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■ G = (V,E): a weighted graph; each edge xy is
associated with a positive integer weight w(x, y).
(w(x, y) = 0 if xy 6∈ E(G).)

■ A: adjacency matrix, A(x, y) = w(x, y).

■ du =
∑

v w(u, v): the degree of u.

■ T = diag(d1, . . . , dn): the diagonal matrix of degrees.

■ L = I − T−1/2AT−1/2: the (normalized) Laplacian.

■ Laplacian spectrum: LSP (G) := {λ0, . . . , λn−1}

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2.
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Laplacian eigenvalues: λ0 = 0, λ1 = λ2 = 1, λ3 = 2
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■ λ1 > 0 if and only if G is connected.

■ λn−1 = 2 if and only if G is bipartite.

■ λ1 = λn−1 if and only if G is a complete graph (with the
same weight).

■ Rayleigh quotients :

λ1 = inf
f⊥T1

∑

x∼y(f(x)− f(y))2w(x, y)
∑

x f(x)
2dx

,

λn−1 = sup
f⊥T1

∑

x∼y(f(x)− f(y))2w(x, y)
∑

x f(x)
2dx

.



An important parameter

Laplacian of Random Hypergraphs Linyuan Lu – 7 / 79

λ1 is related to

■ the mixing rate of random walks



An important parameter

Laplacian of Random Hypergraphs Linyuan Lu – 7 / 79

λ1 is related to

■ the mixing rate of random walks

■ diameter



An important parameter

Laplacian of Random Hypergraphs Linyuan Lu – 7 / 79

λ1 is related to

■ the mixing rate of random walks

■ diameter

■ neighborhood/edge expansion



An important parameter

Laplacian of Random Hypergraphs Linyuan Lu – 7 / 79

λ1 is related to

■ the mixing rate of random walks

■ diameter

■ neighborhood/edge expansion

■ conductance



An important parameter

Laplacian of Random Hypergraphs Linyuan Lu – 7 / 79

λ1 is related to

■ the mixing rate of random walks

■ diameter

■ neighborhood/edge expansion

■ conductance

■ Cheeger’s constant



An important parameter

Laplacian of Random Hypergraphs Linyuan Lu – 7 / 79

λ1 is related to

■ the mixing rate of random walks

■ diameter

■ neighborhood/edge expansion

■ conductance

■ Cheeger’s constant

■ quasi-randomness



An important parameter

Laplacian of Random Hypergraphs Linyuan Lu – 7 / 79

λ1 is related to

■ the mixing rate of random walks

■ diameter

■ neighborhood/edge expansion

■ conductance

■ Cheeger’s constant

■ quasi-randomness

■ many other applications.
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A walk on a graph is a sequence of vertices together a
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v0, v1, v2, v3, . . . , vk, vk+1, . . .

v0v1, v1v2, v2v3, . . . , vkvk+1, . . .
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A walk on a graph is a sequence of vertices together a
sequence of edges:

v0, v1, v2, v3, . . . , vk, vk+1, . . .

v0v1, v1v2, v2v3, . . . , vkvk+1, . . .

Random walks on a graph G:

fk+1 = fkT
−1A.

‖(fk−π)T−1/2‖ ≤ λ̄k‖(f0−π)T−1/2‖.
T−1A ∼ T−1/2AT−1/2 = I − L.

❥v ❥

❥❥

✲�
�
�
�
�✒✻

1
dv

1
dv

1
dv

λ̄ determines the mixing rate of random walks.
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For 0 ≤ α ≤ 1, at time t, with probability α, stay at the
current vertex; with probability 1− α, move to a neighbor
vertex randomly.

- Transition matrix
Pα := αI + (1− α)T−1A = T−1/2LαT

1/2.
- Lα := I − (1− α)L, its second largest eigenvalue is

λ̄α = max{|1− (1− α)λ1|, |1− (1− α)λn−1|}.

- Stationary distribution π := 1
vol(G)(d1, d2, . . . , dn).

- Let fk be the distribution at time k.
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Theorem:

‖(fk − π)T−1/2‖ ≤ λ̄k
α‖(f0 − π)T−1/2‖.

Proof:

‖(fk − π)T−1/2‖ = ‖(f0P k
α − πP k

α)T
−1/2‖

= ‖(f0 − π)P k
αT

−1/2‖
= ‖(f0 − π)T−1/2Lk

α‖
≤ λ̄k

α‖(f0 − π)T−1/2‖.

�
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Theorem [ Chung (1989)]
If G is not a complete weighted graph, then we have

diam(G) ≤
⌈

log(vol(G)/δ)

log λn−1+λ1

λn−1−λ1

⌉

,

where δ is the minimum degree of G.



Edge discrepancy

Laplacian of Random Hypergraphs Linyuan Lu – 12 / 79

For any two subsets X and Y , we have
∣

∣

∣
|E(X, Y )| − vol(X)vol(Y )

vol(G)

∣

∣

∣
≤ λ̄

√
vol(X)vol(Y )vol(X̄)vol(Ȳ )

vol(G) .

where
vol(X) =

∑

x∈X dx

vol(G) =
∑

x∈V (G) dx

vol(X̄) = vol(G)− vol(X)

λ̄ = max{|1−λ1|, |λn−1− 1|}.

X Y

E(X,Y)
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h(S) :=
|E(S, S̄)|

min{vol(S), vol(S̄)} .

hG := min
S⊂V (G)

h(S).

S S

E(S,S)

Cheeger’s inequality

2hG ≥ λ1 ≥
h2
G

2
.
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A directed graph D is Eulerian if the in-degree equals the
out-degree at any vertex x. (d+x = d−x = dx)

- Any weak connected component in D is also a strongly
connected component.

- A: the adjacency matrix of D.

- T : the diagonal matrix of degrees.

- ~L = I − T−1/2AT−1/2.

Chung [2005] defined the Laplacian of Eulerian directed
graphs.

L =
~L+ ~L′

2
.
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- Transition matrix
Pα := αI + (1− α)T−1A = T−1/2 ~LαT

1/2.

- ~Lα := I − (1− α) ~L, φ0 :=
1

vol(G)(
√
d1, . . . ,

√
dn).

- Stationary distribution π := 1
vol(G)(d1, d2, . . . , dn)

- Let fk be the distribution at time k.

Theorem: ‖(fk − π)T−1/2‖ ≤ σk
α‖(f0 − π)T−1/2‖.

Here σα := maxf⊥φ′

0

‖ ~Lαf‖
‖f‖ is the second largest singular

value of ~Lα.
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min
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{σα} ≤
{
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√
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1
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Lemma:

- (1− λ1)
2 ≤ σ2

0 ≤ 1.

- σ2
α ≤ α2 + 2α(1− α)λ1 + (1− α)2σ2

0.

Choosing α to minimize σα, we get

min
0≤α<1

{σα} ≤
{

σ0 if λ1 ≤ 1− σ2
0;

√

1− λ2
1

2λ1+σ2
0−1

otherwise.

