{x \in V(G)} d_{x}$
$\operatorname{vol}(\bar{X})=\operatorname{vol}(G)-\operatorname{vol}(X)$
$\bar{\lambda}=\max \left\{\left|1-\lambda_{1}\right|,\left|\lambda_{n-1}-1\right|\right\}$.

$\mathrm{E}(\mathrm{X}, \mathrm{Y})$

Cheeger's Constant

$$
\begin{aligned}
h(S) & :=\frac{|E(S, \bar{S})|}{\min \{\operatorname{vol}(S), \operatorname{vol}(\bar{S})\}} . \\
h_{G} & :=\min _{S \subset V(G)} h(S) .
\end{aligned}
$$

$\mathrm{E}(\mathrm{S}, \mathrm{S})$

Cheeger's inequality

$$
2 h_{G} \geq \lambda_{1} \geq \frac{h_{G}^{2}}{2}
$$

Eulerian directed graphs

A directed graph D is Eulerian if the in-degree equals the out-degree at any vertex $x .\left(d_{x}^{+}=d_{x}^{-}=d_{x}\right)$

- Any weak connected component in D is also a strongly connected component.

Eulerian directed graphs

A directed graph D is Eulerian if the in-degree equals the out-degree at any vertex $x .\left(d_{x}^{+}=d_{x}^{-}=d_{x}\right)$

- Any weak connected component in D is also a strongly connected component.
- A : the adjacency matrix of D.

Eulerian directed graphs

A directed graph D is Eulerian if the in-degree equals the out-degree at any vertex $x .\left(d_{x}^{+}=d_{x}^{-}=d_{x}\right)$

- Any weak connected component in D is also a strongly connected component.
- $\quad A$: the adjacency matrix of D.
- T : the diagonal matrix of degrees.

Eulerian directed graphs

A directed graph D is Eulerian if the in-degree equals the out-degree at any vertex $x .\left(d_{x}^{+}=d_{x}^{-}=d_{x}\right)$

- Any weak connected component in D is also a strongly connected component.
- A : the adjacency matrix of D.
- T : the diagonal matrix of degrees.
- $\overrightarrow{\mathcal{L}}=I-T^{-1 / 2} A T^{-1 / 2}$.

Eulerian directed graphs

A directed graph D is Eulerian if the in-degree equals the out-degree at any vertex $x .\left(d_{x}^{+}=d_{x}^{-}=d_{x}\right)$

- Any weak connected component in D is also a strongly connected component.
- A : the adjacency matrix of D.
- T : the diagonal matrix of degrees.
- $\overrightarrow{\mathcal{L}}=I-T^{-1 / 2} A T^{-1 / 2}$.

Chung [2005] defined the Laplacian of Eulerian directed graphs.

$$
\mathcal{L}=\frac{\overrightarrow{\mathcal{L}}+\overrightarrow{\mathcal{L}^{\prime}}}{2} .
$$

α-lazy random walks on D

- Transition matrix

$$
P_{\alpha}:=\alpha I+(1-\alpha) T^{-1} A=T^{-1 / 2} \overrightarrow{\mathcal{L}}_{\alpha} T^{1 / 2} .
$$

α-lazy random walks on D

- Transition matrix

$$
P_{\alpha}:=\alpha I+(1-\alpha) T^{-1} A=T^{-1 / 2} \overrightarrow{\mathcal{L}}_{\alpha} T^{1 / 2} .
$$

- $\quad \overrightarrow{\mathcal{L}}_{\alpha}:=I-(1-\alpha) \overrightarrow{\mathcal{L}}, \phi_{0}:=\frac{1}{\operatorname{vol}(G)}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{n}}\right)$.

α-lazy random walks on D

- Transition matrix

$$
P_{\alpha}:=\alpha I+(1-\alpha) T^{-1} A=T^{-1 / 2} \overrightarrow{\mathcal{L}}_{\alpha} T^{1 / 2} .
$$

- $\quad \overrightarrow{\mathcal{L}}_{\alpha}:=I-(1-\alpha) \overrightarrow{\mathcal{L}}, \phi_{0}:=\frac{1}{\operatorname{vol}(G)}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{n}}\right)$.
- Stationary distribution $\pi:=\frac{1}{\operatorname{vol}(G)}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$

α-lazy random walks on D

- Transition matrix

$$
P_{\alpha}:=\alpha I+(1-\alpha) T^{-1} A=T^{-1 / 2} \overrightarrow{\mathcal{L}}_{\alpha} T^{1 / 2} .
$$

- $\quad \overrightarrow{\mathcal{L}}_{\alpha}:=I-(1-\alpha) \overrightarrow{\mathcal{L}}, \phi_{0}:=\frac{1}{\operatorname{vol}(G)}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{n}}\right)$.
- Stationary distribution $\pi:=\frac{1}{\operatorname{vol}(G)}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$
- Let f_{k} be the distribution at time k.

α-lazy random walks on D

- Transition matrix

$$
P_{\alpha}:=\alpha I+(1-\alpha) T^{-1} A=T^{-1 / 2} \overrightarrow{\mathcal{L}}_{\alpha} T^{1 / 2} .
$$

- $\quad \overrightarrow{\mathcal{L}}_{\alpha}:=I-(1-\alpha) \overrightarrow{\mathcal{L}}, \phi_{0}:=\frac{1}{\operatorname{vol}(G)}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{n}}\right)$.
- Stationary distribution $\pi:=\frac{1}{\operatorname{vol}(G)}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$
- Let f_{k} be the distribution at time k.

Theorem: $\left\|\left(f_{k}-\pi\right) T^{-1 / 2}\right\| \leq \sigma_{\alpha}^{k}\left\|\left(f_{0}-\pi\right) T^{-1 / 2}\right\|$.
Here $\sigma_{\alpha}:=\max _{f \perp \phi_{0}^{\prime}} \frac{\left\|\overrightarrow{\mathcal{L}}_{\alpha} f\right\|}{\|f\|}$ is the second largest singular value of $\overrightarrow{\mathcal{L}}_{\alpha}$.

The estimation of σ_{α}

Lemma:

- $\left(1-\lambda_{1}\right)^{2} \leq \sigma_{0}^{2} \leq 1$.

The estimation of σ_{α}

Lemma:

$$
\begin{array}{ll}
- & \left(1-\lambda_{1}\right)^{2} \leq \sigma_{0}^{2} \leq 1 \\
- & \sigma_{\alpha}^{2} \leq \alpha^{2}+2 \alpha(1-\alpha) \lambda_{1}+(1-\alpha)^{2} \sigma_{0}^{2} .
\end{array}
$$

The estimation of σ_{α}

Lemma:

- $\left(1-\lambda_{1}\right)^{2} \leq \sigma_{0}^{2} \leq 1$.
- $\sigma_{\alpha}^{2} \leq \alpha^{2}+2 \alpha(1-\alpha) \lambda_{1}+(1-\alpha)^{2} \sigma_{0}^{2}$.

Choosing α to minimize σ_{α}, we get

$$
\min _{0 \leq \alpha<1}\left\{\sigma_{\alpha}\right\} \leq \begin{cases}\sigma_{0} & \text { if } \lambda_{1} \leq 1 \\ \sqrt{1-\frac{\lambda_{1}^{2}}{2 \lambda_{1}+\sigma_{0}^{2}-1}} & \text { otherwise } .\end{cases}
$$

The estimation of σ_{α}

Lemma:

- $\left(1-\lambda_{1}\right)^{2} \leq \sigma_{0}^{2} \leq 1$.
- $\sigma_{\alpha}^{2} \leq \alpha^{2}+2 \alpha(1-\alpha) \lambda_{1}+(1-\alpha)^{2} \sigma_{0}^{2}$.

Choosing α to minimize σ_{α}, we get

$$
\min _{0 \leq \alpha<1}\left\{\sigma_{\alpha}\right\} \leq \begin{cases}\sigma_{0} & \text { if } \lambda_{1} \leq 1- \\ \sqrt{1-\frac{\lambda_{1}^{2}}{2 \lambda_{1}+\sigma_{0}^{2}-1}} & \text { otherwise } .\end{cases}
$$

In particular, $\min _{0 \leq \alpha<1}\left\{\sigma_{\alpha}\right\} \leq \sqrt{1-\frac{\lambda_{1}}{2}}$.

Diameter of D

Theorem [Chung 2005]:

$$
\operatorname{diam}(D) \leq\left\lfloor\frac{2 \log (\operatorname{vol}(G) / \delta)}{\log \frac{2}{2-\lambda_{1}}}\right\rfloor+1
$$

Diameter of D

Theorem [Chung 2005]:

$$
\operatorname{diam}(D) \leq\left\lfloor\frac{2 \log (\operatorname{vol}(G) / \delta)}{\log \frac{2}{2-\lambda_{1}}}\right\rfloor+1
$$

We improved it into

Theorem [Lu-Peng 2011]:

$$
\operatorname{diam}(D) \leq\left\lceil\frac{\log (\operatorname{vol}(D) / \delta)}{\log \sigma_{\alpha}}\right\rceil
$$

for any $0<\alpha<1$.

Edge expansion in D

Theorem [Lu-Peng 2011]: Let D be a Eulerian directed graph. If X and Y are two subsets of $V(D)$, then we have

$$
\begin{aligned}
& \left|\frac{|E(X, Y)|+|E(Y, X)|}{2}-\frac{\operatorname{vol}(X) \operatorname{vol}(Y)}{\operatorname{vol}(D)}\right| \\
& \leq \bar{\lambda} \frac{\sqrt{\operatorname{vol}(X) \operatorname{vol}(Y) \operatorname{vol}(\bar{X}) \operatorname{vol}(\bar{Y})}}{\operatorname{vol}(D)}
\end{aligned}
$$

Hypergraphs

$$
H=(V, E) \text { is an } r \text {-uniform hypergraph. }
$$

■ V : the set of vertices

- E : the set of edges, each edge has cardinality r.

Hypergraphs

$$
H=(V, E) \text { is an } r \text {-uniform hypergraph. }
$$

- V : the set of vertices
- E : the set of edges, each edge has cardinality r.

A 3-uniform loose cycle

A 3-uniform tight cycle

Notations on hypergraphs

$s: 1 \leq s \leq r-1$

Notations on hypergraphs

$s: 1 \leq s \leq r-1$

Vs: the set of all s-tuples with distinct elements from V.

Notations on hypergraphs

$s: 1 \leq s \leq r-1$

V : : the set of all s-tuples with distinct elements from V.
$\binom{V}{s}$: the set of s-subsets of V.

Notations on hypergraphs

$s: 1 \leq s \leq r-1$

V : : the set of all s-tuples with distinct elements from V.
$\binom{V}{s}$: the set of s-subsets of V.
For $x \in \mathrm{~V}^{\underline{s}}$, if $x=\left(v_{1}, \ldots, v_{s}\right)$, then $[x]=\left\{v_{1}, \ldots, v_{s}\right\}$.

