

Hypergraphs with Small Spectral Radius

Linyuan Lu

University of South Carolina

Collaborator: Shoudong Man

Selected Topics on Spectral Graph Theory (IV) Nankai University, Tianjin, June 6, 2014

Five talks

Selected Topics on Spectral Graph Theory

- 1. Graphs with Small Spectral Radius Time: Friday (May 16) 4pm.-5:30p.m.
- 2. Laplacian and Random Walks on Graphs Time: Thursday (May 22) 4pm.-5:30p.m.
- 3. Spectra of Random Graphs Time: Thursday (May 29) 4pm.-5:30p.m.
- 4. Hypergraphs with Small Spectral Radius Time: Friday (June 6) 4pm.-5:30p.m.
- 5. Laplacian of Random Hypergraphs Time: Thursday (June 12) 4pm.-5:30p.m.

I: Spectral Graph Theory II: Random Graph Theory III: Random Matrix Theory

30

• G = (V, E): a simple connected graph on n vertices

G = (V, E): a simple connected graph on n vertices
A(G): the adjacency matrix

G = (V, E): a simple connected graph on n vertices A(G): the adjacency matrix

• $\phi_G(\lambda) = \det(\lambda I - A(G))$: the characteristic polynomial

- G = (V, E): a simple connected graph on n vertices A(G): the adjacency matrix
- $\phi_G(\lambda) = \det(\lambda I A(G))$: the characteristic polynomial
- $\rho(G)$ (spectral radius): the largest root of $\phi_G(\lambda)$

G = (V, E): a simple connected graph on n vertices A(G): the adjacency matrix

• $\phi_G(\lambda) = \det(\lambda I - A(G))$: the characteristic polynomial • $\rho(G)$ (spectral radius): the largest root of $\phi_G(\lambda)$

G = (V, E): a simple connected graph on n vertices A(G): the adjacency matrix

 $\phi_G(\lambda) = \det(\lambda I - A(G))$: the characteristic polynomial $\rho(G)$ (spectral radius): the largest root of $\phi_G(\lambda)$

Perron-Frobenius theorem

- $A = (a_{ij})$ is **non-negative** if $a_{ij} \ge 0$.
- A is **irreducible** if there exists a m such that A^m is positive.
- A is **aperiodic** if the greatest common divisor of all natural numbers m such that $(A^m)_{ii} > 0$ is 1.

Perron-Frobenius theorem

- $A = (a_{ij})$ is **non-negative** if $a_{ij} \ge 0$.
- A is **irreducible** if there exists a m such that A^m is positive.
- A is **aperiodic** if the greatest common divisor of all natural numbers m such that $(A^m)_{ii} > 0$ is 1.

Perron-Frobenius theorem: If A is an aperiodic irreducible non-negative matrix with spectral radius r, then r is the largest eigenvalue in absolute value of A, and A has an eigenvector α with eigenvalue r whose components are all positive.

Facts on $\rho(G)$

Apply Perron-Frobenius theorem to the adjacency matrix of a connected graph G.

The eigenvector for $\rho(G)$ can be chosen so that all entries are positive.

Facts on $\rho(G)$

Apply Perron-Frobenius theorem to the adjacency matrix of a connected graph G.

- The eigenvector for $\rho(G)$ can be chosen so that all entries are positive.
- If α is a positive vector corresponding to the eigenvector λ , then $\rho(G) = \lambda$.

Facts on $\rho(G)$

Apply Perron-Frobenius theorem to the adjacency matrix of a connected graph G.

- The eigenvector for $\rho(G)$ can be chosen so that all entries are positive.
- If α is a positive vector corresponding to the eigenvector λ , then $\rho(G) = \lambda$.
 - For any proper subgraph H of G, we have

$$\rho(H) < \rho(G).$$

Graphs with $\rho(G) < 2$

Smith [1970]: $\rho(G) < 2$ if and only if G is a simple-laced Dynkin diagram.

In the theory of Lie groups and Lie algebras, the simple Lie algebras are classified by Dynkin diagrams of their root systems.