In particular, min0≤α<1{σα} ≤
√

1− λ1

2 .
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Theorem [Chung 2005]:

diam(D) ≤
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2 log(vol(G)/δ)

log 2
2−λ1

⌋

+ 1,
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Theorem [Chung 2005]:

diam(D) ≤
⌊

2 log(vol(G)/δ)

log 2
2−λ1

⌋

+ 1,

We improved it into

Theorem [Lu-Peng 2011]:

diam(D) ≤
⌈

log(vol(D)/δ)

log σα

⌉

,

for any 0 < α < 1.
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Theorem [Lu-Peng 2011]: Let D be a Eulerian directed
graph. If X and Y are two subsets of V (D), then we have

∣

∣

∣

∣

|E(X, Y )|+ |E(Y,X)|
2

− vol(X)vol(Y )

vol(D)

∣

∣

∣

∣

≤ λ̄

√

vol(X)vol(Y )vol(X̄)vol(Ȳ )

vol(D)
.
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H = (V,E) is an r-uniform hypergraph.

■ V : the set of vertices
■ E: the set of edges, each edge has cardinality r.

A 3-uniform loose cycle A 3-uniform tight cycle
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■ s: 1 ≤ s ≤ r − 1

■ Vs: the set of all s-tuples with distinct elements from V .
■

(

V
s

)

: the set of s-subsets of V .

■ For x ∈ Vs, if x = (v1, . . . , vs), then [x] = {v1, . . . , vs}.
■ S: an s-subset of V

■ Degree dS: the number of edges passing through S.

∑

S∈(Vs)

dS =

(

r

s

)

|E(H)|.



s-walks on hypergraphs

Laplacian of Random Hypergraphs Linyuan Lu – 21 / 79

For 1 ≤ s ≤ r − 1, an s-walk on H consists of

■ a vertex sequence: v1, v2, . . . , v(k−1)(r−s)+r

■ an edge sequence: F1, F2, . . . , Fk satisfying
Fi = {v(r−s)(i−1)+1, v(r−s)(i−1)+2, . . . , v(r−s)(i−1)+r} for
1 ≤ i ≤ k.
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For 1 ≤ s ≤ r − 1, an s-walk on H consists of

■ a vertex sequence: v1, v2, . . . , v(k−1)(r−s)+r

■ an edge sequence: F1, F2, . . . , Fk satisfying
Fi = {v(r−s)(i−1)+1, v(r−s)(i−1)+2, . . . , v(r−s)(i−1)+r} for
1 ≤ i ≤ k.

|Fi ∩ Fi+1| = s

v 1 vv 3
v v 5 v v 7642

A 1-walk in a 3-graph
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For 1 ≤ s ≤ r − 1, an s-walk on H consists of

■ a vertex sequence: v1, v2, . . . , v(k−1)(r−s)+r

■ an edge sequence: F1, F2, . . . , Fk satisfying
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v 1 vv 32 v 4 v 5 v 6

A 2-walk in a 3-graph
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For 1 ≤ s ≤ r − 1, an s-walk on H consists of

■ a vertex sequence: v1, v2, . . . , v(k−1)(r−s)+r

■ an edge sequence: F1, F2, . . . , Fk satisfying
Fi = {v(r−s)(i−1)+1, v(r−s)(i−1)+2, . . . , v(r−s)(i−1)+r} for
1 ≤ i ≤ k.

|Fi ∩ Fi+1| = s

v 1 vv 32 v 4 v 5 v 6 v 7
v 8

A 2-walk in a 4-graph
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Loose walk: 1 ≤ s ≤ r
2 .

v 1 vv 32 v 4 v 5 v 6 v 7
v 8
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v 1 vv 32 v 4 v 5 v 6 v 7
v 8

Observation: an s-th random walk on H is essentially a
random walk on an auxiliary weighted graph G(s).
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Loose walk: 1 ≤ s ≤ r
2 .

v 1 vv 32 v 4 v 5 v 6 v 7
v 8

Observation: an s-th random walk on H is essentially a
random walk on an auxiliary weighted graph G(s).

- Vertex set V (Gs) = Vs

- Weight function w : Vs × Vs → Z:

w(S, T ) =

{

0 if [S] ∩ [T ] 6= ∅
d[S]∪[T ] if [S] ∩ [T ] = ∅.
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For 1 ≤ s ≤ r/2, the s-th Laplacian of H, denoted by L(s),
is defined as the Laplacian of G(s).
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For 1 ≤ s ≤ r/2, the s-th Laplacian of H, denoted by L(s),
is defined as the Laplacian of G(s).

- λ
(s)
1 : the smallest non-trivial eigenvalue of L(s).
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For 1 ≤ s ≤ r/2, the s-th Laplacian of H, denoted by L(s),
is defined as the Laplacian of G(s).

- λ
(s)
1 : the smallest non-trivial eigenvalue of L(s).

- λ
(s)
max: the largest eigenvalue of L(s).
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For 1 ≤ s ≤ r/2, the s-th Laplacian of H, denoted by L(s),
is defined as the Laplacian of G(s).

- λ
(s)
1 : the smallest non-trivial eigenvalue of L(s).

- λ
(s)
max: the largest eigenvalue of L(s).

- λ̄(s): the spectral bound max{|1− λ
(s)
1 |, |λ(s)

max − 1|}.
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For 1 ≤ s ≤ r/2, the s-th Laplacian of H, denoted by L(s),
is defined as the Laplacian of G(s).

- λ
(s)
1 : the smallest non-trivial eigenvalue of L(s).

- λ
(s)
max: the largest eigenvalue of L(s).

- λ̄(s): the spectral bound max{|1− λ
(s)
1 |, |λ(s)

max − 1|}.

L(1) is the same as the Laplacian of hypergraph introduced
by Rodŕıguez [2009].
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Tight walk: r
2 < s ≤ r − 1.

v 1 vv 32 v 4 v 5 v 6
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Observation: an s-th random walk on H is “essentially” a
random walk on an auxiliary directed graph D(s).
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Tight walk: r
2 < s ≤ r − 1.

v 1 vv 32 v 4 v 5 v 6

Observation: an s-th random walk on H is “essentially” a
random walk on an auxiliary directed graph D(s).

■ Vertex set V (G(s)) = Vs

■ For x = (x1, . . . , xs) and y = (y1, . . . , ys), xy is a
directed edge if

- xr−s+j = yj for 1 ≤ j ≤ 2s− r.
- {x1, . . . , xs, y2s−r+1, ys} is an edge of H.



Laplacians of hypergraph (II)
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For r/2 < s ≤ r − 1, the s-th Laplacian of H, denoted by
L(s), is defined as the Laplacian of D(s).
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For r/2 < s ≤ r − 1, the s-th Laplacian of H, denoted by
L(s), is defined as the Laplacian of D(s).

■ D(s) is Eulerian, i.e., indegree=outdegree at any vertex.
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For r/2 < s ≤ r − 1, the s-th Laplacian of H, denoted by
L(s), is defined as the Laplacian of D(s).

■ D(s) is Eulerian, i.e., indegree=outdegree at any vertex.

■ Chung [2005] defined the Laplacian of directed graphs.
In the case of Eulerian directed graph, we have

L = T−1/2A+ A′

2
T−1/2.
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For r/2 < s ≤ r − 1, the s-th Laplacian of H, denoted by
L(s), is defined as the Laplacian of D(s).