Notations on hypergraphs

■ $s: 1 \leq s \leq r-1$
■ V \underline{s} : the set of all s-tuples with distinct elements from V.

- $\binom{V}{s}$: the set of s-subsets of V.

■ For $x \in \mathrm{~V}^{\underline{s}}$, if $x=\left(v_{1}, \ldots, v_{s}\right)$, then $[x]=\left\{v_{1}, \ldots, v_{s}\right\}$.
■ S : an s-subset of V

Notations on hypergraphs

- $s: 1 \leq s \leq r-1$
- $\mathrm{V}^{\underline{s}}$: the set of all s-tuples with distinct elements from V.
- $\binom{V}{s}$: the set of s-subsets of V.
- For $x \in \mathrm{~V}^{s}$, if $x=\left(v_{1}, \ldots, v_{s}\right)$, then $[x]=\left\{v_{1}, \ldots, v_{s}\right\}$.

■ S : an s-subset of V

- Degree d_{S} : the number of edges passing through S.

$$
\sum_{S \in\binom{V}{s}} d_{S}=\binom{r}{s}|E(H)| .
$$

s-walks on hypergraphs

For $1 \leq s \leq r-1$, an s-walk on H consists of

- a vertex sequence: $v_{1}, v_{2}, \ldots, v_{(k-1)(r-s)+r}$
- an edge sequence: $F_{1}, F_{2}, \ldots, F_{k}$ satisfying $F_{i}=\left\{v_{(r-s)(i-1)+1}, v_{(r-s)(i-1)+2}, \ldots, v_{(r-s)(i-1)+r}\right\}$ for $1 \leq i \leq k$.

s-walks on hypergraphs

For $1 \leq s \leq r-1$, an s-walk on H consists of

- a vertex sequence: $v_{1}, v_{2}, \ldots, v_{(k-1)(r-s)+r}$
- an edge sequence: $F_{1}, F_{2}, \ldots, F_{k}$ satisfying $F_{i}=\left\{v_{(r-s)(i-1)+1}, v_{(r-s)(i-1)+2}, \ldots, v_{(r-s)(i-1)+r}\right\}$ for $1 \leq i \leq k$.

$$
\left|F_{i} \cap F_{i+1}\right|=s
$$

s-walks on hypergraphs

For $1 \leq s \leq r-1$, an s-walk on H consists of

- a vertex sequence: $v_{1}, v_{2}, \ldots, v_{(k-1)(r-s)+r}$

■ an edge sequence: $F_{1}, F_{2}, \ldots, F_{k}$ satisfying $F_{i}=\left\{v_{(r-s)(i-1)+1}, v_{(r-s)(i-1)+2}, \ldots, v_{(r-s)(i-1)+r}\right\}$ for $1 \leq i \leq k$.

$$
\left|F_{i} \cap F_{i+1}\right|=s
$$

s-walks on hypergraphs

For $1 \leq s \leq r-1$, an s-walk on H consists of

- a vertex sequence: $v_{1}, v_{2}, \ldots, v_{(k-1)(r-s)+r}$
- an edge sequence: $F_{1}, F_{2}, \ldots, F_{k}$ satisfying $F_{i}=\left\{v_{(r-s)(i-1)+1}, v_{(r-s)(i-1)+2}, \ldots, v_{(r-s)(i-1)+r}\right\}$ for $1 \leq i \leq k$.

$$
\left|F_{i} \cap F_{i+1}\right|=s
$$

A 2-walk in a 4-graph

Loose random walks

Loose walk: $1 \leq s \leq \frac{r}{2}$.

Loose random walks

Loose walk: $1 \leq s \leq \frac{r}{2}$.

Observation: an s-th random walk on H is essentially a random walk on an auxiliary weighted graph $G^{(s)}$.

Loose random walks

Loose walk: $1 \leq s \leq \frac{r}{2}$.

Observation: an s-th random walk on H is essentially a random walk on an auxiliary weighted graph $G^{(s)}$.

- Vertex set $V\left(G^{s}\right)=\mathrm{V}^{s}$
- Weight function $w: \mathrm{V}^{s} \times \mathrm{V}^{\underline{s}} \rightarrow \mathbb{Z}$:

$$
w(S, T)= \begin{cases}0 & \text { if }[S] \cap[T] \neq \emptyset \\ d_{[S] \cup[T]} & \text { if }[S] \cap[T]=\emptyset .\end{cases}
$$

Laplacians of hypergraph (I)

For $1 \leq s \leq r / 2$, the s-th Laplacian of H, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $G^{(s)}$.

Laplacians of hypergraph (I)

For $1 \leq s \leq r / 2$, the s-th Laplacian of H, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $G^{(s)}$.

- $\quad \lambda_{1}^{(s)}$: the smallest non-trivial eigenvalue of $\mathcal{L}^{(s)}$.

Laplacians of hypergraph (I)

For $1 \leq s \leq r / 2$, the s-th Laplacian of H, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $G^{(s)}$.

- $\quad \lambda_{1}^{(s)}$: the smallest non-trivial eigenvalue of $\mathcal{L}^{(s)}$.
- $\lambda_{\text {max }}^{(s)}$: the largest eigenvalue of $\mathcal{L}^{(s)}$.

Laplacians of hypergraph (I)

For $1 \leq s \leq r / 2$, the s-th Laplacian of H, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $G^{(s)}$.

- $\quad \lambda_{1}^{(s)}$: the smallest non-trivial eigenvalue of $\mathcal{L}^{(s)}$.
- $\quad \lambda_{\text {max }}^{(s)}$: the largest eigenvalue of $\mathcal{L}^{(s)}$.
- $\bar{\lambda}^{(s)}$: the spectral bound $\max \left\{\left|1-\lambda_{1}^{(s)}\right|,\left|\lambda_{\text {max }}^{(s)}-1\right|\right\}$.

Laplacians of hypergraph (I)

For $1 \leq s \leq r / 2$, the s-th Laplacian of H, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $G^{(s)}$.

- $\quad \lambda_{1}^{(s)}$: the smallest non-trivial eigenvalue of $\mathcal{L}^{(s)}$.
- $\quad \lambda_{\text {max }}^{(s)}$: the largest eigenvalue of $\mathcal{L}^{(s)}$.
- $\bar{\lambda}^{(s)}$: the spectral bound $\max \left\{\left|1-\lambda_{1}^{(s)}\right|,\left|\lambda_{\text {max }}^{(s)}-1\right|\right\}$.
$\mathcal{L}^{(1)}$ is the same as the Laplacian of hypergraph introduced by Rodríguez [2009].

Tight random walks

Tight walk: $\frac{r}{2}<s \leq r-1$.

Tight random walks

Tight walk: $\frac{r}{2}<s \leq r-1$.

Observation: an s-th random walk on H is "essentially" a random walk on an auxiliary directed graph $D^{(s)}$.

Tight random walks

Tight walk: $\frac{r}{2}<s \leq r-1$.

Observation: an s-th random walk on H is "essentially" a random walk on an auxiliary directed graph $D^{(s)}$.

- Vertex set $V\left(G^{(s)}\right)=\mathrm{V} \underline{s}$
- For $x=\left(x_{1}, \ldots, x_{s}\right)$ and $y=\left(y_{1}, \ldots, y_{s}\right), x y$ is a directed edge if

$$
\begin{array}{ll}
- & x_{r-s+j}=y_{j} \text { for } 1 \leq j \leq 2 s-r . \\
- & \left\{x_{1}, \ldots, x_{s}, y_{2 s-r+1}, y_{s}\right\} \text { is an edge of } H .
\end{array}
$$

Laplacians of hypergraph (II)

For $r / 2<s \leq r-1$, the s-th Laplacian of H, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $D^{(s)}$.

Laplacians of hypergraph (II)

For $r / 2<s \leq r-1$, the s-th Laplacian of H, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $D^{(s)}$.

- $\quad D^{(s)}$ is Eulerian, i.e., indegree=outdegree at any vertex.

Laplacians of hypergraph (II)

For $r / 2<s \leq r-1$, the s-th Laplacian of H, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $D^{(s)}$.

- $\quad D^{(s)}$ is Eulerian, i.e., indegree=outdegree at any vertex.
- Chung [2005] defined the Laplacian of directed graphs. In the case of Eulerian directed graph, we have

$$
\mathcal{L}=T^{-1 / 2} \frac{A+A^{\prime}}{2} T^{-1 / 2}
$$

Laplacians of hypergraph (II)

For $r / 2<s \leq r-1$, the s-th Laplacian of H, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $D^{(s)}$.

- $\quad D^{(s)}$ is Eulerian, i.e., indegree=outdegree at any vertex.
- Chung [2005] defined the Laplacian of directed graphs. In the case of Eulerian directed graph, we have

$$
\mathcal{L}=T^{-1 / 2} \frac{A+A^{\prime}}{2} T^{-1 / 2}
$$

- $\mathcal{L}^{(r-1)}$ is close related to the Laplacian of a regular hypergraph introduced by Chung [1993].

Laplacians of hypergraph (II)

For $r / 2<s \leq r-1$, the s-th Laplacian of H, denoted by $\mathcal{L}^{(s)}$, is defined as the Laplacian of $D^{(s)}$.

- $\quad D^{(s)}$ is Eulerian, i.e., indegree=outdegree at any vertex.
- Chung [2005] defined the Laplacian of directed graphs. In the case of Eulerian directed graph, we have

$$
\mathcal{L}=T^{-1 / 2} \frac{A+A^{\prime}}{2} T^{-1 / 2}
$$

- $\mathcal{L}^{(r-1)}$ is close related to the Laplacian of a regular hypergraph introduced by Chung [1993].
$\lambda_{1}^{(s)}, \lambda_{m a x}^{(s)}$, and $\bar{\lambda}^{(s)}$ are defined in the same way.