- In the theory of Lie groups and Lie algebras, the simple Lie algebras are classified by Dynkin diagrams of their root systems.
 - There are four infinite families $(A_n, B_n, C_n, and D_n)$, and five exceptional cases $(E_6, E_7, E_8, F_4, and G_2)$.

- In the theory of Lie groups and Lie algebras, the simple Lie algebras are classified by Dynkin diagrams of their root systems.
 - There are four infinite families $(A_n, B_n, C_n, and D_n)$, and five exceptional cases $(E_6, E_7, E_8, F_4, and G_2)$.
- If all roots have the same length, then the root system is said to be simply laced; this occurs in the cases A, D and E.

- In the theory of Lie groups and Lie algebras, the simple Lie algebras are classified by Dynkin diagrams of their root systems.
 - There are four infinite families $(A_n, B_n, C_n, and D_n)$, and five exceptional cases $(E_6, E_7, E_8, F_4, and G_2)$.
- If all roots have the same length, then the root system is said to be simply laced; this occurs in the cases A, D and E.
- Smith's theorem gives an equivalent graph-theory definition for the simply-laced Dynkin diagrams.

Root system

A root system in \mathbb{R}^n is a finite set Φ of non-zero vectors (called roots) that satisfy the following conditions:

- The roots span \mathbb{R}^n .
- The only scalar multiples of a root $x \in \Phi$ that belong to Φ are x itself and -x.
- For every root $x \in \Phi$, the set Φ is closed under reflection through the hyperplane perpendicular to x.
 - If x and y are roots in Φ , then the projection of y onto the line through x is a half-integral multiple of x.

 $\rho(A) < 2$

 $I - \frac{1}{2}A$ is positive definite.

 $\rho(A) < 2 \Leftrightarrow$

 $I - \frac{1}{2}A$ is positive definite. \Leftrightarrow

Write
$$I - \frac{1}{2}A = BB'$$
.

 $I - \frac{1}{2}A$ is positive definite. \Leftrightarrow Write $I - \frac{1}{2}A = BB'$. \Leftrightarrow Let $\alpha_1, \ldots, \alpha_n$ be the column vector of B. Then $\alpha_1, \ldots, \alpha_n$ forms a base of a root system.

Graphs with $\rho(G) = 2$

Smith [1970]: $\rho(G) = 2$ if and only if G is a simple extended Dynkin diagram.

Proof of Smith's theorem

First, we show that \tilde{A}_n , \tilde{D}_n , \tilde{E}_6 , \tilde{E}_7 , and \tilde{E}_8 all have eigenvalue 2 with the positive eigenvectors below:

By Perron-Frobenius' theorem, \tilde{A}_n , \tilde{D}_n , \tilde{E}_6 , \tilde{E}_7 , and \tilde{E}_8 all have spectral radius 2. Since A_n , D_n , E_6 , E_7 , and E_8 are proper subgraphs, their spectral radii are less than 2.

By Perron-Frobenius' theorem, \tilde{A}_n , \tilde{D}_n , \tilde{E}_6 , \tilde{E}_7 , and \tilde{E}_8 all have spectral radius 2. Since A_n , D_n , E_6 , E_7 , and E_8 are proper subgraphs, their spectral radii are less than 2.

Now we show that the only connected graphs G with $\rho(G) \leq 2$ are in Smith's list.

By Perron-Frobenius' theorem, \tilde{A}_n , \tilde{D}_n , \tilde{E}_6 , \tilde{E}_7 , and \tilde{E}_8 all have spectral radius 2. Since A_n , D_n , E_6 , E_7 , and E_8 are proper subgraphs, their spectral radii are less than 2.

Now we show that the only connected graphs G with $\rho(G) \leq 2$ are in Smith's list.

If G contains a cycle C, then $\rho(G) > 2$ unless G = C.