■ D(s) is Eulerian, i.e., indegree=outdegree at any vertex.

■ Chung [2005] defined the Laplacian of directed graphs.
In the case of Eulerian directed graph, we have

L = T−1/2A+ A′

2
T−1/2.

■ L(r−1) is close related to the Laplacian of a regular
hypergraph introduced by Chung [1993].
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For r/2 < s ≤ r − 1, the s-th Laplacian of H, denoted by
L(s), is defined as the Laplacian of D(s).

■ D(s) is Eulerian, i.e., indegree=outdegree at any vertex.

■ Chung [2005] defined the Laplacian of directed graphs.
In the case of Eulerian directed graph, we have

L = T−1/2A+ A′

2
T−1/2.

■ L(r−1) is close related to the Laplacian of a regular
hypergraph introduced by Chung [1993].

λ
(s)
1 , λ

(s)
max, and λ̄(s) are defined in the same way.
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Some eigenvalues of Laplacians of complete hypergraph Kr
n:

H λ
(4)
1 λ

(3)
1 λ

(2)
1 λ

(1)
1 λ

(1)
max λ

(2)
max λ

(3)
max λ

(4)
max

K3
6 3/4 6/5 6/5 3/2

K3
7 7/10 7/6 7/6 3/2

K4
6 1/3 5/6 6/5 6/5 3/2 1.76759

K4
7 3/8 9/10 7/6 7/6 7/5 7/4

K5
6 0.1464 1/2 5/6 6/5 6/5 3/2 3/2 1.809

K5
7 0.1977 5/8 9/10 7/6 7/6 7/5 3/2 1.809
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Some eigenvalues of Laplacians of complete hypergraph Kr
n:

H λ
(4)
1 λ

(3)
1 λ

(2)
1 λ

(1)
1 λ

(1)
max λ

(2)
max λ

(3)
max λ

(4)
max

K3
6 3/4 6/5 6/5 3/2

K3
7 7/10 7/6 7/6 3/2

K4
6 1/3 5/6 6/5 6/5 3/2 1.76759

K4
7 3/8 9/10 7/6 7/6 7/5 7/4

K5
6 0.1464 1/2 5/6 6/5 6/5 3/2 3/2 1.809

K5
7 0.1977 5/8 9/10 7/6 7/6 7/5 3/2 1.809
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λ
(s)
1 (and/or) λ̄

(s)
max is related to

■ the mixing rate of random s-walk

■ s-diameter

■ neighborhood/edge expansion



Applications
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λ
(s)
1 (and/or) λ̄

(s)
max is related to

■ the mixing rate of random s-walk

■ s-diameter

■ neighborhood/edge expansion

Each application is divided into the loose case and the tight
case.



Random walks (I)
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Theorem [Lu-Peng 2011]: For 1 ≤ s ≤ r/2, suppose that
H is an s-connected r uniform hypergraph. For 0 ≤ α < 1,
the joint distribution fk at the k-th stop of the α-lazy
random walk at time k converges to the stationary
distribution π in probability. In particular, we have

‖(fk − π)T−1/2‖ ≤ (λ̄(s)
α )k‖(f0 − π)T−1/2‖,

where λ̄
(s)
α = max{|1− (1− α)λ

(s)
1 |, |(1− α)λ

(s)
max − 1|, and

f0 is the probability distribution at the initial stop.



Random walks (II)
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Theorem [Lu-Peng 2011]: For r/2 < s ≤ r − 1, suppose
that H is an s-connected r uniform hypergraph. For
0 < α < 1, the joint distribution fk at the k-th stop of the
α-lazy random walk at time k converges to the stationary
distribution π in probability. In particular, we have

‖(fk − π)T−1/2‖ ≤ (σ(s)
α )k‖(f0 − π)T−1/2‖,

where σ
(s)
α ≤

√

1− 2α(1− α)λ
(s)
1 , and f0 is the probability

distribution at the initial stop.



s-Diameter (I)
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Theorem [Lu-Peng 2011]: Let H be a r-uniform

hypergraph. For 1 ≤ s ≤ r
2 , if λ

(s)
max > λ

(s)
1 > 0, then the

s-diameter of an r-uniform hypergraph H satisfies

diam(s)(H) ≤











log vol(Vs)
δ(s)

log λ
(s)
max+λ

(s)
1

λ
(s)
max−λ

(s)
1











.

Here vol(Vs) =
∑

x∈Vs dx = |E(H)| r!
(r−2s)! and δ(s) is the

minimum degree in G(s).



s-Diameter (II)
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Theorem [Lu-Peng 2011]: Let H be a r-uniform

hypergraph. For r/2 < s ≤ r − 1, if λ
(s)
1 > 0, then the

s-diameter of H satisfies

diam(s)(H) ≤









2 log vol(Vs)
δ(s)

log 2

2−λ
(s)
1









.

Here vol(Vs) =
∑

x∈Vs dx = |E(H)|r! and δ(s) is the

minimum degree in D(s).



Edge expansion (I)

Laplacian of Random Hypergraphs Linyuan Lu – 32 / 79

Theorem [Lu-Peng 2011]: For 1 ≤ t ≤ s ≤ r − t,
S ⊆

(

V
s

)

, and T ⊆
(

V
t

)

, let

E(S, T ) = {F ∈ E(H) : ∃x ∈ S, ∃y ∈ T, x∩y = ∅, and x∪y ⊆

Let e(S) = vol(S)

vol((Vs))
and e(S, T ) = |E(S,T )|

|E((Vs),(
V
t ))|

.

|e(S, T )− e(S)e(T )| ≤ λ̄(s)
√

e(S)e(T )e(S̄)e(T̄ ).



Edge expansion (II)
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Theorem [Lu-Peng 2011]: For
1 ≤ t < r

2 < s < s+ t ≤ r, S ⊆
(

V
s

)

, and T ⊆
(

V
t

)

, let

e(S, T ) = |E(S,T )|
|E((Vs),(

V
t ))|

. If |x ∩ y| 6= min{t, 2s− r} for any

x ∈ S and y ∈ T , then we have

|1
2
e(S, T )− e(S)e(T )| ≤ λ̄(s)

√

e(S)e(T )e(S̄)e(T̄ ).



Edge expansion (III)
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Theorem [Lu-Peng 2011]: Suppose r
2 < s ≤ r − 1. For

S, T ⊆
(

V
s

)

, let

E ′(S, T ) = {F ∈ E(H) | ∃x ∈ S, ∃y ∈ T, F = x ∪ y}

and e′(S, T ) = |E′(S,T )|
|E′((Vs),(

V
s))|

. We have

|e′(S, T )− e(S)e(T )| ≤ λ̄(s)
√

e(S)e(T )e(S̄)e(T̄ ).



Connections of different L(s)
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Theorem [Lu, Peng 2011] We have the following
inequalities for the “loose” Laplacian eigenvalues.