Examples

Some eigenvalues of Laplacians of complete hypergraph K_{n}^{r} :

H	$\lambda_{1}^{(4)}$	$\lambda_{1}^{(3)}$	$\lambda_{1}^{(2)}$	$\lambda_{1}^{(1)}$	$\lambda_{\max }^{(1)}$	$\lambda_{\max }^{(2)}$	$\lambda_{\max }^{(3)}$	$\lambda_{\max }^{(4)}$
K_{6}^{3}			$3 / 4$	$6 / 5$	$6 / 5$	$3 / 2$		
K_{7}^{3}			$7 / 10$	$7 / 6$	$7 / 6$	$3 / 2$		
K_{6}^{4}		$1 / 3$	$5 / 6$	$6 / 5$	$6 / 5$	$3 / 2$	1.76759	
K_{7}^{4}		$3 / 8$	$9 / 10$	$7 / 6$	$7 / 6$	$7 / 5$	$7 / 4$	
K_{6}^{5}	0.1464	$1 / 2$	$5 / 6$	$6 / 5$	$6 / 5$	$3 / 2$	$3 / 2$	1.809
K_{7}^{5}	0.1977	$5 / 8$	$9 / 10$	$7 / 6$	$7 / 6$	$7 / 5$	$3 / 2$	1.809

Examples

Some eigenvalues of Laplacians of complete hypergraph K_{n}^{r} :

H	$\lambda_{1}^{(4)}$	$\lambda_{1}^{(3)}$	$\lambda_{1}^{(2)}$	$\lambda_{1}^{(1)}$	$\lambda_{\max }^{(1)}$	$\lambda_{\max }^{(2)}$	$\lambda_{\max }^{(3)}$	$\lambda_{\max }^{(4)}$
K_{6}^{3}			$3 / 4$	$6 / 5$	$6 / 5$	$3 / 2$		
K_{7}^{3}			$7 / 10$	$7 / 6$	$7 / 6$	$3 / 2$		
K_{6}^{4}		$1 / 3$	$5 / 6$	$6 / 5$	$6 / 5$	$3 / 2$	1.76759	
K_{7}^{4}		$3 / 8$	$9 / 10$	$7 / 6$	$7 / 6$	$7 / 5$	$7 / 4$	
K_{6}^{5}	0.1464	$1 / 2$	$5 / 6$	$6 / 5$	$6 / 5$	$3 / 2$	$3 / 2$	1.809
K_{7}^{5}	0.1977	$5 / 8$	$9 / 10$	$7 / 6$	$7 / 6$	$7 / 5$	$3 / 2$	1.809

Applications

$\lambda_{1}^{(s)}$ (and/or) $\bar{\lambda}_{\text {max }}^{(s)}$ is related to
■ the mixing rate of random s-walk

- s-diameter
- neighborhood/edge expansion

Applications

$\lambda_{1}^{(s)}$ (and/or) $\bar{\lambda}_{\text {max }}^{(s)}$ is related to

- the mixing rate of random s-walk
- s-diameter
- neighborhood/edge expansion

Each application is divided into the loose case and the tight case.

Random walks (I)

Theorem [Lu-Peng 2011]: For $1 \leq s \leq r / 2$, suppose that H is an s-connected r uniform hypergraph. For $0 \leq \alpha<1$, the joint distribution f_{k} at the k-th stop of the α-lazy random walk at time k converges to the stationary distribution π in probability. In particular, we have

$$
\left\|\left(f_{k}-\pi\right) T^{-1 / 2}\right\| \leq\left(\bar{\lambda}_{\alpha}^{(s)}\right)^{k}\left\|\left(f_{0}-\pi\right) T^{-1 / 2}\right\|,
$$

where $\bar{\lambda}_{\alpha}^{(s)}=\max \left\{\left|1-(1-\alpha) \lambda_{1}^{(s)}\right|,\left|(1-\alpha) \lambda_{\max }^{(s)}-1\right|\right.$, and f_{0} is the probability distribution at the initial stop.

Random walks (II)

Theorem [Lu-Peng 2011]: For $r / 2<s \leq r-1$, suppose that H is an s-connected r uniform hypergraph. For $0<\alpha<1$, the joint distribution f_{k} at the k-th stop of the α-lazy random walk at time k converges to the stationary distribution π in probability. In particular, we have

$$
\left\|\left(f_{k}-\pi\right) T^{-1 / 2}\right\| \leq\left(\sigma_{\alpha}^{(s)}\right)^{k}\left\|\left(f_{0}-\pi\right) T^{-1 / 2}\right\|
$$

where $\sigma_{\alpha}^{(s)} \leq \sqrt{1-2 \alpha(1-\alpha) \lambda_{1}^{(s)}}$, and f_{0} is the probability distribution at the initial stop.

s-Diameter (I)

Theorem [Lu-Peng 2011]: Let H be a r-uniform hypergraph. For $1 \leq s \leq \frac{r}{2}$, if $\lambda_{\max }^{(s)}>\lambda_{1}^{(s)}>0$, then the s-diameter of an r-uniform hypergraph H satisfies

$$
\operatorname{diam}^{(s)}(H) \leq\left[\frac{\log \frac{\operatorname{vol}(\mathrm{Vs})}{\delta^{(s)}}}{\log \frac{\lambda_{\max }^{(s)}+\lambda_{1}^{(s)}}{\lambda_{\max }^{(s)}-\lambda_{1}^{(s)}}}\right] .
$$

Here $\operatorname{vol}\left(\mathrm{V}^{\underline{s}}\right)=\sum_{x \in \mathrm{~V} \underline{s}} d_{x}=|E(H)|_{(r-2 s)!}^{r!}$ and $\delta^{(s)}$ is the minimum degree in $G^{(s)}$.

s-Diameter (II)

Theorem [Lu-Peng 2011]: Let H be a r-uniform hypergraph. For $r / 2<s \leq r-1$, if $\lambda_{1}^{(s)}>0$, then the s-diameter of H satisfies

$$
\operatorname{diam}^{(s)}(H) \leq\left\lceil\frac{2 \log \frac{\operatorname{vol}\left(\mathrm{~V}^{s}\right)}{\delta^{(s)}}}{\log \frac{2}{2-\lambda_{1}^{(s)}}}\right\rceil
$$

Here $\operatorname{vol}\left(\mathrm{V}^{\underline{s}}\right)=\sum_{x \in \mathrm{~V} \underline{s}} d_{x}=|E(H)| r!$ and $\delta^{(s)}$ is the minimum degree in $D^{(s)}$.

Edge expansion (I)

Theorem [Lu-Peng 2011]: For $1 \leq t \leq s \leq r-t$, $S \subseteq\binom{V}{s}$, and $T \subseteq\binom{V}{t}$, let
$E(S, T)=\{F \in E(H): \exists x \in S, \exists y \in T, x \cap y=\emptyset$, and $x \cup y \subseteq$

$$
|e(S, T)-e(S) e(T)| \leq \bar{\lambda}^{(s)} \sqrt{e(S) e(T) e(\bar{S}) e(\bar{T})}
$$

Edge expansion (II)

Theorem [Lu-Peng 2011]: For

$1 \leq t<\frac{r}{2}<s<s+t \leq r, S \subseteq\binom{V}{s}$, and $T \subseteq\binom{V}{t}$, let $e(S, T)=\frac{|E(S, T)|}{\left\lvert\, E\left(\left(_{v}^{V}\right), \left.\binom{V}{t} \right\rvert\,\right.\right.}$. If $|x \cap y| \neq \min \{t, 2 s-r\}$ for any $x \in S$ and $y \in T$, then we have

$$
\left|\frac{1}{2} e(S, T)-e(S) e(T)\right| \leq \bar{\lambda}^{(s)} \sqrt{e(S) e(T) e(\bar{S}) e(\bar{T})} .
$$

Edge expansion (III)

Theorem [Lu-Peng 2011]: Suppose $\frac{r}{2}<s \leq r-1$. For $S, T \subseteq\binom{V}{s}$, let

$$
E^{\prime}(S, T)=\{F \in E(H) \mid \exists x \in S, \exists y \in T, F=x \cup y\}
$$

and $e^{\prime}(S, T)=\frac{\left|E^{\prime}(S, T)\right|}{\left|E^{\prime}\left(\binom{v}{s},\binom{\downarrow}{s}\right)\right|}$. We have

$$
\left|e^{\prime}(S, T)-e(S) e(T)\right| \leq \bar{\lambda}^{(s)} \sqrt{e(S) e(T) e(\bar{S}) e(\bar{T})}
$$

Connections of different $\mathcal{L}^{(s)}$

Theorem [Lu, Peng 2011] We have the following inequalities for the "loose" Laplacian eigenvalues.

$$
\begin{gathered}
\lambda_{1}^{(1)} \geq \lambda_{1}^{(2)} \geq \ldots \geq \lambda_{1}^{(\lfloor r / 2\rfloor)} ; \\
\lambda_{\max }^{(1)} \leq \lambda_{\max }^{(2)} \leq \ldots \leq \lambda_{\max }^{(\lfloor r / 2\rfloor)} .
\end{gathered}
$$

Reduced Laplacian (I)

For $1 \leq s \leq r / 2$, let $G^{(s)^{\prime}}$ be the weighted graph defined as

- Vertex set $V\left(G^{(s)^{\prime}}\right)=\binom{V}{s}$
- Weight function $w:\binom{V}{s} \times\binom{ V}{s} \rightarrow \mathbb{Z}$:

$$
w(S, T)= \begin{cases}0 & \text { if } S \cap T \neq \emptyset \\ d_{S \cup T} & \text { if } S \cap T=\emptyset\end{cases}
$$

Reduced Laplacian (I)

For $1 \leq s \leq r / 2$, let $G^{(s)^{\prime}}$ be the weighted graph defined as

- Vertex set $V\left(G^{(s)^{\prime}}\right)=\binom{V}{s}$
- Weight function $w:\binom{V}{s} \times\binom{ V}{s} \rightarrow \mathbb{Z}$:

$$
w(S, T)= \begin{cases}0 & \text { if } S \cap T \neq \emptyset \\ d_{S \cup T} & \text { if } S \cap T=\emptyset\end{cases}
$$

Since $G^{(s)}$ is a blow-up of $G^{(s)^{\prime}}$, we have $\operatorname{LSP}\left(G^{(s)}\right)=\operatorname{LSP}\left(G^{(s)^{\prime}}\right) \cup\left\{1\right.$ with multi. $\left.\binom{n}{s}(s!-1)\right\}$.

Reduced Laplacian (I)

For $1 \leq s \leq r / 2$, let $G^{(s)^{\prime}}$ be the weighted graph defined as

- Vertex set $V\left(G^{(s)^{\prime}}\right)=\binom{V}{s}$
- Weight function $w:\binom{V}{s} \times\binom{ V}{s} \rightarrow \mathbb{Z}$:

$$
w(S, T)= \begin{cases}0 & \text { if } S \cap T \neq \emptyset \\ d_{S \cup T} & \text { if } S \cap T=\emptyset\end{cases}
$$

Since $G^{(s)}$ is a blow-up of $G^{(s)^{\prime}}$, we have $\operatorname{LSP}\left(G^{(s)}\right)=\operatorname{LSP}\left(G^{(s)^{\prime}}\right) \cup\left\{1\right.$ with multi. $\left.\binom{n}{s}(s!-1)\right\}$. Therefore, two graphs has the same $\lambda_{1}, \lambda_{\text {max }}$, and $\bar{\lambda}$.