By Perron-Frobenius' theorem, \tilde{A}_n , \tilde{D}_n , \tilde{E}_6 , \tilde{E}_7 , and \tilde{E}_8 all have spectral radius 2. Since A_n , D_n , E_6 , E_7 , and E_8 are proper subgraphs, their spectral radii are less than 2.

Now we show that the only connected graphs G with $\rho(G) \leq 2$ are in Smith's list.

If G contains a cycle C, then $\rho(G) > 2$ unless G = C. We can assume G is a tree.

By Perron-Frobenius' theorem, \tilde{A}_n , \tilde{D}_n , \tilde{E}_6 , \tilde{E}_7 , and \tilde{E}_8 all have spectral radius 2. Since A_n , D_n , E_6 , E_7 , and E_8 are proper subgraphs, their spectral radii are less than 2.

Now we show that the only connected graphs G with $\rho(G) \leq 2$ are in Smith's list.

If G contains a cycle C, then $\rho(G) > 2$ unless G = C. We can assume G is a tree.

If there is a vertex of degree at least 4, then $\rho(G) > 2$, unless $G = D_5$.

By Perron-Frobenius' theorem, \tilde{A}_n , \tilde{D}_n , \tilde{E}_6 , \tilde{E}_7 , and \tilde{E}_8 all have spectral radius 2. Since A_n , D_n , E_6 , E_7 , and E_8 are proper subgraphs, their spectral radii are less than 2.

Now we show that the only connected graphs G with $\rho(G) \leq 2$ are in Smith's list.

If G contains a cycle C, then $\rho(G) > 2$ unless G = C. We can assume G is a tree.

If there is a vertex of degree at least 4, then $\rho(G) > 2$, unless $G = D_5$. We can assume the degrees of G is at most 3.

By Perron-Frobenius' theorem, \tilde{A}_n , \tilde{D}_n , \tilde{E}_6 , \tilde{E}_7 , and \tilde{E}_8 all have spectral radius 2. Since A_n , D_n , E_6 , E_7 , and E_8 are proper subgraphs, their spectral radii are less than 2.

Now we show that the only connected graphs G with $\rho(G) \leq 2$ are in Smith's list.

If G contains a cycle C, then $\rho(G) > 2$ unless G = C. We can assume G is a tree.

If there is a vertex of degree at least 4, then $\rho(G) > 2$, unless $G = D_5$. We can assume the degrees of G is at most 3.

If there are two vertices of degree 3, then G contains a subgraph \tilde{D}_* . Hence $\rho(G) > 2$, unless $G = \tilde{D}_n$.

If G has one vertex of degree 3, let i, j, k (say $i \le j \le k$) be the length of three paths attached to v. Write $G = E_{i,j,k}$.

■ If $i \ge 2$, then $\rho(G) > \rho(E_{2,2,2}) = 2$ unless $G = E_{2,2,2} = \tilde{E}_6$.

If G has one vertex of degree 3, let i, j, k (say $i \le j \le k$) be the length of three paths attached to v. Write $G = E_{i,j,k}$.

If $i \ge 2$, then $\rho(G) > \rho(E_{2,2,2}) = 2$ unless $G = E_{2,2,2} = \tilde{E}_6$. We can assume i = 1.

If G has one vertex of degree 3, let i, j, k (say $i \le j \le k$) be the length of three paths attached to v. Write $G = E_{i,j,k}$.

- If $i \ge 2$, then $\rho(G) > \rho(E_{2,2,2}) = 2$ unless $G = E_{2,2,2} = \tilde{E}_6$. We can assume i = 1.
- If i = 1 and $j \ge 3$, then $\rho(G) > \rho(E_{1,3,3}) = 2$ unless $G = E_{1,3,3} = \tilde{E}_7$.

If G has one vertex of degree 3, let i, j, k (say $i \le j \le k$) be the length of three paths attached to v. Write $G = E_{i,j,k}$.