λ
(1)
1 ≥ λ

(2)
1 ≥ . . . ≥ λ

(⌊r/2⌋)
1 ;

λ(1)
max ≤ λ(2)

max ≤ . . . ≤ λ(⌊r/2⌋)
max .



Reduced Laplacian (I)
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For 1 ≤ s ≤ r/2, let G(s)′ be the weighted graph defined as

- Vertex set V (G(s)′) =
(

V
s

)

- Weight function w :
(

V
s

)

×
(

V
s

)

→ Z:

w(S, T ) =

{

0 if S ∩ T 6= ∅
dS∪T if S ∩ T = ∅.



Reduced Laplacian (I)
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For 1 ≤ s ≤ r/2, let G(s)′ be the weighted graph defined as

- Vertex set V (G(s)′) =
(

V
s

)

- Weight function w :
(

V
s

)

×
(

V
s

)

→ Z:

w(S, T ) =

{

0 if S ∩ T 6= ∅
dS∪T if S ∩ T = ∅.

Since G(s) is a blow-up of G(s)′, we have
LSP (G(s)) = LSP (G(s)′) ∪

{

1 with multi.
(

n
s

)

(s!− 1)
}

.
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For 1 ≤ s ≤ r/2, let G(s)′ be the weighted graph defined as

- Vertex set V (G(s)′) =
(

V
s

)

- Weight function w :
(

V
s

)

×
(

V
s

)

→ Z:

w(S, T ) =

{

0 if S ∩ T 6= ∅
dS∪T if S ∩ T = ∅.

Since G(s) is a blow-up of G(s)′, we have
LSP (G(s)) = LSP (G(s)′) ∪

{

1 with multi.
(

n
s

)

(s!− 1)
}

.
Therefore, two graphs has the same λ1, λmax, and λ̄.
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For 1 ≤ s ≤ r/2, let G(s)′ be the weighted graph defined as

- Vertex set V (G(s)′) =
(

V
s

)

- Weight function w :
(

V
s

)

×
(

V
s

)

→ Z:

w(S, T ) =

{

0 if S ∩ T 6= ∅
dS∪T if S ∩ T = ∅.

Since G(s) is a blow-up of G(s)′, we have
LSP (G(s)) = LSP (G(s)′) ∪

{

1 with multi.
(

n
s

)

(s!− 1)
}

.
Therefore, two graphs has the same λ1, λmax, and λ̄. The

Laplacian of G(s)′ is called the s-th reduced Laplacian of H.



Complete hypergraph Kr
n
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Theorem: For 1 ≤ s ≤ r/2, the reduced s-th Laplacian
eigenvalues of Kr

n is the eigenvalues of s-th reduced
Lapacian of Kr

n are given by

1−
(−1)i

(

n−s−i)
s−i

)

(

n−s
s

) with multiplicity

(

n

i

)

−
(

n

i− 1

)

for 0 ≤ i ≤ s.



Keneser graph K(n, s)
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The Kneser graph K(n, s) is a graph over the vertex set
(

[n]
s

)

; two s-sets S and T form an edge of K(n, s) if and
only if S ∩ T = 0.
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The Kneser graph K(n, s) is a graph over the vertex set
(

[n]
s

)

; two s-sets S and T form an edge of K(n, s) if and
only if S ∩ T = 0.

The eigenvalues of the adjacency matrix of K(n, s) are

(−1)i
(

n−s−i)
s−i

)

with multiplicity
(

n
i

)

−
(

n
i−1

)

for 0 ≤ i ≤ s.



Keneser graph K(n, s)
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The Kneser graph K(n, s) is a graph over the vertex set
(

[n]
s

)

; two s-sets S and T form an edge of K(n, s) if and
only if S ∩ T = 0.

The eigenvalues of the adjacency matrix of K(n, s) are

(−1)i
(

n−s−i)
s−i

)

with multiplicity
(

n
i

)

−
(

n
i−1

)

for 0 ≤ i ≤ s.

Note K(n, s) is a regular graph; so the Laplacian eigenvalues
can be determined from the eigenvalues of its adjacency
matrix.



Proof
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We observe that G(s′)(Kr
n) is essentially the Kneser graph

K(n, s) with each edge associated with a weight
(

n−2s
r−2s

)

.

Note the multiplicative factor
(

n−2s
r−2s

)

is canceled after

normalization. The L(s) (for Kr
n) is exactly the Laplacian of

Kneser graph. Thus, the eigenvalues of s-th Lapacian of Kr
n

are given by

1−
(−1)i

(

n−s−i)
s−i

)

(

n−s
s

) with multiplicity

(

n

i

)

−
(

n

i− 1

)

for 0 ≤ i ≤ s.



An application
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Erdős-Ko-Rado Theorem If the n ≥ 2s, then the size of
the maximum intersecting family of s-sets in [n] is at most
(

n−1
s−1

)

.
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Erdős-Ko-Rado Theorem If the n ≥ 2s, then the size of
the maximum intersecting family of s-sets in [n] is at most
(

n−1
s−1

)

.

The simplest proof is due to Katona [1972].
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Erdős-Ko-Rado Theorem If the n ≥ 2s, then the size of
the maximum intersecting family of s-sets in [n] is at most
(
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The simplest proof is due to Katona [1972].

Here we present a “new” proof using the s-th Laplacian
eigenvalues of Kr

n.



An application
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Erdős-Ko-Rado Theorem If the n ≥ 2s, then the size of
the maximum intersecting family of s-sets in [n] is at most
(

n−1
s−1

)

.

The simplest proof is due to Katona [1972].

Here we present a “new” proof using the s-th Laplacian
eigenvalues of Kr

n.(Actually it is due to Calderbank-Frankl
[1992].)



Calderbank-Frankl’s proof

Laplacian of Random Hypergraphs Linyuan Lu – 41 / 79

It suffices to any intersecting family U has size at most
(

n−1
s−1

)

.

Note U is an independent set in G(s)′(Kr
n). Let L be the

Laplacian of G(s)′(Kr
n). We have L|U = I. By Cauchy’s

interlace theorem, we have

λ
(s)
k ≤ 1 ≤ λ

(s)

(ns)−|U |+k

for 0 ≤ k ≤ |U | − 1.
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Laplacian of Random Hypergraphs Linyuan Lu – 41 / 79

It suffices to any intersecting family U has size at most
(

n−1
s−1

)

.

Note U is an independent set in G(s)′(Kr
n). Let L be the

Laplacian of G(s)′(Kr
n). We have L|U = I. By Cauchy’s

interlace theorem, we have

λ
(s)
k ≤ 1 ≤ λ

(s)

(ns)−|U |+k

for 0 ≤ k ≤ |U | − 1.

Let N+ (or N−) be the number of eigenvalues of L(s) which
is ≥ 1 (or ≤ 1) respectively. We have |U | ≤ N+ and
|U | ≤ N−.



continue...
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The eigenvalues of L are

1−
(−1)i

(

n−s−i)
s−i

)

(

n−s
s

) with multiplicity

(

n

i

)

−
(

n

i− 1

)

for 0 ≤ i ≤ s.