Reduced Laplacian (I)

For $1 \leq s \leq r / 2$, let $G^{(s)^{\prime}}$ be the weighted graph defined as

- Vertex set $V\left(G^{(s)^{\prime}}\right)=\binom{V}{s}$
- Weight function $w:\binom{V}{s} \times\binom{ V}{s} \rightarrow \mathbb{Z}$:

$$
w(S, T)= \begin{cases}0 & \text { if } S \cap T \neq \emptyset \\ d_{S \cup T} & \text { if } S \cap T=\emptyset\end{cases}
$$

Since $G^{(s)}$ is a blow-up of $G^{(s)^{\prime}}$, we have $\operatorname{LSP}\left(G^{(s)}\right)=\operatorname{LSP}\left(G^{(s)^{\prime}}\right) \cup\left\{1\right.$ with multi. $\left.\binom{n}{s}(s!-1)\right\}$. Therefore, two graphs has the same $\lambda_{1}, \lambda_{\max }$, and $\bar{\lambda}$. The Laplacian of $G^{(s)^{\prime}}$ is called the s-th reduced Laplacian of H.

Complete hypergraph K_{n}^{r}

Theorem: For $1 \leq s \leq r / 2$, the reduced s-th Laplacian eigenvalues of K_{n}^{r} is the eigenvalues of s-th reduced Lapacian of K_{n}^{r} are given by

$$
1-\frac{(-1)^{i}\binom{n-s-i)}{s-i}}{\binom{n-s}{s}} \text { with multiplicity }\binom{n}{i}-\binom{n}{i-1}
$$

for $0 \leq i \leq s$.

Keneser graph $K(n, s)$

The Kneser graph $K(n, s)$ is a graph over the vertex set $\binom{[n]}{s}$; two s-sets S and T form an edge of $K(n, s)$ if and only if $S \cap T=0$.

Keneser graph $K(n, s)$

The Kneser graph $K(n, s)$ is a graph over the vertex set $\binom{[n]}{s}$; two s-sets S and T form an edge of $K(n, s)$ if and only if $S \cap T=0$.
The eigenvalues of the adjacency matrix of $K(n, s)$ are $(-1)^{i}\binom{n-s-i)}{s-i}$ with multiplicity $\binom{n}{i}-\binom{n}{i-1}$ for $0 \leq i \leq s$.

Keneser graph $K(n, s)$

The Kneser graph $K(n, s)$ is a graph over the vertex set $\binom{[n]}{s}$; two s-sets S and T form an edge of $K(n, s)$ if and only if $S \cap T=0$.
The eigenvalues of the adjacency matrix of $K(n, s)$ are $(-1)^{i}\binom{n-s-i)}{s-i}$ with multiplicity $\binom{n}{i}-\binom{n}{i-1}$ for $0 \leq i \leq s$. Note $K(n, s)$ is a regular graph; so the Laplacian eigenvalues can be determined from the eigenvalues of its adjacency matrix.

Proof

We observe that $G^{\left(s^{\prime}\right)}\left(K_{n}^{r}\right)$ is essentially the Kneser graph $K(n, s)$ with each edge associated with a weight $\binom{n-2 s}{r-2 s}$. Note the multiplicative factor $\binom{n-2 s}{r-2 s}$ is canceled after normalization. The $\mathcal{L}^{(s)}$ (for K_{n}^{r}) is exactly the Laplacian of Kneser graph. Thus, the eigenvalues of s-th Lapacian of K_{n}^{r} are given by

$$
1-\frac{(-1)^{i}\binom{n-s-i)}{s-i}}{\binom{n-s}{s}} \text { with multiplicity }\binom{n}{i}-\binom{n}{i-1}
$$

for $0 \leq i \leq s$.

An application

Erdös-Ko-Rado Theorem If the $n \geq 2 s$, then the size of the maximum intersecting family of s-sets in $[n]$ is at most $\binom{n-1}{s-1}$.

An application

Erdös-Ko-Rado Theorem If the $n \geq 2 s$, then the size of the maximum intersecting family of s-sets in $[n]$ is at most $\binom{n-1}{s-1}$.
The simplest proof is due to Katona [1972].

An application

Erdös-Ko-Rado Theorem If the $n \geq 2 s$, then the size of the maximum intersecting family of s-sets in $[n]$ is at most $\binom{n-1}{s-1}$.
The simplest proof is due to Katona [1972].
Here we present a "new" proof using the s-th Laplacian eigenvalues of K_{n}^{r}.

An application

Erdős-Ko-Rado Theorem If the $n \geq 2 s$, then the size of the maximum intersecting family of s-sets in $[n]$ is at most $\binom{n-1}{s-1}$.
The simplest proof is due to Katona [1972].
Here we present a "new" proof using the s-th Laplacian eigenvalues of K_{n}^{r}. (Actually it is due to Calderbank-Frankl [1992].)

Calderbank-Frankl's proof

It suffices to any intersecting family U has size at most $\binom{n-1}{s-1}$.
Note U is an independent set in $G^{(s)^{\prime}}\left(K_{n}^{r}\right)$. Let \mathcal{L} be the Laplacian of $G^{(s)^{\prime}}\left(K_{n}^{r}\right)$. We have $\left.\mathcal{L}\right|_{U}=I$. By Cauchy's interlace theorem, we have

$$
\lambda_{k}^{(s)} \leq 1 \leq \lambda_{\substack{n \\ s \\ s}}^{(s)-|U|+k}
$$

for $0 \leq k \leq|U|-1$.

Calderbank-Frankl's proof

It suffices to any intersecting family U has size at most $\binom{n-1}{s-1}$.
Note U is an independent set in $G^{(s)^{\prime}}\left(K_{n}^{r}\right)$. Let \mathcal{L} be the Laplacian of $G^{(s)^{\prime}}\left(K_{n}^{r}\right)$. We have $\left.\mathcal{L}\right|_{U}=I$. By Cauchy's interlace theorem, we have

$$
\lambda_{k}^{(s)} \leq 1 \leq \lambda_{\binom{n}{s}-|U|+k}^{(s)}
$$

for $0 \leq k \leq|U|-1$.
Let N^{+}(or N^{-}) be the number of eigenvalues of $\mathcal{L}^{(s)}$ which is ≥ 1 (or ≤ 1) respectively. We have $|U| \leq N^{+}$and $|U| \leq N^{-}$.

continue...

The eigenvalues of \mathcal{L} are

$$
1-\frac{(-1)^{i}\binom{n-s-i)}{s-i}}{\binom{n-s}{s}} \text { with multiplicity }\binom{n}{i}-\binom{n}{i-1}
$$

for $0 \leq i \leq s$.

$$
\begin{aligned}
N^{+} & =\sum_{i=0}^{\lfloor(s-1) / 2\rfloor}\left(\binom{n}{2 i+1}-\binom{n}{2 i}\right) \\
N^{-} & =\sum_{i=0}^{\lfloor s / 2\rfloor}\left(\binom{n}{2 i}-\binom{n}{2 i-1}\right) .
\end{aligned}
$$

continue...

We have

$$
\begin{aligned}
|U| & \leq \min \left\{N^{+}, N^{-}\right\} \\
& =\sum_{i=0}^{s-1}(-1)^{s-1-i}\binom{n}{i} \\
& =\binom{n}{s-1}-\binom{n}{s-2}+\binom{n}{s-3}-\binom{n}{s-4}+\cdots \\
& =\binom{n-1}{s-1}
\end{aligned}
$$

\square

Random graphs

A random graph is a set of graphs together with a probability distribution on that set.

Random graphs

A random graph is a set of graphs together with a probability distribution on that set. Example: A random graph on 3 vertices and 2 edges with the uniform distribution on it.

Probability $\frac{1}{3}$

Probability $\frac{1}{3}$

Probability $\frac{1}{3}$

Random graphs

A random graph is a set of graphs together with a probability distribution on that set.
Example: A random graph on 3 vertices and 2 edges with the uniform distribution on it.

Probability $\frac{1}{3}$

Probability $\frac{1}{3}$

Probability $\frac{1}{3}$

A random graph G almost surely satisfies a property P, if

$$
\operatorname{Pr}(G \text { satisfies } P) \rightarrow 1 \text { as }|V(G)| \rightarrow \infty .
$$

Erdős-Rényi model $G(n, p)$

For each pair of vertices in the vertex set of size n, an edge is created independently with probability p.

Erdős-Rényi model $G(n, p)$

For each pair of vertices in the vertex set of size n, an edge is created independently with probability p.

- The set of graphs are all labeled graphs on n vertices.

Erdős-Rényi model $G(n, p)$

For each pair of vertices in the vertex set of size n, an edge is created independently with probability p.

- The set of graphs are all labeled graphs on n vertices.
- The graph with e edges has the probability $p^{e}(1-p)^{\binom{n}{2}-e}$.

Erdős-Rényi model $G(n, p)$

For each pair of vertices in the vertex set of size n, an edge is created independently with probability p.

- The set of graphs are all labeled graphs on n vertices.
- The graph with e edges has the probability $\left.p^{e}(1-p)^{)^{n}} \begin{array}{c}n \\ 2\end{array}\right)$.

Erdős-Rényi model $G(n, p)$

For each pair of vertices in the vertex set of size n, an edge is created independently with probability p.

- The set of graphs are all labeled graphs on n vertices.
- The graph with e edges has the probability $p^{e}(1-p)^{\binom{n}{2}-e}$.

Erdős-Rényi model $G(n, p)$

For each pair of vertices in the vertex set of size n, an edge is created independently with probability p.

- The set of graphs are all labeled graphs on n vertices.
- The graph with e edges has the probability $\left.p^{e}(1-p)^{)^{n}} \begin{array}{c}n \\ 2\end{array}\right)$.

Erdős-Rényi model $G(n, p)$

For each pair of vertices in the vertex set of size n, an edge is created independently with probability p.

- The set of graphs are all labeled graphs on n vertices.
- The graph with e edges has the probability $p^{e}(1-p)^{\binom{n}{2}-e}$.

The probability of this graph is

$$
p^{4}(1-p)^{2} .
$$

The birth of random graph theory

ON THE EVOLUTION OF RANDOM GRAPHS

by

P. ERDÖs and A. RÉNYI
Institute of Mathematics
Hungarian Academy of Sciences, Hungary

1. Definition of a random graph

Let E_{n}, N denote the set of all graphs having n given labelled vertices V_{1}, V_{2}, \cdots, V_{n} and N edges. The graphs considered are supposed to be not oriented, without parallel edges and without slings (such graphs are sometimes called linear graphs). Thus a graph belonging to the set $E_{n, N}$ is obtained by choosing N out of the possible $\binom{n}{2}$ edges between the points $V_{1}, V_{2}, \cdots, V_{n}$, and therefore the number of elements of E_{n}, N is equal to $\binom{\binom{n}{2}}{N}$. A random graph $\Gamma_{n, N}$ can be defined as an element of E_{n}, N chosen at random, so that each of the elements of E_{n}, N have the same probability to be chosen, namely $1 /\left(\begin{array}{c}n \\ 2 \\ N\end{array}\right)$. There is however an other slightly

Evolution of $G(n, p)$

the empty graph. disjoint union of trees.
cycles of any size.
the double jumps.
one giant component, others are trees. $G(n, p)$ is connected.
connected and almost regular. finite diameter. dense graphs, diameter is 2 . the complete graph.