- If $i \ge 2$, then $\rho(G) > \rho(E_{2,2,2}) = 2$ unless $G = E_{2,2,2} = \tilde{E}_6$. We can assume i = 1.
- If i = 1 and $j \ge 3$, then $\rho(G) > \rho(E_{1,3,3}) = 2$ unless $G = E_{1,3,3} = \tilde{E}_7$. We can assume i = 1 and j = 1 or 2.

If G has one vertex of degree 3, let i, j, k (say $i \le j \le k$) be the length of three paths attached to v. Write $G = E_{i,j,k}$.

- If $i \ge 2$, then $\rho(G) > \rho(E_{2,2,2}) = 2$ unless $G = E_{2,2,2} = \tilde{E}_6$. We can assume i = 1.
- If i = 1 and $j \ge 3$, then $\rho(G) > \rho(E_{1,3,3}) = 2$ unless $G = E_{1,3,3} = \tilde{E}_7$. We can assume i = 1 and j = 1 or 2. If i = 1 and j = 1, then $G = D_n$.

If G has one vertex of degree 3, let i, j, k (say $i \le j \le k$) be the length of three paths attached to v. Write $G = E_{i,j,k}$.

■ If
$$i \ge 2$$
, then $\rho(G) > \rho(E_{2,2,2}) = 2$ unless $G = E_{2,2,2} = \tilde{E}_6$. We can assume $i = 1$.

- If i = 1 and j ≥ 3, then ρ(G) > ρ(E_{1,3,3}) = 2 unless G = E_{1,3,3} = Ẽ₇. We can assume i = 1 and j = 1 or 2.
 If i = 1 and j = 1, then G = D_n.
 - If i = 1, j = 2, and $k \ge 5$, then $\rho(G) > \rho(E_{1,2,5}) = 2$ unless $G = E_{1,2,5} = \tilde{E}_8$.

If G has one vertex of degree 3, let i, j, k (say $i \le j \le k$) be the length of three paths attached to v. Write $G = E_{i,j,k}$.

If
$$i \ge 2$$
, then $\rho(G) > \rho(E_{2,2,2}) = 2$ unless $G = E_{2,2,2} = \tilde{E}_6$. We can assume $i = 1$.

If i = 1 and $j \ge 3$, then $\rho(G) > \rho(E_{1,3,3}) = 2$ unless $G = E_{1,3,3} = \tilde{E}_7$. We can assume i = 1 and j = 1 or 2.

If
$$i = 1$$
 and $j = 1$, then $G = D_n$.

- If i = 1, j = 2, and $k \ge 5$, then $\rho(G) > \rho(E_{1,2,5}) = 2$ unless $G = E_{1,2,5} = \tilde{E}_8$.
- If i = 1, j = 2, and k = 2, 3, 4, then $G = E_6$, E_7 , and E_8 .

If G has one vertex of degree 3, let i, j, k (say $i \le j \le k$) be the length of three paths attached to v. Write $G = E_{i,j,k}$.

If
$$i \ge 2$$
, then $\rho(G) > \rho(E_{2,2,2}) = 2$ unless
 $G = E_{2,2,2} = \tilde{E}_6$. We can assume $i = 1$.
If $i = 1$ and $j \ge 3$, then $\rho(G) > \rho(E_{1,3,3}) = 2$ unless
 $G = E$.

$$G = E_{1,3,3} = E_7$$
. We can assume $i = 1$ and $j = 1$ or 2.
If $i = 1$ and $j = 1$, then $G = D_n$.

If
$$i = 1$$
, $j = 2$, and $k \ge 5$, then $\rho(G) > \rho(E_{1,2,5}) = 2$
unless $G = E_{1,2,5} = \tilde{E}_8$.

If
$$i = 1$$
, $j = 2$, and $k = 2, 3, 4$, then $G = E_6$, E_7 , and E_8 .

If all degrees of G are at most 2, then $G = A_n$.

For a real symmetric matrix $A = (a_{ij})$, consider the following optimization problem.

For a real symmetric matrix $A = (a_{ij})$, consider the following optimization problem.

maximize $\sum_{i,j=1}^{n} a_{ij} x_i x_j$ subject to $\sum_{i=1}^{n} x_i^2 = 1$.