N+ =

⌊(s−1)/2⌋
∑

i=0

((

n

2i+ 1

)

−
(

n

2i

))

N− =

⌊s/2⌋
∑

i=0

((

n

2i

)

−
(

n

2i− 1

))

.



continue...
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We have

|U | ≤ min{N+, N−}

=
s−1
∑

i=0

(−1)s−1−i

(

n

i

)

=

(

n

s− 1

)

−
(

n

s− 2

)

+

(

n

s− 3

)

−
(

n

s− 4

)

+ · · ·

=

(

n− 1

s− 1

)

.

�



Random graphs
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A random graph is a set of graphs together with a
probability distribution on that set.
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A random graph is a set of graphs together with a
probability distribution on that set.
Example: A random graph on 3 vertices and 2 edges with
the uniform distribution on it.
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A random graph is a set of graphs together with a
probability distribution on that set.
Example: A random graph on 3 vertices and 2 edges with
the uniform distribution on it.

❥ ❥

❥

Probability 1
3

❥ ❥

❥

�
�
�
�
�

Probability 1
3

❥ ❥

❥

�
�
�
�
�

Probability 1
3

A random graph G almost surely satisfies a property P , if

Pr(G satisfies P ) → 1 as |V (G)| → ∞.



Erdős-Rényi model G(n, p)
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For each pair of vertices in the vertex set of size n, an edge
is created independently with probability p.
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For each pair of vertices in the vertex set of size n, an edge
is created independently with probability p.

- The set of graphs are all labeled graphs on n vertices.
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For each pair of vertices in the vertex set of size n, an edge
is created independently with probability p.

- The set of graphs are all labeled graphs on n vertices.

- The graph with e edges has the probability pe(1− p)(
n
2)−e.
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For each pair of vertices in the vertex set of size n, an edge
is created independently with probability p.

- The set of graphs are all labeled graphs on n vertices.

- The graph with e edges has the probability pe(1− p)(
n
2)−e.
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For each pair of vertices in the vertex set of size n, an edge
is created independently with probability p.

- The set of graphs are all labeled graphs on n vertices.

- The graph with e edges has the probability pe(1− p)(
n
2)−e.
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For each pair of vertices in the vertex set of size n, an edge
is created independently with probability p.

- The set of graphs are all labeled graphs on n vertices.

- The graph with e edges has the probability pe(1− p)(
n
2)−e.
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Erdős-Rényi model G(n, p)
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For each pair of vertices in the vertex set of size n, an edge
is created independently with probability p.

- The set of graphs are all labeled graphs on n vertices.

- The graph with e edges has the probability pe(1− p)(
n
2)−e.

❥ ❥

❥ ❥

❅
❅

❅
❅

❅

�
�
�
�
�

p

p
p

p

♣ ♣ ♣ ♣ ♣ ♣ ♣
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♣
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♣♣

1− p

1− p

The probability of this
graph is

p4(1− p)2.



The birth of random graph theory
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Evolution of G(n, p)
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p

0 the empty graph.
disjoint union of trees.

c
n cycles of any size.
1
n the double jumps.
c′

n one giant component, others are trees.
log n
n G(n, p) is connected.

Ω( log nn )
connected and almost regular.

Ω(nǫ−1) finite diameter.
Θ(1) dense graphs, diameter is 2.
1 the complete graph.



Eigenvalues of G(n, p)
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Füredi and Komlós (1981): If np(1− p) ≫ log6 n, then
almost surely

µn(G(n, p)) = (1 + o(1))np

max
1≤i≤n−1

{|µi(G(n, p))|} ≤ (2 + o(1))
√

np(1− p).



Eigenvalues of G(n, p)
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Füredi and Komlós (1981): If np(1− p) ≫ log6 n, then
almost surely

µn(G(n, p)) = (1 + o(1))np

max
1≤i≤n−1

{|µi(G(n, p))|} ≤ (2 + o(1))
√

np(1− p).

What about the Laplacian eigenvalues of G(n, p)?



Model G(w1, w2, . . . , wn)
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Random graph with expected degree sequence:

- Each vertex i is associated with a weight wi.
- The probability that ij is an edge is wiwj

1
∑n

k=1wk
.

- The expected degree of i is wi.



Model G(w1, w2, . . . , wn)
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Random graph with expected degree sequence:

- Each vertex i is associated with a weight wi.
- The probability that ij is an edge is wiwj

1
∑n

k=1wk
.

- The expected degree of i is wi.

Chung-Lu-Van (2003):

λ̄ ≤ (1 + o(1))
4√
w̄

+
g(n) log2 n

wmin
,

where wmin is the minimum weight and w̄ is the average
weight.



Laplacian of G(n, p)
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G(n, p) is a special case of G(w1, w2, . . . , wn) with
w1 = w2 = · · · = wn = np.



Laplacian of G(n, p)
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G(n, p) is a special case of G(w1, w2, . . . , wn) with
w1 = w2 = · · · = wn = np.

Applying Chung-Lu-Van’s result to G(n, p), we have

Chung-Lu-Van (2003): For 1− ǫ > p ≫ log6 n
n ,

λ̄(G(n, p)) ≤ (4 + o(1))
1√
np

.



Random d-regular graphs

Laplacian of Random Hypergraphs Linyuan Lu – 51 / 79

Random d-regular graphs Gn,d

- The space is the set of all d-regular graphs on n vertices.
- Each graph has an equal probability.
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Random d-regular graphs Gn,d

- The space is the set of all d-regular graphs on n vertices.
- Each graph has an equal probability.

Friedman (1989) For random 2d-regular graph, almost
surely

max
1≤i≤n−1

{|µi(Gn,d)|} ≤ 2
√
2d− 1 + 2 log d+ O(1).



Random d-regular graphs
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Random d-regular graphs Gn,d

- The space is the set of all d-regular graphs on n vertices.
- Each graph has an equal probability.

Friedman (1989) For random 2d-regular graph, almost
surely

max
1≤i≤n−1

{|µi(Gn,d)|} ≤ 2
√
2d− 1 + 2 log d+ O(1).

Friedman (2002) For random d-regular graph with d ≥ 4,
almost surely

max
1≤i≤n−1

{|µi(Gn,d)|} = (2 + o(1))
√
d− 1.



Random hypergraphs
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Random r-uniform hypergraph Hr(n, p):

■ n: the number of vertices

■ p: probability, 0 < p < 1.
For any F ∈

(

[n]
r

)

, F is an edge with probability p
independently.



Random hypergraphs
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Random r-uniform hypergraph Hr(n, p):

■ n: the number of vertices

■ p: probability, 0 < p < 1.
For any F ∈

(

[n]
r

)

, F is an edge with probability p
independently.

Question: What is Laplacian eigenvalues of Hr(n, p)?



Our result (I)

Laplacian of Random Hypergraphs Linyuan Lu – 53 / 79

Theorem [Lu, Peng 2011] Let Hr(n, p) be a random

r-uniform hypergraph. For 1 ≤ s ≤ r/2, if p(1− p) ≫ log4 n
nr−s

and 1− p ≫ log n
n2 , then almost surely

λ̄(s)(Hr(n, p)) ≤ s
n−s +

(

2
√

(r−s
s )

+ 1 + o(1)

)

√

1−p

(n−s
r−s)p

.