Eigenvalues of $G(n, p)$

Füredi and Komlós (1981): If $n p(1-p) \gg \log ^{6} n$, then almost surely

$$
\begin{aligned}
\mu_{n}(G(n, p)) & =(1+o(1)) n p \\
\max _{1 \leq i \leq n-1}\left\{\left|\mu_{i}(G(n, p))\right|\right\} & \leq(2+o(1)) \sqrt{n p(1-p)}
\end{aligned}
$$

Eigenvalues of $G(n, p)$

Füredi and Komlós (1981): If $n p(1-p) \gg \log ^{6} n$, then almost surely

$$
\begin{aligned}
\mu_{n}(G(n, p)) & =(1+o(1)) n p \\
\max _{1 \leq i \leq n-1}\left\{\left|\mu_{i}(G(n, p))\right|\right\} & \leq(2+o(1)) \sqrt{n p(1-p)}
\end{aligned}
$$

What about the Laplacian eigenvalues of $G(n, p)$?

Model $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$

Random graph with expected degree sequence:

- Each vertex i is associated with a weight w_{i}.
- The probability that $i j$ is an edge is $w_{i} w_{j} \frac{1}{\sum_{k=1}^{n} w_{k}}$.
- The expected degree of i is w_{i}.

Model $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$

Random graph with expected degree sequence:

- Each vertex i is associated with a weight w_{i}.
- The probability that $i j$ is an edge is $w_{i} w_{j} \frac{1}{\sum_{k=1}^{n} w_{k}}$.
- The expected degree of i is w_{i}.

Chung-Lu-Van (2003):

$$
\bar{\lambda} \leq(1+o(1)) \frac{4}{\sqrt{\bar{w}}}+\frac{g(n) \log ^{2} n}{w_{\min }},
$$

where $w_{\text {min }}$ is the minimum weight and \bar{w} is the average weight.

Laplacian of $G(n, p)$

$$
\begin{aligned}
& G(n, p) \text { is a special case of } G\left(w_{1}, w_{2}, \ldots, w_{n}\right) \text { with } \\
& w_{1}=w_{2}=\cdots=w_{n}=n p
\end{aligned}
$$

Laplacian of $G(n, p)$

$G(n, p)$ is a special case of $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ with $w_{1}=w_{2}=\cdots=w_{n}=n p$.
Applying Chung-Lu-Van's result to $G(n, p)$, we have
Chung-Lu-Van (2003): For $1-\epsilon>p \gg \frac{\log ^{6} n}{n}$,

$$
\bar{\lambda}(G(n, p)) \leq(4+o(1)) \frac{1}{\sqrt{n p}}
$$

Random d-regular graphs

Random d-regular graphs $G_{n, d}$

- The space is the set of all d-regular graphs on n vertices.
- Each graph has an equal probability.

Random d-regular graphs

Random d-regular graphs $G_{n, d}$

- The space is the set of all d-regular graphs on n vertices.
- Each graph has an equal probability.

Friedman (1989) For random $2 d$-regular graph, almost surely

$$
\max _{1 \leq i \leq n-1}\left\{\left|\mu_{i}\left(G_{n, d}\right)\right|\right\} \leq 2 \sqrt{2 d-1}+2 \log d+O(1)
$$

Random d-regular graphs

Random d-regular graphs $G_{n, d}$

- The space is the set of all d-regular graphs on n vertices.
- Each graph has an equal probability.

Friedman (1989) For random $2 d$-regular graph, almost surely

$$
\max _{1 \leq i \leq n-1}\left\{\left|\mu_{i}\left(G_{n, d}\right)\right|\right\} \leq 2 \sqrt{2 d-1}+2 \log d+O(1)
$$

Friedman (2002) For random d-regular graph with $d \geq 4$, almost surely

$$
\max _{1 \leq i \leq n-1}\left\{\left|\mu_{i}\left(G_{n, d}\right)\right|\right\}=(2+o(1)) \sqrt{d-1}
$$

Random hypergraphs

Random r-uniform hypergraph $H^{r}(n, p)$:

- n : the number of vertices
- p : probability, $0<p<1$.

For any $F \in\binom{[n]}{r}, F$ is an edge with probability p independently.

Random hypergraphs

Random r-uniform hypergraph $H^{r}(n, p)$:

- n : the number of vertices
- p : probability, $0<p<1$.

For any $F \in\binom{[n]}{r}, F$ is an edge with probability p independently.

Question: What is Laplacian eigenvalues of $H^{r}(n, p)$?

Our result (I)

Theorem [Lu, Peng 2011] Let $H^{r}(n, p)$ be a random r-uniform hypergraph. For $1 \leq s \leq r / 2$, if $p(1-p) \gg \frac{\log ^{4} n}{n^{r-s}}$ and $1-p \gg \frac{\log n}{n^{2}}$, then almost surely
$\bar{\lambda}^{(s)}\left(H^{r}(n, p)\right) \leq \frac{s}{n-s}+\left(\frac{2}{\left.\sqrt{\binom{r-s}{s}}+1+o(1)\right) \sqrt{\frac{1-p}{\binom{n-s}{r-s}}} .}\right.$

Our result (I)

Theorem [Lu, Peng 2011] Let $H^{r}(n, p)$ be a random r-uniform hypergraph. For $1 \leq s \leq r / 2$, if $p(1-p) \gg \frac{\log ^{4} n}{n^{r-s}}$ and $1-p \gg \frac{\log n}{n^{2}}$, then almost surely
$\bar{\lambda}^{(s)}\left(H^{r}(n, p)\right) \leq \frac{s}{n-s}+\left(\frac{2}{\left.\sqrt{\binom{r-s)}{s}}+1+o(1)\right) \sqrt{\frac{1-p}{\binom{n-s}{r-s}}} .}\right.$
Moreover, for $1 \leq k \leq\binom{ n}{s}-1$ almost surely we have $\left|\lambda_{k}^{(s)}\left(H^{r}(n, p)\right)-\lambda_{k}^{(s)}\left(K_{n}^{r}\right)\right| \leq\left(\frac{2}{\sqrt{\binom{(-s}{s}}}+1+o(1)\right) \sqrt{\frac{1-p}{\binom{n-s}{r-s}}}$.

Applied to $G(n, p)$

Our result: If $p(1-p) \gg \frac{\log ^{4} n}{n}$, then

$$
\bar{\lambda}(G(n, p)) \leq(3+o(1)) \frac{1}{\sqrt{n p}}
$$

Applied to $G(n, p)$

Our result: If $p(1-p) \gg \frac{\log ^{4} n}{n}$, then

$$
\bar{\lambda}(G(n, p)) \leq(3+o(1)) \frac{1}{\sqrt{n p}} .
$$

Chung-Lu-Van (2003): If $1-\epsilon>p \gg \frac{\log ^{6} n}{n}$, then

$$
\bar{\lambda}(G(n, p)) \leq(4+o(1)) \frac{1}{\sqrt{n p}} .
$$

Lemma 1

Lemma 1: Given any two $(N \times N)$-Hermitian matrices A and B, for $1 \leq k \leq N$, let $\mu_{k}(A)$ (or $\mu_{k}(B)$) be the k-th eigenvalues of A (or B) in the increasing order. We have

$$
\left|\mu_{k}(A)-\mu_{k}(B)\right| \leq\|A-B\| .
$$

Lemma 1

Lemma 1: Given any two $(N \times N)$-Hermitian matrices A and B, for $1 \leq k \leq N$, let $\mu_{k}(A)$ (or $\mu_{k}(B)$) be the k-th eigenvalues of A (or B) in the increasing order. We have

$$
\left|\mu_{k}(A)-\mu_{k}(B)\right| \leq\|A-B\| .
$$

Proof: By the Min-Max Theorem,

$$
\begin{aligned}
\mu_{k}(A) & =\min _{S_{k}} \max _{x \in S_{k},\|x\|=1} x^{\prime} A x \\
& =\min _{S_{k}} \max _{x \in S_{k},\|x\|=1}\left(x^{\prime} B x+x^{\prime}(A-B) x\right) \\
& \leq \min _{S_{k}} \max _{x \in S_{k},\|x\|=1}\left(x^{\prime} B x+\|A-B\|\right) \\
& =\mu_{k}(B)+\|A-B\| .
\end{aligned}
$$

Lemma 1

Lemma 1: Given any two $(N \times N)$-Hermitian matrices A and B, for $1 \leq k \leq N$, let $\mu_{k}(A)$ (or $\mu_{k}(B)$) be the k-th eigenvalues of A (or B) in the increasing order. We have

$$
\left|\mu_{k}(A)-\mu_{k}(B)\right| \leq\|A-B\| .
$$

Proof: Thus,

$$
\mu_{k}(A) \leq \mu_{k}(B)+\|A-B\| .
$$

Lemma 1

Lemma 1: Given any two $(N \times N)$-Hermitian matrices A and B, for $1 \leq k \leq N$, let $\mu_{k}(A)$ (or $\mu_{k}(B)$) be the k-th eigenvalues of A (or B) in the increasing order. We have

$$
\left|\mu_{k}(A)-\mu_{k}(B)\right| \leq\|A-B\| .
$$

Proof: Thus,

$$
\mu_{k}(A) \leq \mu_{k}(B)+\|A-B\| .
$$

Similarly we have

$$
\mu_{k}(A) \geq \mu_{k}(B)-\|A-B\| .
$$

\square

Sketch proof

Write $\mathcal{L}^{(s)}\left(K_{n}^{r}\right)-\mathcal{L}^{(s)}\left(H^{r}(n, p)\right)=M_{1}+M_{2}+M_{3}+M_{4}$, where

$$
\begin{aligned}
M_{1}= & \frac{1}{\binom{r-s}{s}}\left(D^{-1 / 2}(W-\mathrm{E}(W)) D^{-1 / 2}-d^{-1}(W-\mathrm{E}(W))\right) \\
M_{2}= & \frac{1}{\binom{r-s}{s} d}(W-\mathrm{E}(W)), \\
M_{3}= & \frac{1}{\binom{r-s}{s}} D^{-1 / 2} \mathrm{E}(W) D^{-1 / 2}-\frac{d}{\binom{n}{s}} D^{-1 / 2} J D^{-1 / 2} \\
& -\frac{1}{\binom{n-s}{s}} K+\frac{1}{\binom{n}{s}} J, \\
M_{4}= & \frac{1}{\binom{n}{s}}\left(d D^{-1 / 2} J D^{-1 / 2}-J\right) .
\end{aligned}
$$

Continue

$$
\begin{aligned}
& \left\|M_{1}\right\|=O\left(\frac{\sqrt{(1-p) \log N}}{d}\right) \\
& \left\|M_{2}\right\| \leq \frac{(2+o(1)) \sqrt{1-p}}{\sqrt{\binom{r-s}{s}}}, \\
& \left\|M_{3}\right\|=O\left(\frac{\sqrt{\log N}}{n \sqrt{d}}\right) \\
& \left\|M_{4}\right\| \leq(1+o(1)) \sqrt{\frac{1-p}{d}}
\end{aligned}
$$

easy!
hard!
easy!
tricky!