For a real symmetric matrix $A = (a_{ij})$, consider the following optimization problem.

maximize $\sum_{i,j=1}^{n} a_{ij} x_i x_j$ subject to $\sum_{i=1}^{n} x_i^2 = 1$.

Suppose the maximum value λ is achieved at $x^*.$ Then

•
$$\sum_{j=1}^{n} a_{ij} x_j^* = \lambda x_i^*$$
 for each *i*. I.e., $Ax^* = \lambda x^*$.

For a real symmetric matrix $A = (a_{ij})$, consider the following optimization problem.

maximize $\sum_{i,j=1}^{n} a_{ij} x_i x_j$ subject to $\sum_{i=1}^{n} x_i^2 = 1$.

Suppose the maximum value λ is achieved at $x^*.$ Then

$$\sum_{j=1}^{n} a_{ij} x_j^* = \lambda x_i^* \text{ for each } i. \text{ I.e., } Ax^* = \lambda x^*.$$
$$\lambda = \rho(A).$$

A real non-negative hypermatrix $A = (a_{i_1i_2\cdots i_r})$ is called symmetric if it $a_{\sigma(i_1)\sigma(i_2)\cdots\sigma(i_r)} = a_{i_1i_2\cdots i_r}$ for any permutation σ of indices.

Consider the following optimization problem.

A real non-negative hypermatrix $A = (a_{i_1i_2\cdots i_r})$ is called symmetric if it $a_{\sigma(i_1)\sigma(i_2)\cdots\sigma(i_r)} = a_{i_1i_2\cdots i_r}$ for any permutation σ of indices.

Consider the following optimization problem.

maximize $\sum_{i_1,...,i_r=1}^n a_{i_1i_2\cdots i_r} x_{i_1} x_{i_2} \cdots x_{i_r}$ subject to $\sum_{i=1}^n x_i^p = 1$.

A real non-negative hypermatrix $A = (a_{i_1i_2\cdots i_r})$ is called symmetric if it $a_{\sigma(i_1)\sigma(i_2)\cdots\sigma(i_r)} = a_{i_1i_2\cdots i_r}$ for any permutation σ of indices.

Consider the following optimization problem.

maximize $\sum_{i_1,...,i_r=1}^n a_{i_1i_2\cdots i_r} x_{i_1} x_{i_2} \cdots x_{i_r}$ subject to $\sum_{i=1}^n x_i^p = 1$.

Suppose the maximum value λ is achieved at $x^*.$ Then

•
$$\sum_{i_2,\ldots,i_r=1}^n a_{ii_2\cdots i_r} x_{i_2}^* \cdots x_{i_r}^* = \lambda r x_i^{*r-1} \text{ for each } i \text{ such that } x_i \neq 0.$$

A real non-negative hypermatrix $A = (a_{i_1i_2\cdots i_r})$ is called symmetric if it $a_{\sigma(i_1)\sigma(i_2)\cdots\sigma(i_r)} = a_{i_1i_2\cdots i_r}$ for any permutation σ of indices.

Consider the following optimization problem.

maximize $\sum_{i_1,...,i_r=1}^n a_{i_1i_2\cdots i_r} x_{i_1} x_{i_2} \cdots x_{i_r}$ subject to $\sum_{i=1}^n x_i^p = 1$.

Suppose the maximum value λ is achieved at $x^*.$ Then

$$\sum_{i_2,\ldots,i_r=1}^n a_{ii_2\cdots i_r} x_{i_2}^* \cdots x_{i_r}^* = \lambda r x_i^{*r-1} \text{ for each } i \text{ such that } x_i \neq 0.$$

• λ is called (the largest) *p*-spectrum of *A*.

Part II: hypergraphs

The *r*-uniform hypergraph (or *r*-graph) H = (V, E):

- V: the vertex set.
- $E \subset \binom{V}{r}$: the set of (hyper)edges.