Our result (I)
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Theorem [Lu, Peng 2011] Let Hr(n, p) be a random

r-uniform hypergraph. For 1 ≤ s ≤ r/2, if p(1− p) ≫ log4 n
nr−s

and 1− p ≫ log n
n2 , then almost surely

λ̄(s)(Hr(n, p)) ≤ s
n−s +

(

2
√

(r−s
s )

+ 1 + o(1)

)

√

1−p

(n−s
r−s)p

.

Moreover, for 1 ≤ k ≤
(

n
s

)

− 1 almost surely we have

|λ(s)
k (Hr(n, p))− λ

(s)
k (Kr

n)| ≤
(

2
√

(r−s
s )

+ 1 + o(1)

)

√

1−p

(n−s
r−s)p

.



Applied to G(n, p)
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Our result: If p(1− p) ≫ log4 n
n , then

λ̄(G(n, p)) ≤ (3 + o(1))
1√
np

.



Applied to G(n, p)
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Our result: If p(1− p) ≫ log4 n
n , then

λ̄(G(n, p)) ≤ (3 + o(1))
1√
np

.

Chung-Lu-Van (2003): If 1− ǫ > p ≫ log6 n
n , then

λ̄(G(n, p)) ≤ (4 + o(1))
1√
np

.



Lemma 1
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Lemma 1: Given any two (N ×N)-Hermitian matrices A
and B, for 1 ≤ k ≤ N , let µk(A) (or µk(B)) be the k-th
eigenvalues of A (or B) in the increasing order. We have

|µk(A)− µk(B)| ≤ ‖A−B‖.
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Lemma 1: Given any two (N ×N)-Hermitian matrices A
and B, for 1 ≤ k ≤ N , let µk(A) (or µk(B)) be the k-th
eigenvalues of A (or B) in the increasing order. We have

|µk(A)− µk(B)| ≤ ‖A−B‖.

Proof: By the Min-Max Theorem,

µk(A) = min
Sk

max
x∈Sk,‖x‖=1

x′Ax

= min
Sk

max
x∈Sk,‖x‖=1

(x′Bx+ x′(A− B)x)

≤ min
Sk

max
x∈Sk,‖x‖=1

(x′Bx+ ‖A−B‖)

= µk(B) + ‖A−B‖.

The other direction µ (A) ≥ µ (B)− ‖A− B‖ can be



Lemma 1

Laplacian of Random Hypergraphs Linyuan Lu – 56 / 79

Lemma 1: Given any two (N ×N)-Hermitian matrices A
and B, for 1 ≤ k ≤ N , let µk(A) (or µk(B)) be the k-th
eigenvalues of A (or B) in the increasing order. We have

|µk(A)− µk(B)| ≤ ‖A−B‖.

Proof: Thus,

µk(A) ≤ µk(B) + ‖A−B‖.



Lemma 1
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Lemma 1: Given any two (N ×N)-Hermitian matrices A
and B, for 1 ≤ k ≤ N , let µk(A) (or µk(B)) be the k-th
eigenvalues of A (or B) in the increasing order. We have

|µk(A)− µk(B)| ≤ ‖A−B‖.

Proof: Thus,

µk(A) ≤ µk(B) + ‖A−B‖.

Similarly we have

µk(A) ≥ µk(B)− ‖A− B‖. �



Sketch proof
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Write L(s)(Kr
n)−L(s)(Hr(n, p)) = M1+M2+M3+M4, where

M1 =
1

(

r−s
s

)

(

D−1/2(W − E(W ))D−1/2 − d−1(W − E(W ))
)

,

M2 =
1

(

r−s
s

)

d
(W − E(W )),

M3 =
1

(

r−s
s

)D−1/2E(W )D−1/2 − d
(

n
s

)D−1/2JD−1/2

− 1
(

n−s
s

)K +
1
(

n
s

)J,

M4 =
1
(

n
s

)(dD−1/2JD−1/2 − J).



Continue
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‖M1‖ = O

(

√

(1− p) logN

d

)

, easy!

‖M2‖ ≤ (2 + o(1))
√
1− p

√

(

r−s
s

)

d
, hard!

‖M3‖ = O

(√
logN

n
√
d

)

, easy!

‖M4‖ ≤ (1 + o(1))

√

1− p

d
. tricky!

Putting together, ‖M‖ ≤
(

2
√

(r−s
s )

+ 1 + o(1)

)

√

1−p

(n−s
r−s)p

. �



Tools
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Chenoff’s inequality: Let X1, . . . , Xn be independent 0-1
random variables with We consider the sum X =

∑n
i=1Xi.

Then we have

(Lower tail) Pr(X ≤ E(X)− λ) ≤ e−λ2/2E(X),

(Upper tail) Pr(X ≥ E(X) + λ) ≤ e−
λ2

2(E(X)+λ/3) .



Tools
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Chenoff’s inequality: Let X1, . . . , Xn be independent 0-1
random variables with We consider the sum X =

∑n
i=1Xi.

Then we have

(Lower tail) Pr(X ≤ E(X)− λ) ≤ e−λ2/2E(X),

(Upper tail) Pr(X ≥ E(X) + λ) ≤ e−
λ2

2(E(X)+λ/3) .

Lemma: If d :=
(

n
s

)

p ≥ logN , then with probability at least

1− 1
N3 , for any S ∈

(

V
s

)

, we have

dS ∈ (d− 3
√

d logN, d+ 3
√

d logN).



Main task
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Let C = W − E(W ). One of the major task is to estimate
‖C‖. We have the following Lemma.
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Let C = W − E(W ). One of the major task is to estimate
‖C‖. We have the following Lemma.

Lemma 2: Suppose p(1− p) ≫ log4 n
nr−s . Almost surely, we

have ‖C‖ ≤ (2 + o(1))
√

(

r−s
s

)

d(1− p).



Main task
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Let C = W − E(W ). One of the major task is to estimate
‖C‖. We have the following Lemma.

Lemma 2: Suppose p(1− p) ≫ log4 n
nr−s . Almost surely, we

have ‖C‖ ≤ (2 + o(1))
√

(

r−s
s

)

d(1− p).

Recall M2 =
1

(r−s
s )d

C. We get

‖M2‖ ≤ (2 + o(1))
√
1− p

√

(

r−s
s

)

d



Main Lemma on Trace(Ct)
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Lemma 3: For any k ≪ (nr−sp(1− p))1/4, we have

E
(

Trace(C2k)
)

= (1 + o(1))
ns+k(r−s)

(

2k
k

)

pk(1− p)k

(k + 1)(s!)k+1((r − 2s)!)k
,

E
(

Trace(C2k+1)
)

= O

(

k(2k + 1)ns+k(r−s)
(

2k
k

)

pk(1− p)k

(k + 1)(s!)k+1((r − 2s)!)k

)

.