Putting together, $\|M\| \leq\left(\frac{2}{\sqrt{\binom{r-s}{s}}}+1+o(1)\right) \sqrt{\frac{1-p}{\binom{n-s}{r-s} p}}$.

Tools

Chenoff's inequality: Let X_{1}, \ldots, X_{n} be independent 0-1 random variables with We consider the sum $X=\sum_{i=1}^{n} X_{i}$. Then we have
(Lower tail)
(Upper tail)

$$
\begin{aligned}
& \operatorname{Pr}(X \leq \mathrm{E}(X)-\lambda) \leq e^{-\lambda^{2} / 2 \mathrm{E}(X)} \\
& \operatorname{Pr}(X \geq \mathrm{E}(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2(\mathrm{E}(X)+\lambda / 3)}}
\end{aligned}
$$

Tools

Chenoff's inequality: Let X_{1}, \ldots, X_{n} be independent 0-1 random variables with We consider the sum $X=\sum_{i=1}^{n} X_{i}$. Then we have
(Lower tail)

$$
\operatorname{Pr}(X \leq \mathrm{E}(X)-\lambda) \leq e^{-\lambda^{2} / 2 \mathrm{E}(X)},
$$

(Upper tail)

$$
\operatorname{Pr}(X \geq \mathrm{E}(X)+\lambda) \leq e^{-\frac{\lambda^{2}}{2(\mathrm{E}(X)+\lambda / 3)}} .
$$

Lemma: If $d:=\binom{n}{s} p \geq \log N$, then with probability at least $1-\frac{1}{N^{3}}$, for any $S \in\binom{V}{s}$, we have

$$
d_{S} \in(d-3 \sqrt{d \log N}, d+3 \sqrt{d \log N}) .
$$

Main task

Let $C=W-\mathrm{E}(W)$. One of the major task is to estimate $\|C\|$. We have the following Lemma.

Main task

Let $C=W-\mathrm{E}(W)$. One of the major task is to estimate $\|C\|$. We have the following Lemma.
Lemma 2: Suppose $p(1-p) \gg \frac{\log ^{4} n}{n^{r-s}}$. Almost surely, we

Main task

Let $C=W-\mathrm{E}(W)$. One of the major task is to estimate $\|C\|$. We have the following Lemma.
Lemma 2: Suppose $p(1-p) \gg \frac{\log ^{4} n}{n^{r-s}}$. Almost surely, we have $\|C\| \leq(2+o(1)) \sqrt{\binom{r-s}{s} d(1-p)}$.
Recall $M_{2}=\frac{1}{\binom{r-s}{s} d} C$. We get

$$
\left\|M_{2}\right\| \leq \frac{(2+o(1)) \sqrt{1-p}}{\sqrt{\binom{r-s}{s} d}}
$$

Main Lemma on Trace $\left(C^{t}\right)$

Lemma 3: For any $k \ll\left(n^{r-s} p(1-p)\right)^{1 / 4}$, we have
$\mathrm{E}\left(\operatorname{Trace}\left(C^{2 k}\right)\right)=(1+o(1)) \frac{n^{s+k(r-s)}\binom{2 k}{k} p^{k}(1-p)^{k}}{(k+1)(s!)^{k+1}((r-2 s)!)^{k}}$,
$\mathrm{E}\left(\operatorname{Trace}\left(C^{2 k+1}\right)\right)=O\left(\frac{k(2 k+1) n^{s+k(r-s)}\binom{2 k}{k} p^{k}(1-p)^{k}}{(k+1)(s!)^{k+1}((r-2 s)!)^{k}}\right)$

Proof of Lemma 2

Let $U:=\frac{n^{s+k(r-s)}}{(k+1)(s!)^{k+1}((r-2 s)!)^{k}}\binom{2 k}{k} p^{k}(1-p)^{k}$. By Markov's inequality,

$$
\begin{aligned}
\operatorname{Pr}(\|C\| \geq(1+\epsilon) \sqrt[2 k]{U}) & =\operatorname{Pr}\left(\|C\|^{2 k} \geq(1+\epsilon)^{2 k} U\right) \\
& \leq \frac{\mathrm{E}\left(\|C\|^{2 k}\right)}{(1+\epsilon)^{2 k} U} \\
& \leq \frac{\mathrm{E}\left(\operatorname{Trace}\left(C^{2 k}\right)\right)}{(1+\epsilon)^{2 k} U} \\
& =\frac{1+o(1)}{(1+\epsilon)^{2 k}} .
\end{aligned}
$$

Continue

Choose $k=s g(n) \log n$ and $\epsilon=1 / g(n)$.

$$
\begin{aligned}
\|C\| & \leq(1+o(1)) \sqrt[2 k]{U} \\
& =(1+o(1))\left(\frac{n^{s+k(r-s)}\binom{2 k}{k} p^{k}(1-p)^{k}}{(k+1)(s!)^{k+1}((r-2 s)!)^{k}}\right)^{\frac{1}{2 k}} \\
& <n^{\frac{s}{2 k}} 2 \sqrt{\frac{n^{r-s} p(1-p)}{s!(r-2 s)!}} \\
& =(2+o(1)) \sqrt{\binom{r-s}{s} d(1-p)}
\end{aligned}
$$

Wigner's semicircle law

Wigner (1958)

- A is a real symmetric $N \times N$ matrix.
- Entries $a_{i j}$ are independent random variables.
- $E\left(a_{i j}^{2 k+1}\right)=0$.
- $E\left(a_{i j}^{2}\right)=m^{2}$.
- $E\left(a_{i j}^{2 k}\right)<M$.

The distribution of eigenvalues of A converges into a semicircle distribution of radius $2 m \sqrt{N}$.

Wigner's semicircle law

Wigner (1958)

- A is a real symmetric $N \times N$ matrix.
- Entries $a_{i j}$ are independent random variables.
- $E\left(a_{i j}^{2 k+1}\right)=0$.
- $E\left(a_{i j}^{2}\right)=m^{2}$.
- $E\left(a_{i j}^{2 k}\right)<M$.

The distribution of eigenvalues of A converges into a semicircle distribution of radius $2 m \sqrt{N}$.

Füredi and Komlós (1981): The eigenvalues of $G(n, p)$ follows Wigner's semicircle law.

Definition

Let A be a Hermitian matrix of dimension $N \times N$. The empirical distribution of the eigenvalues of A is

$$
F(A, x): \left.\left.=\frac{1}{N} \right\rvert\,\{\text { eigenvalues of } A \text { less than } x\} \right\rvert\, .
$$

We say, the empirical distribution of the eigenvalues of A follows the Semicircle Law centered at c with radius R if

$$
F\left(\frac{1}{R}(A-c I), x\right) \xrightarrow{p} F(x) .
$$

Our result (II)

Theorem [Lu, Peng 2011] For $1 \leq s \leq r / 2$, if
$p(1-p) n^{r-s} \gg \log n$, then almost surely the empirical distribution of eigenvalues of the s-th Laplacian of $H^{r}(n, p)$ follows the Semicircle Law centered at 1 and with radius $(2+o(1)) \sqrt{\frac{1-p}{\binom{r-s}{s}\binom{n-s}{r-s} p}}$.

Our result (II)

Theorem [Lu, Peng 2011] For $1 \leq s \leq r / 2$, if
$p(1-p) n^{r-s} \gg \log n$, then almost surely the empirical distribution of eigenvalues of the s-th Laplacian of $H^{r}(n, p)$ follows the Semicircle Law centered at 1 and with radius $(2+o(1)) \sqrt{\frac{1-p}{\binom{r-s}{s}\binom{n-s}{r-s} p}}$.
Corollary: If $p(1-p) n^{r-s} \gg \log n$, then

$$
\begin{aligned}
& \max _{1 \leq i \leq\binom{ n}{s}-1}\left|\lambda_{k}^{(s)}\left(H^{r}(n, p)\right)-\lambda_{k}^{(s)}\left(K_{n}^{r}\right)\right| \\
& \quad \geq\left(\frac{2}{\sqrt{\binom{r-s}{s}}}+o(1)\right) \sqrt{\frac{1-p}{\binom{n-s}{r-s} p}} .
\end{aligned}
$$

Proof of Semicircle Law

Theorem: If $n^{r-s} p(1-p) \rightarrow \infty$, then the empirical distribution of the eigenvalues of C follows the semicircle law centered at 0 with radius $R:=2 \sqrt{\binom{r-s}{s}\binom{n-s}{r-s} p(1-p)}$.

Proof of Semicircle Law

Theorem: If $n^{r-s} p(1-p) \rightarrow \infty$, then the empirical distribution of the eigenvalues of C follows the semicircle law centered at 0 with radius $R:=2 \sqrt{\binom{(-s}{s}\binom{n-s}{r-s} p(1-p)}$.
Proof: Let $C_{\text {nor }}:=\frac{1}{R} C$. For any k, we have

$$
\begin{aligned}
\mathrm{E}\left(\operatorname{Trace}\left(C_{n o r}^{2 k}\right)\right) & =(1+o(1)) \frac{(2 k)!}{2^{2 k} k!(k+1)!} \\
\mathrm{E}\left(\operatorname{Trace}\left(C_{\text {nor }}^{2 k+1}\right)\right) & =o(1)
\end{aligned}
$$

It converges to the $2 k$-th (and $2 k+1$-th) moment of the Semicircle distribution.

Another Lemma

Lemma 4: If

- A : an $(N \times N)$-Hermitian matrices satisfying the Semicircle Law centered at c with radius R,
- B : an $(N \times N)$-Hermitian matrices either $\|B\|=o(R)$ or $\operatorname{rank}(B)=o(N)$,
then $A+B$ satisfies the Semicircle Law centered at c with radius R.