Part II: hypergraphs

The *r*-uniform hypergraph (or *r*-graph) H = (V, E):

- V: the vertex set.
- $E \subset \binom{V}{r}$: the set of (hyper)edges.

An example of 3-graph:

- A walk: $v_0e_1v_1e_2v_2\cdots$, e_lv_l where $v_{i-1}, v_i \in e_i$ for $1 \leq i \leq l$.
- A path: a walk so that all v_i 's e_i 's are distinct.
- A closed walk: a walk with $v_0 = v_l$.
- A cycle: a path with $v_0 = v_l$.

- A walk: $v_0 e_1 v_1 e_2 v_2 \cdots$, $e_l v_l$ where $v_{i-1}, v_i \in e_i$ for $1 \le i \le l$.
- A path: a walk so that all v_i 's e_i 's are distinct.
- A closed walk: a walk with $v_0 = v_l$.
- A cycle: a path with $v_0 = v_l$.

H is connected if for any two vertices u, v, there is a uv-path: $v_0e_1v_1e_2v_2\cdots, e_lv_l$ so that $v_0 = u$ and $v_l = v$.

- A walk: $v_0 e_1 v_1 e_2 v_2 \cdots$, $e_l v_l$ where $v_{i-1}, v_i \in e_i$ for $1 \le i \le l$.
- A path: a walk so that all v_i 's e_i 's are distinct.
- A closed walk: a walk with $v_0 = v_l$.
- A cycle: a path with $v_0 = v_l$.

H is connected if for any two vertices u, v, there is a uv-path: $v_0e_1v_1e_2v_2\cdots, e_lv_l$ so that $v_0 = u$ and $v_l = v$. *H* is simple if $|e \cap e'| \leq 1$ for any $e, e' \in E$.

- A walk: $v_0 e_1 v_1 e_2 v_2 \cdots$, $e_l v_l$ where $v_{i-1}, v_i \in e_i$ for $1 \le i \le l$.
- A path: a walk so that all v_i 's e_i 's are distinct.
- A closed walk: a walk with $v_0 = v_l$.
- A cycle: a path with $v_0 = v_l$.

H is connected if for any two vertices u, v, there is a uv-path: $v_0e_1v_1e_2v_2\cdots, e_lv_l$ so that $v_0 = u$ and $v_l = v$. *H* is simple if $|e \cap e'| \leq 1$ for any $e, e' \in E$.

A hypertree is an acyclic connected hypergraph.

Spectral radius of ${\cal H}$

The spectral radius of H is

$$\rho(H) = r! \max_{\substack{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n - 0 \\ = r! \max_{\|\mathbf{x}\|_r = 1}} \sum_{\substack{\{i_1, i_2, \dots, i_r\} \in E}} \frac{\sum_{\{i_1, i_2, \dots, i_r\} \in E} x_{i_1} x_{i_2} \cdots x_{i_r}}{\sum_{v \in V} x_v^r}$$

Spectral radius of ${\cal H}$

The spectral radius of H is

$$\rho(H) = r! \max_{\substack{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n - 0 \\ = r! \max_{\|\mathbf{x}\|_r = 1}} \sum_{\substack{\{i_1, i_2, \dots, i_r\} \in E}} \frac{\sum_{\{i_1, i_2, \dots, i_r\} \in E} x_{i_1} x_{i_2} \cdots x_{i_r}}{\sum_{v \in V} x_v^r}$$

 $\mathbf{x} = (x_1, x_2, \dots, x_n)$ is called an eigenvector of $\rho(H)$ if the above maximum reaches at \mathbf{x} .