Proof of Lemma 2
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Let U := ns+k(r−s)

(k+1)(s!)k+1((r−2s)!)k

(

2k
k

)

pk(1− p)k. By Markov’s

inequality,

Pr
(

‖C‖ ≥ (1 + ǫ)
2k
√
U
)

= Pr
(

‖C‖2k ≥ (1 + ǫ)2kU
)

≤ E(‖C‖2k)
(1 + ǫ)2kU

≤ E(Trace(C2k))

(1 + ǫ)2kU

=
1 + o(1)

(1 + ǫ)2k
.



Continue
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Choose k = sg(n) log n and ǫ = 1/g(n).

|‖C‖ ≤ (1 + o(1))
2k
√
U

= (1 + o(1))

(

ns+k(r−s)
(

2k
k

)

pk(1− p)k

(k + 1)(s!)k+1((r − 2s)!)k

) 1
2k

< n
s
2k2

√

nr−sp(1− p)

s!(r − 2s)!

= (2 + o(1))

√

(

r − s

s

)

d(1− p).

�



Wigner’s semicircle law
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Wigner (1958)

- A is a real symmetric N ×N matrix.
- Entries aij are independent random variables.
- E(a2k+1

ij ) = 0.

- E(a2ij) = m2.

- E(a2kij ) < M .

The distribution of eigenvalues of A converges into a
semicircle distribution of radius 2m

√
N .



Wigner’s semicircle law
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Wigner (1958)

- A is a real symmetric N ×N matrix.
- Entries aij are independent random variables.
- E(a2k+1

ij ) = 0.

- E(a2ij) = m2.

- E(a2kij ) < M .

The distribution of eigenvalues of A converges into a
semicircle distribution of radius 2m

√
N .

Füredi and Komlós (1981): The eigenvalues of G(n, p)
follows Wigner’s semicircle law.



Definition
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Let A be a Hermitian matrix of dimension N ×N . The
empirical distribution of the eigenvalues of A is

F (A, x) :=
1

N
|{ eigenvalues of A less than x}|.

We say, the empirical distribu-
tion of the eigenvalues of A fol-
lows the Semicircle Law cen-
tered at c with radius R if

F (
1

R
(A− cI), x)

p→ F (x). −1 1

F(x)

0



Our result (II)
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Theorem [Lu, Peng 2011] For 1 ≤ s ≤ r/2, if
p(1− p)nr−s ≫ log n, then almost surely the empirical
distribution of eigenvalues of the s-th Laplacian of Hr(n, p)
follows the Semicircle Law centered at 1 and with radius
(2 + o(1))

√

1−p

(r−s
s )(

n−s
r−s)p

.



Our result (II)
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Theorem [Lu, Peng 2011] For 1 ≤ s ≤ r/2, if
p(1− p)nr−s ≫ log n, then almost surely the empirical
distribution of eigenvalues of the s-th Laplacian of Hr(n, p)
follows the Semicircle Law centered at 1 and with radius
(2 + o(1))

√

1−p

(r−s
s )(

n−s
r−s)p

.

Corollary: If p(1− p)nr−s ≫ log n, then

max
1≤i≤(ns)−1

|λ(s)
k (Hr(n, p))− λ

(s)
k (Kr

n)|

≥







2
√

(

r−s
s

)

+ o(1)







√

1− p
(

n−s
r−s

)

p
.



Proof of Semicircle Law
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Theorem: If nr−sp(1− p) → ∞, then the empirical
distribution of the eigenvalues of C follows the semicircle

law centered at 0 with radius R := 2
√

(

r−s
s

)(

n−s
r−s

)

p(1− p).



Proof of Semicircle Law
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Theorem: If nr−sp(1− p) → ∞, then the empirical
distribution of the eigenvalues of C follows the semicircle

law centered at 0 with radius R := 2
√

(

r−s
s

)(

n−s
r−s

)

p(1− p).

Proof: Let Cnor :=
1
RC. For any k, we have

E(Trace(C2k
nor)) = (1 + o(1))

(2k)!

22kk!(k + 1)!

E(Trace(C2k+1
nor )) = o(1).

It converges to the 2k-th (and 2k + 1-th) moment of the
Semicircle distribution. �



Another Lemma
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Lemma 4: If

- A: an (N ×N)-Hermitian matrices satisfying the
Semicircle Law centered at c with radius R,

- B: an (N ×N)-Hermitian matrices either ‖B‖ = o(R)
or rank(B) = o(N),

then A+B satisfies the Semicircle Law centered at c with
radius R.



Case ‖B‖ = o(R)
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∣

∣

∣

∣

µk

(

1

R
(A+B − cI)

)

− µk

(

1

R
(A− cI)

)∣

∣

∣

∣

≤ ‖B‖
R

= o(1).



Case ‖B‖ = o(R)
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∣

∣

∣

∣

µk

(

1

R
(A+B − cI)

)

− µk

(

1

R
(A− cI)

)∣

∣

∣

∣

≤ ‖B‖
R

= o(1).

Thus, we have

F
(

1
R(A− cI), x− ‖B‖

R

)

≤ F
(

1
R(A+B − cI), x

)

≤
F
(

1
R(A− cI), x+ ‖B‖

R

)

.



Case ‖B‖ = o(R)
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∣

∣

∣

∣

µk

(

1

R
(A+B − cI)

)

− µk

(

1

R
(A− cI)

)∣

∣

∣

∣

≤ ‖B‖
R

= o(1).

Thus, we have

F
(

1
R(A− cI), x− ‖B‖

R

)

≤ F
(

1
R(A+B − cI), x

)

≤
F
(

1
R(A− cI), x+ ‖B‖

R

)

.

Since F
(

1
R(A− cI), x− ‖B‖

R

)

p→ F (x) and

F
(

1
R(A− cI), x+ ‖B‖

R

)

p→ F (x). By the Squeeze theorem,

we have

F (
1

R
(A+B − cI), x)

p→ F (x).



Case rank(B) = o(N)

Laplacian of Random Hypergraphs Linyuan Lu – 70 / 79

Let U be the kernel of B (i.e. B|U = 0) and
Z := 1

R(A− cI)|U = 1
R(A+ B − cI)|U .



Case rank(B) = o(N)
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Let U be the kernel of B (i.e. B|U = 0) and
Z := 1

R(A− cI)|U = 1
R(A+ B − cI)|U . By Cauchy’s

interlace theorem, for 1 ≤ j ≤ N − rank(B), we have

µj

(

1

R
(A− cI)

)

≤µj(Z) ≤ µj+rank(B)

(

1

R
(A− cI)

)

,

µj

(

1

R
(A+B − cI)

)

≤µj(Z) ≤ µj+rank(B)

(

1

R
(A+B − cI)

)

.



Case rank(B) = o(N)
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Let U be the kernel of B (i.e. B|U = 0) and
Z := 1

R(A− cI)|U = 1
R(A+ B − cI)|U . By Cauchy’s

interlace theorem, for 1 ≤ j ≤ N − rank(B), we have

µj

(

1

R
(A− cI)

)

≤µj(Z) ≤ µj+rank(B)

(

1

R
(A− cI)

)

,

µj

(

1

R
(A+B − cI)

)

≤µj(Z) ≤ µj+rank(B)

(

1

R
(A+B − cI)

)

.