Case $\|B\|=o(R)$

$$
\left|\mu_{k}\left(\frac{1}{R}(A+B-c I)\right)-\mu_{k}\left(\frac{1}{R}(A-c I)\right)\right| \leq \frac{\|B\|}{R}=o(1) .
$$

Case $\|B\|=o(R)$

$$
\left|\mu_{k}\left(\frac{1}{R}(A+B-c I)\right)-\mu_{k}\left(\frac{1}{R}(A-c I)\right)\right| \leq \frac{\|B\|}{R}=o(1)
$$

Thus, we have

$$
\begin{aligned}
& F\left(\frac{1}{R}(A-c I), x-\frac{\|B\|}{R}\right) \leq F\left(\frac{1}{R}(A+B-c I), x\right) \leq \\
& F\left(\frac{1}{R}(A-c I), x+\frac{\|B\|}{R}\right) .
\end{aligned}
$$

Case $\|B\|=o(R)$

$$
\left|\mu_{k}\left(\frac{1}{R}(A+B-c I)\right)-\mu_{k}\left(\frac{1}{R}(A-c I)\right)\right| \leq \frac{\|B\|}{R}=o(1)
$$

Thus, we have
$F\left(\frac{1}{R}(A-c I), x-\frac{\|B\|}{R}\right) \leq F\left(\frac{1}{R}(A+B-c I), x\right) \leq$
$F\left(\frac{1}{R}(A-c I), x+\frac{\|B\|}{R}\right)$.
Since $F\left(\frac{1}{R}(A-c I), x-\frac{\|B\|}{R}\right) \xrightarrow{p} F(x)$ and
$F\left(\frac{1}{R}(A-c I), x+\frac{\|B\|}{R}\right) \xrightarrow{p} F(x)$. By the Squeeze theorem, we have

$$
F\left(\frac{1}{R}(A+B-c I), x\right) \xrightarrow{p} F(x)
$$

Case $\operatorname{rank}(B)=o(N)$

> Let U be the kernel of B (i.e. $\left.B\right|_{U}=0$) and
> $Z:=\left.\frac{1}{R}(A-c I)\right|_{U}=\left.\frac{1}{R}(A+B-c I)\right|_{U}$.

Case $\operatorname{rank}(B)=o(N)$

Let U be the kernel of B (i.e. $\left.B\right|_{U}=0$) and
$Z:=\left.\frac{1}{R}(A-c I)\right|_{U}=\left.\frac{1}{R}(A+B-c I)\right|_{U}$. By Cauchy's interlace theorem, for $1 \leq j \leq N-\operatorname{rank}(B)$, we have

$$
\begin{aligned}
& \mu_{j}\left(\frac{1}{R}(A-c I)\right) \leq \mu_{j}(Z) \leq \mu_{j+\operatorname{rank}(B)}\left(\frac{1}{R}(A-c I)\right), \\
& \mu_{j}\left(\frac{1}{R}(A+B-c I)\right) \leq \mu_{j}(Z) \leq \mu_{j+\operatorname{rank}(B)}\left(\frac{1}{R}(A+B-c I)\right) \text {. }
\end{aligned}
$$

Case $\operatorname{rank}(B)=o(N)$

Let U be the kernel of B (i.e. $\left.B\right|_{U}=0$) and
$Z:=\left.\frac{1}{R}(A-c I)\right|_{U}=\left.\frac{1}{R}(A+B-c I)\right|_{U}$. By Cauchy's interlace theorem, for $1 \leq j \leq N-\operatorname{rank}(B)$, we have

$$
\begin{aligned}
& \mu_{j}\left(\frac{1}{R}(A-c I)\right) \leq \mu_{j}(Z) \leq \mu_{j+\operatorname{rank}(B)}\left(\frac{1}{R}(A-c I)\right), \\
& \mu_{j}\left(\frac{1}{R}(A+B-c I)\right) \leq \mu_{j}(Z) \leq \mu_{j+\operatorname{rank}(B)}\left(\frac{1}{R}(A+B-c I)\right) .
\end{aligned}
$$

Thus, for $\operatorname{rank}(B)+1 \leq j \leq N-\operatorname{rank}(B)$, we have $\mu_{j-\operatorname{rank}(B)}\left(\frac{1}{R}(A-c I)\right) \leq \mu_{j}\left(\frac{1}{R}(A+B-c I)\right) \leq$ $\mu_{j+\operatorname{rank}(B)}\left(\frac{1}{R}(A-C I)\right)$.

continue

It implies
$F\left(\frac{1}{R}(A+B-c I), x\right) \geq F\left(\frac{1}{R}(A-c I), x\right)-\frac{\operatorname{rank}(B)}{N}$,
$F\left(\frac{1}{R}(A+B-c I), x\right) \leq F\left(\frac{1}{R}(A-c I), x\right)+\frac{\operatorname{rank}(B)}{N}$.

Since $\operatorname{rank}(B)=o(N)$, we have $F\left(\frac{1}{R}(A-c I), x\right) \pm \frac{\operatorname{rank}(B)}{N} \xrightarrow{p} F(x)$. By the Squeeze theorem, we have

$$
F\left(\frac{1}{R}(A+B-c I), x\right) \xrightarrow{p} F(x) .
$$

From C to $\mathcal{L}^{(s)}\left(H^{r}(n, p)\right)$

$$
\begin{aligned}
& \text { Recall } \mathcal{L}^{(s)}\left(K_{n}^{r}\right)-\mathcal{L}^{(s)}\left(H^{r}(n, p)\right)=M_{1}+M_{2}+M_{2}+M_{4} \text {. } \\
& \text { Let } c:=1-\frac{(-1)^{s}}{\binom{s}{s}} \text { and } R:=(2+o(1)) \sqrt{\frac{1-p}{\binom{r-s}{s}}\left(\begin{array}{l}
\binom{n-s}{r=s} \\
\hline
\end{array}\right.} \text {. }
\end{aligned}
$$

From C to $\mathcal{L}^{(s)}\left(H^{r}(n, p)\right)$

Recall $\mathcal{L}^{(s)}\left(K_{n}^{r}\right)-\mathcal{L}^{(s)}\left(H^{r}(n, p)\right)=M_{1}+M_{2}+M_{2}+M_{4}$. Let $c:=1-\frac{(-1)^{s}}{\binom{n}{s}}$ and $R:=(2+o(1)) \sqrt{\frac{1-p}{\binom{r-s}{s}\binom{n-s}{r-s} p}}$.

- $\left\|M_{1}\right\|=O\left(\frac{\sqrt{(1-p) \log N}}{d}\right)=o(R)$.

From C to $\mathcal{L}^{(s)}\left(H^{r}(n, p)\right)$

Recall $\mathcal{L}^{(s)}\left(K_{n}^{r}\right)-\mathcal{L}^{(s)}\left(H^{r}(n, p)\right)=M_{1}+M_{2}+M_{2}+M_{4}$.
Let $c:=1-\frac{(-1)^{s}}{\binom{n}{s}}$ and $R:=(2+o(1)) \sqrt{\frac{1-p}{\binom{r-s}{s}\binom{n-s}{r-s} p}}$.

- $\left\|M_{1}\right\|=O\left(\frac{\sqrt{(1-p) \log N}}{d}\right)=o(R)$.
- M_{2} satisfies the Semicircle Law centered at 0 with radius R.

From C to $\mathcal{L}^{(s)}\left(H^{r}(n, p)\right)$

Recall $\mathcal{L}^{(s)}\left(K_{n}^{r}\right)-\mathcal{L}^{(s)}\left(H^{r}(n, p)\right)=M_{1}+M_{2}+M_{2}+M_{4}$.
Let $c:=1-\frac{(-1)^{s}}{\binom{n}{s}}$ and $R:=(2+o(1)) \sqrt{\frac{1-p}{\binom{r-s}{s}\binom{n-s}{r-s} p}}$.

- $\left\|M_{1}\right\|=O\left(\frac{\sqrt{(1-p) \log N}}{d}\right)=o(R)$.
- M_{2} satisfies the Semicircle Law centered at 0 with radius R.

$$
\left\|M_{3}\right\|=O\left(\frac{\sqrt{\log N}}{n \sqrt{d}}\right)=o(R)
$$

From C to $\mathcal{L}^{(s)}\left(H^{r}(n, p)\right)$

Recall $\mathcal{L}^{(s)}\left(K_{n}^{r}\right)-\mathcal{L}^{(s)}\left(H^{r}(n, p)\right)=M_{1}+M_{2}+M_{2}+M_{4}$.
Let $c:=1-\frac{(-1)^{s}}{\binom{n}{s}}$ and $R:=(2+o(1)) \sqrt{\frac{1-p}{\binom{r-s}{s}\binom{n-s}{r-s} p}}$.

- $\left\|M_{1}\right\|=O\left(\frac{\sqrt{(1-p) \log N}}{d}\right)=o(R)$.
- M_{2} satisfies the Semicircle Law centered at 0 with radius R.

$$
\left\|M_{3}\right\|=O\left(\frac{\sqrt{\log N}}{n \sqrt{d}}\right)=o(R)
$$

- $\operatorname{rank}\left(M_{4}\right) \leq 4$.

From C to $\mathcal{L}^{(s)}\left(H^{r}(n, p)\right)$

Recall $\mathcal{L}^{(s)}\left(K_{n}^{r}\right)-\mathcal{L}^{(s)}\left(H^{r}(n, p)\right)=M_{1}+M_{2}+M_{2}+M_{4}$.
Let $c:=1-\frac{(-1)^{s}}{\binom{n}{s}}$ and $R:=(2+o(1)) \sqrt{\frac{1-p}{\binom{r-s}{s}\binom{n-s}{r-s} p}}$.

- $\left\|M_{1}\right\|=O\left(\frac{\sqrt{(1-p) \log N}}{d}\right)=o(R)$.
- M_{2} satisfies the Semicircle Law centered at 0 with radius R.

$$
\left\|M_{3}\right\|=O\left(\frac{\sqrt{\log N}}{n \sqrt{d}}\right)=o(R)
$$

- $\operatorname{rank}\left(M_{4}\right) \leq 4$.

■ $\quad \operatorname{rank}\left(\mathcal{L}^{(s)}\left(K_{n}^{r}\right)-c I\right)=\binom{n}{s-1}=o(N)$.

From C to $\mathcal{L}^{(s)}\left(H^{r}(n, p)\right)$

Recall $\mathcal{L}^{(s)}\left(K_{n}^{r}\right)-\mathcal{L}^{(s)}\left(H^{r}(n, p)\right)=M_{1}+M_{2}+M_{2}+M_{4}$. Let $c:=1-\frac{(-1)^{s}}{\binom{n}{s}}$ and $R:=(2+o(1)) \sqrt{\frac{1-p}{\binom{r-s}{s}\binom{n-s}{r-s} p}}$.

- $\left\|M_{1}\right\|=O\left(\frac{\sqrt{(1-p) \log N}}{d}\right)=o(R)$.
- M_{2} satisfies the Semicircle Law centered at 0 with radius R.

$$
\left\|M_{3}\right\|=O\left(\frac{\sqrt{\log N}}{n \sqrt{d}}\right)=o(R)
$$

- $\operatorname{rank}\left(M_{4}\right) \leq 4$.

■ $\quad \operatorname{rank}\left(\mathcal{L}^{(s)}\left(K_{n}^{r}\right)-c I\right)=\binom{n}{s-1}=o(N)$.
Hence $\mathcal{L}^{(s)}\left(K_{n}^{r}\right)$ satisfies the Semicircle Law centered at 1 with radius R.