Spectral radius of ${\cal H}$

The spectral radius of H is

$$\rho(H) = r! \max_{\substack{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n - 0 \\ = r! \max_{\|\mathbf{x}\|_r = 1}} \sum_{\substack{\{i_1, i_2, \dots, i_r\} \in E}} \frac{\sum_{\{i_1, i_2, \dots, i_r\} \in E} x_{i_1} x_{i_2} \cdots x_{i_r}}{\sum_{v \in V} x_v^r}$$

 $\mathbf{x} = (x_1, x_2, \dots, x_n)$ is called an eigenvector of $\rho(H)$ if the above maximum reaches at \mathbf{x} .

$$\begin{aligned} \rho(H) \text{ maximizes } 3!(x_1x_2x_3+x_3x_4x_5) \\ \text{subject to } x_1^3+x_2^3+x_3^3+x_4^3+x_5^3=1. \end{aligned}$$

Spectral radius of H

The spectral radius of H is

$$\rho(H) = r! \max_{\substack{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n - 0 \\ = r! \max_{\|\mathbf{x}\|_r = 1}} \sum_{\substack{\{i_1, i_2, \dots, i_r\} \in E}} \frac{\sum_{\{i_1, i_2, \dots, i_r\} \in E} x_{i_1} x_{i_2} \cdots x_{i_r}}{\sum_{v \in V} x_v^r}$$

 $\mathbf{x} = (x_1, x_2, \dots, x_n)$ is called an eigenvector of $\rho(H)$ if the above maximum reaches at \mathbf{x} .

 $\rho(H) \text{ maximizes } 3!(x_1x_2x_3 + x_3x_4x_5)$ subject to $x_1^3 + x_2^3 + x_3^3 + x_4^3 + x_5^3 = 1.$

 $\rho(H) = 2\sqrt[3]{2}, \text{ eigenvector } \mathbf{x} = (1, 1, \sqrt[3]{2}, 1, 1).$

Spectra of hypergraphs

- Spectrum of real symmetric hypermatrix
 - Qi [2005]
 - Chang-Pearson-Zhang [2008]
 - Fridland-Gaubert [2010]
 - Friedland-Gaubert-Han [2013]
 - Spectrum of adjacency tensor of hypergraphs
 - Cooper and Dutle [2012]
 - Keevash-Lenz-Mubayi [2013+]
 - Nikiforov [2013+]
- Laplacian of hypergraphs
 - Chung [1993]
 - Rodríguz [2009]
 - Lu-Peng [2012]

Perron-Frobenius theory

Perron-Frobenius theorem for graphs: Let A be the adjacency matrix of a connected graph G. Then

- A has a unique (up to a scale) positive eigenvector α.
 The eigenvector corresponds to the largest eigenvalue of A.
 - Any nonnegative eigenvector must be positive.

Perron-Frobenius theory

Perron-Frobenius theorem for graphs: Let A be the adjacency matrix of a connected graph G. Then

- A has a unique (up to a scale) positive eigenvector α.
 The eigenvector corresponds to the largest eigenvalue of A.
- Any nonnegative eigenvector must be positive.

Perron-Frobenius theorem for hypergraphs [Cooper-Dutle 2012,Fridland-Gaubert-2010, Nikiforov 2013+] If H is connected, then there is a unique positive eigenvector (up to a scale) for $\rho(H)$.

Limit point of spectral radius

Let $A_n^{(r)}$ denote the simple *r*-uniform path on *n* edges and

$$\rho_r := \lim_{n \to \infty} \rho(A_n^{(r)}).$$

It is not hard to show $\rho_r = (r-1)!\sqrt[r]{4}$.

Limit point of spectral radius

Let $A_n^{(r)}$ denote the simple *r*-uniform path on *n* edges and

$$\rho_r := \lim_{n \to \infty} \rho(A_n^{(r)}).$$

It is not hard to show $\rho_r = (r-1)!\sqrt[r]{4}$.

Question: Can we classify all *r*-uniform hypergraphs *H* with $\rho(H) \leq \rho_r$?

Classification for $\rho(H) = \rho_3$

Theorem [Lu-Man, 2013+] The complete list of all connected 3-uniform hypergraph H with $\rho(H) = \rho_3$ consists of 4 families and 12 exceptional hypergraphs.

Classification for $\rho(H) < \rho_3$

Theorem [Lu-Man, 2013+] The complete list of all connected 3-uniform hypergraph H with $\rho(H) < \rho_3$ consists of 7 families and 31 exceptional hypergraphs.