Thus, for rank(B) + 1 ≤ j ≤ N − rank(B), we have
µj−rank(B)

(

1
R(A− cI)

)

≤ µj

(

1
R(A+B − cI)

)

≤
µj+rank(B)

(

1
R(A− cI)

)

.



continue
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It implies

F

(

1

R
(A+B − cI), x

)

≥ F

(

1

R
(A− cI), x

)

− rank(B)

N
,

F

(

1

R
(A+B − cI), x

)

≤ F

(

1

R
(A− cI), x

)

+
rank(B)

N
.

Since rank(B) = o(N), we have

F
(

1
R(A− cI), x

)

± rank(B)
N

p→ F (x). By the Squeeze
theorem, we have

F (
1

R
(A+B − cI), x)

p→ F (x). �



From C to L(s)(Hr(n, p))
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Recall L(s)(Kr
n)− L(s)(Hr(n, p)) = M1 +M2 +M2 +M4.

Let c := 1− (−1)s

(ns)
and R := (2 + o(1))

√

1−p

(r−s
s )(

n−s
r−s)p

.



From C to L(s)(Hr(n, p))
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Recall L(s)(Kr
n)− L(s)(Hr(n, p)) = M1 +M2 +M2 +M4.

Let c := 1− (−1)s

(ns)
and R := (2 + o(1))

√

1−p

(r−s
s )(

n−s
r−s)p

.

■ ‖M1‖ = O

(√
(1−p) logN

d

)

= o(R).



From C to L(s)(Hr(n, p))
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Recall L(s)(Kr
n)− L(s)(Hr(n, p)) = M1 +M2 +M2 +M4.

Let c := 1− (−1)s

(ns)
and R := (2 + o(1))

√

1−p

(r−s
s )(

n−s
r−s)p

.

■ ‖M1‖ = O

(√
(1−p) logN

d

)

= o(R).

■ M2 satisfies the Semicircle Law centered at 0 with radius
R.



From C to L(s)(Hr(n, p))
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Recall L(s)(Kr
n)− L(s)(Hr(n, p)) = M1 +M2 +M2 +M4.

Let c := 1− (−1)s

(ns)
and R := (2 + o(1))

√

1−p

(r−s
s )(

n−s
r−s)p

.

■ ‖M1‖ = O

(√
(1−p) logN

d

)

= o(R).

■ M2 satisfies the Semicircle Law centered at 0 with radius
R.

■ ‖M3‖ = O
(√

logN

n
√
d

)

= o(R).

■ rank(M4) ≤ 4.
■ rank(L(s)(Kr

n)− cI) =
(

n
s−1

)

= o(N).

Hence L(s)(Kr
n) satisfies the Semicircle Law centered at 1

with radius R. �
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It remains to prove the following Lemma.
Lemma 3: For any k ≪ (nr−sp(1− p))1/4, we have

E
(

Trace(C2k)
)

= (1 + o(1))
ns+k(r−s)

(

2k
k

)

pk(1− p)k

(k + 1)(s!)k+1((r − 2s)!)k
,

E
(

Trace(C2k+1)
)

= O

(

k(2k + 1)ns+k(r−s)
(

2k
k

)

pk(1− p)k

(k + 1)(s!)k+1((r − 2s)!)k

)

.
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E(Trace(Ct)) =
∑

closed s-walks

E(cF1

S1S2
cF2

S2S3
. . . cFt

StS1
),

The sum is over all closed s-walks S1F1S2F2 · · ·StFtS1.
Here CF

ST = XF − E(XF ) if S ∩ T = ∅ and S ∪ T ⊂ F ; and
CF

ST = 0 otherwise.
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E(Trace(Ct)) =
∑

closed s-walks

E(cF1

S1S2
cF2

S2S3
. . . cFt

StS1
),

The sum is over all closed s-walks S1F1S2F2 · · ·StFtS1.
Here CF

ST = XF − E(XF ) if S ∩ T = ∅ and S ∪ T ⊂ F ; and
CF

ST = 0 otherwise. Group factors with same F together.

Different groups are mutually independent . In any non-zero
product, every F appears at least twice. Those closed walks
are called “good”.
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For 1 ≤ i ≤ ⌊ t
2⌋, let G

j
i be the set of good closed walks with

exactly i distinct edges and j distinct vertices; and let
Gi := ∪jGj

i .
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For 1 ≤ i ≤ ⌊ t
2⌋, let G

j
i be the set of good closed walks with

exactly i distinct edges and j distinct vertices; and let
Gi := ∪jGj

i .

- If w := S1F1S2F2 · · ·StFtS1 ∈ Gj
i , then

E(cF1

S1S2
cF2

S2S3
. . . cFt

StS1
) ≤ pi(1− p)i.

- The maximum j such that Gj
i 6= ∅ is mi := s+ i(r − s).

- |Gi| = (1 + o(1))|Gmi

i .



Counting Gmi
i
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Mapping every walk in Gmi

i into a triple (S,E, C) where
■ S := {S1, S2, . . . , Si}, each Sl is a s-set.
■ E := {E1, E2, . . . , Ei−1}, each El is a r − 2s-set.
■ The sets in S ∪ E are pairwise disjoint.
■ C is a valid string consists of i pairs of parentheses and

t− 2i ∗’s. For example,

((∗()) ∗ (∗)∗)
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Mapping every walk in Gmi

i into a triple (S,E, C) where
■ S := {S1, S2, . . . , Si}, each Sl is a s-set.
■ E := {E1, E2, . . . , Ei−1}, each El is a r − 2s-set.
■ The sets in S ∪ E are pairwise disjoint.
■ C is a valid string consists of i pairs of parentheses and

t− 2i ∗’s. For example,

((∗()) ∗ (∗)∗)

|Gmi

i | ≤ N !
(N−mi)!(s!)r((r−2s)!)r−1

(

t
2i

)

1
i+1

(

2i
i

) (

i
(

r−s
s

))t−2i
.



Major term

Laplacian of Random Hypergraphs Linyuan Lu – 77 / 79

When t = 2k, the major contribution is from the walks in
Gmk

k which can be encoded by (S,E, C) where
■ S := {S1, S2, . . . , Sk}, each Sl is a s-set.
■ E := {E1, E2, . . . , Ek−1}, each El is a r − 2s-set.
■ The sets in S ∪ E are pairwise disjoint.
■ C is a valid string consists of k pairs of parentheses.

For example, (())() is corresponding to the walk

S1F1S2F2S3F2S2F1S1F3S4F3S1

where F1 = S1 ∪ S2 ∪ E1, F2 = S2 ∪ S3 ∪ E2, and
F3 = S4 ∪ S1 ∪ E3.
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Let ai = |Gmi

i |pi(1− p)i.

ai
ak

≤
(

2k+1
2i+1

)(

2i+1
i

)

(

2k+1
k

)

(

i2

s!(r − 2s)!nr−sp(1− p)

)k−i

≤ ǫk−i,

where ǫ := 9k4

s!(r−2s)!nr−sp(1−p) = o(1), since

nr−sp(1− p) ≫ k4.

E(Trace(C2k)) ≈
k
∑

i=1

ai = (1 + o(1))ak.

Done!
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