Remaining task

It remains to prove the following Lemma.
Lemma 3: For any $k \ll\left(n^{r-s} p(1-p)\right)^{1 / 4}$, we have
$\mathrm{E}\left(\operatorname{Trace}\left(C^{2 k}\right)\right)=(1+o(1)) \frac{n^{s+k(r-s)}\binom{2 k}{k} p^{k}(1-p)^{k}}{(k+1)(s!)^{k+1}((r-2 s)!)^{k}}$,
$\mathrm{E}\left(\operatorname{Trace}\left(C^{2 k+1}\right)\right)=O\left(\frac{k(2 k+1) n^{s+k(r-s)}\binom{2 k}{k} p^{k}(1-p)^{k}}{(k+1)(s!)^{k+1}((r-2 s)!)^{k}}\right)$

Estimating the Trace

$$
\mathrm{E}\left(\operatorname{Trace}\left(C^{t}\right)\right)=\sum_{\text {closed } s \text {-walks }} \mathrm{E}\left(c_{S_{1} S_{2}}^{F_{1}} c_{S_{2} S_{3}}^{F_{2}} \ldots c_{S_{t} S_{1}}^{F_{t}}\right),
$$

The sum is over all closed s-walks $S_{1} F_{1} S_{2} F_{2} \cdots S_{t} F_{t} S_{1}$. Here $C_{S T}^{F}=X_{F}-\mathrm{E}\left(X_{F}\right)$ if $S \cap T=\emptyset$ and $S \cup T \subset F$; and $C_{S T}^{F}=0$ otherwise.

Estimating the Trace

$$
\mathrm{E}\left(\operatorname{Trace}\left(C^{t}\right)\right)=\sum_{\text {closed } s \text {-walks }} \mathrm{E}\left(c_{S_{1} S_{2}}^{F_{1}} c_{S_{2} S_{3}}^{F_{2}} \ldots c_{S_{t} S_{1}}^{F_{t}}\right)
$$

The sum is over all closed s-walks $S_{1} F_{1} S_{2} F_{2} \cdots S_{t} F_{t} S_{1}$. Here $C_{S T}^{F}=X_{F}-\mathrm{E}\left(X_{F}\right)$ if $S \cap T=\emptyset$ and $S \cup T \subset F$; and $C_{S T}^{F}=0$ otherwise. Group factors with same F together.
Different groups are mutually independent. In any non-zero product, every F appears at least twice.

Estimating the Trace

$$
\mathrm{E}\left(\operatorname{Trace}\left(C^{t}\right)\right)=\sum_{\text {closed } s \text {-walks }} \mathrm{E}\left(c_{S_{1} S_{2}}^{F_{1}} c_{S_{2} S_{3}}^{F_{2}} \ldots c_{S_{t} S_{1}}^{F_{t}}\right),
$$

The sum is over all closed s-walks $S_{1} F_{1} S_{2} F_{2} \cdots S_{t} F_{t} S_{1}$. Here $C_{S T}^{F}=X_{F}-\mathrm{E}\left(X_{F}\right)$ if $S \cap T=\emptyset$ and $S \cup T \subset F$; and $C_{S T}^{F}=0$ otherwise. Group factors with same F together.
Different groups are mutually independent. In any non-zero product, every F appears at least twice. Those closed walks are called "good".

Counting good walks

For $1 \leq i \leq\left\lfloor\frac{t}{2}\right\rfloor$, let \mathcal{G}_{i}^{j} be the set of good closed walks with exactly i distinct edges and j distinct vertices; and let $\mathcal{G}_{i}:=\cup_{j} \mathcal{G}_{i}^{j}$.

Counting good walks

For $1 \leq i \leq\left\lfloor\frac{t}{2}\right\rfloor$, let \mathcal{G}_{i}^{j} be the set of good closed walks with exactly i distinct edges and j distinct vertices; and let $\mathcal{G}_{i}:=\cup_{j} \mathcal{G}_{i}^{j}$.

- If $w:=S_{1} F_{1} S_{2} F_{2} \cdots S_{t} F_{t} S_{1} \in \mathcal{G}_{i}^{j}$, then

$$
\mathrm{E}\left(c_{S_{1} S_{2}}^{F_{1}} c_{S_{2} S_{3}}^{F_{2}} \ldots c_{S_{t} S_{1}}^{F_{t}}\right) \leq p^{i}(1-p)^{i} .
$$

Counting good walks

For $1 \leq i \leq\left\lfloor\frac{t}{2}\right\rfloor$, let \mathcal{G}_{i}^{j} be the set of good closed walks with exactly i distinct edges and j distinct vertices; and let $\mathcal{G}_{i}:=\cup_{j} \mathcal{G}_{i}^{j}$.

- If $w:=S_{1} F_{1} S_{2} F_{2} \cdots S_{t} F_{t} S_{1} \in \mathcal{G}_{i}^{j}$, then

$$
\mathrm{E}\left(c_{S_{1} S_{2}}^{F_{1}} c_{S_{2} S_{3}}^{F_{2}} \ldots c_{S_{t} S_{1}}^{F_{t}}\right) \leq p^{i}(1-p)^{i} .
$$

- The maximum j such that $\mathcal{G}_{i}^{j} \neq \emptyset$ is $m_{i}:=s+i(r-s)$.

Counting good walks

For $1 \leq i \leq\left\lfloor\frac{t}{2}\right\rfloor$, let \mathcal{G}_{i}^{j} be the set of good closed walks with exactly i distinct edges and j distinct vertices; and let $\mathcal{G}_{i}:=\cup_{j} \mathcal{G}_{i}^{j}$.

- If $w:=S_{1} F_{1} S_{2} F_{2} \cdots S_{t} F_{t} S_{1} \in \mathcal{G}_{i}^{j}$, then

$$
\mathrm{E}\left(c_{S_{1} S_{2}}^{F_{1}} c_{S_{2} S_{3}}^{F_{2}} \ldots c_{S_{t} S_{1}}^{F_{t}}\right) \leq p^{i}(1-p)^{i} .
$$

- The maximum j such that $\mathcal{G}_{i}^{j} \neq \emptyset$ is $m_{i}:=s+i(r-s)$.
- $\left|\mathcal{G}_{i}\right|=(1+o(1)) \mid \mathcal{G}_{i}^{m_{i}}$.

Counting $\mathcal{G}_{i}^{m_{i}}$

Mapping every walk in $\mathcal{G}_{i}^{m_{i}}$ into a triple ($\mathcal{S}, \mathrm{E}, \mathcal{C}$) where

- $\mathcal{S}:=\left\{S_{1}, S_{2}, \ldots, S_{i}\right\}$, each S_{l} is a s-set.
- $\mathcal{E}:=\left\{E_{1}, E_{2}, \ldots, E_{i-1}\right\}$, each E_{l} is a $r-2 s$-set.
- The sets in $\mathcal{S} \cup \mathcal{E}$ are pairwise disjoint.
- \mathcal{C} is a valid string consists of i pairs of parentheses and $t-2 i *$'s. For example,

$$
((*()) *(*) *)
$$

Counting $\mathcal{G}_{i}^{m_{i}}$

Mapping every walk in $\mathcal{G}_{i}^{m_{i}}$ into a triple ($\mathcal{S}, \mathrm{E}, \mathcal{C}$) where

- $\mathcal{S}:=\left\{S_{1}, S_{2}, \ldots, S_{i}\right\}$, each S_{l} is a s-set.
- $\mathcal{E}:=\left\{E_{1}, E_{2}, \ldots, E_{i-1}\right\}$, each E_{l} is a $r-2 s$-set.
- The sets in $\mathcal{S} \cup \mathcal{E}$ are pairwise disjoint.
- \mathcal{C} is a valid string consists of i pairs of parentheses and $t-2 i *$'s. For example,

$$
\begin{gathered}
((*()) *(*) *) \\
\left|\mathcal{G}_{i}^{m_{i}}\right| \leq \frac{N!}{\left(N-m_{i}\right)!(s!)^{r}((r-2 s)!)^{r-1}}\binom{t}{2 i} \frac{1}{i+1}\binom{2 i}{i}\left(i\binom{r-s}{s}\right)^{t-2 i} .
\end{gathered}
$$

Major term

When $t=2 k$, the major contribution is from the walks in $\mathcal{G}_{k}^{m_{k}}$ which can be encoded by $(\mathcal{S}, \mathrm{E}, \mathcal{C})$ where

- $\mathcal{S}:=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$, each S_{l} is a s-set.

■ $\mathcal{E}:=\left\{E_{1}, E_{2}, \ldots, E_{k-1}\right\}$, each E_{l} is a $r-2 s$-set.

- The sets in $\mathcal{S} \cup \mathcal{E}$ are pairwise disjoint.
- \mathcal{C} is a valid string consists of k pairs of parentheses.

For example, $(())()$ is corresponding to the walk

$$
S_{1} F_{1} S_{2} F_{2} S_{3} F_{2} S_{2} F_{1} S_{1} F_{3} S_{4} F_{3} S_{1}
$$

where $F_{1}=S_{1} \cup S_{2} \cup E_{1}, F_{2}=S_{2} \cup S_{3} \cup E_{2}$, and $F_{3}=S_{4} \cup S_{1} \cup E_{3}$.

Estimating E(Trace $\left(C^{2 k}\right)$

$$
\text { Let } a_{i}=\left|\mathcal{G}_{i}^{m_{i}}\right| p^{i}(1-p)^{i} .
$$

$$
\begin{aligned}
\frac{a_{i}}{a_{k}} & \leq \frac{\binom{2 k+1}{2 i+1}\binom{2 i+1}{i}}{\binom{2 k+1}{k}}\left(\frac{i^{2}}{s!(r-2 s)!n^{r-s} p(1-p)}\right)^{k-i} \\
& \leq \epsilon^{k-i},
\end{aligned}
$$

where $\epsilon:=\frac{9 k^{4}}{s!(r-2 s)!n^{r-s} p(1-p)}=o(1)$, since
$n^{r-s} p(1-p) \gg k^{4}$.

$$
\mathrm{E}\left(\operatorname{Trace}\left(C^{2 k}\right)\right) \approx \sum_{i=1}^{k} a_{i}=(1+o(1)) a_{k}
$$

Done!

References

F. Chung, The Laplacian of a hypergraph, In J. Friedman (Ed.), Expanding graphs (DIMACS series), 1993, 21-36.
2. F. Chung, The diameter and Laplacian eigenvalues of directed graphs, Electronic Journal of Combinatorics, 13 (2006), N4.
3. F. Chung, L. Lu, and V. H. Vu, Eigenvalues of random power law graphs, Annals of Combinatorics, 7 (2003), 21-33.
4. F. Chung, L. Lu, and V. H. Vu, Spectra of random graphs with given expected degrees, Proceedings of the National Academy of Sciences, 100(11) (2003), 6313-6318.
5. Lu and Xing Peng, High-ordered Random Walks and Generalized Laplacians on Hypergraphs (full version), Internet Mathematics, 9, No. 1, (2013), 3-32.
6. Linyuan Lu and Xing Peng, Loose Laplacian spectra of random hypergraphs, Random Structures \& Algorithms, 41 No. 4, (2012), 521-545.
Homepage: http://www.math.sc.edu/~ lu/

Thank You