Three families

Our method

Lemma [Lu-Man 2013+] An *r*-uniform hypergraph *H* has spectral radius $\rho(H) = (r-1)!\alpha^{-1/r}$ if and only if *H* has a consistently α -normal labeling.

Our method

Lemma [Lu-Man 2013+] An *r*-uniform hypergraph *H* has spectral radius $\rho(H) = (r-1)!\alpha^{-1/r}$ if and only if *H* has a consistently α -normal labeling.

A α -normal labeling assigns a positive number to each incidence relation (v, e) a value B(v, e) satisfying

$$\prod_{v: v \in e} B(v, e) = \alpha \text{ for any edge } e.$$
$$\sum_{e: v \in e} B(v, e) = 1 \text{ for any vertex } v.$$

Our method

Lemma [Lu-Man 2013+] An *r*-uniform hypergraph *H* has spectral radius $\rho(H) = (r-1)!\alpha^{-1/r}$ if and only if *H* has a consistently α -normal labeling.

A α -normal labeling assigns a positive number to each incidence relation (v, e) a value B(v, e) satisfying

$$\prod_{v: v \in e} B(v, e) = \alpha \text{ for any edge } e.$$
$$\sum_{e: v \in e} B(v, e) = 1 \text{ for any vertex } v$$

B is called consistent if for any cycle $v_0e_1v_1e_2...v_l$ ($v_l = v_0$)

$$\prod_{i=1}^{l} \frac{B(v_i, e_i)}{B(v_{i-1}, e_i)} = 1.$$

If H is a hypertree, then any α -normal labeling is automatically consistent.

$\frac{1}{4}$ -labeling

Corollary: An *r*-uniform hypergraph *H* has spectral radius $\rho(H) = \rho_r$ if and only if *H* has a consistent $\frac{1}{4}$ -normal labeling.

$\frac{1}{4}$ -labeling

Corollary: An *r*-uniform hypergraph *H* has spectral radius $\rho(H) = \rho_r$ if and only if *H* has a consistent $\frac{1}{4}$ -normal labeling.

An example of $\frac{1}{4}$ labeling. Here all leaf vertices are labeled by 1.

Graphs with $\rho(G) = 2$

 \tilde{A}_n , \tilde{D}_n , E_6 , E_7 , and E_8 , all have $\frac{1}{4}$ -Labeling.

α -supernormal

A hypergraph H is called α -supernormal if there exists a weighted incidence matrix B satisfying

- 1. $\sum_{e: v \in e} B(v, e) \ge 1$, for any $v \in V(H)$.
- 2. $\prod_{v \in e} B(v, e) \le \alpha$, for any $e \in E(H)$.

α -supernormal

A hypergraph H is called $\alpha\text{-supernormal}$ if there exists a weighted incidence matrix B satisfying

1. $\sum_{e: v \in e} B(v, e) \ge 1$, for any $v \in V(H)$. 2. $\prod_{v \in e} B(v, e) \le \alpha$, for any $e \in E(H)$.

Lemma: Let H be an r-uniform hypergraph. If H is strictly and consistently α -super normal, then the spectral radius of H satisfies

$$\rho(H) > (r-1)!\alpha^{-\frac{1}{r}}.$$

α -subnormal

A hypergraph H is called α -subnormal if there exists a weighted incidence matrix B satisfying

- 1. $\sum_{e: v \in e} B(v, e) \leq 1$, for any $v \in V(H)$.
- 2. $\prod_{v \in e} B(v, e) \ge \alpha$, for any $e \in E(H)$.

α -subnormal

A hypergraph H is called α -subnormal if there exists a weighted incidence matrix B satisfying

1. $\sum_{e: v \in e} B(v, e) \leq 1$, for any $v \in V(H)$. 2. $\prod_{v \in e} B(v, e) \geq \alpha$, for any $e \in E(H)$.

Lemma: Let H be an r-uniform hypergraph. If H is α -subnormal, then the spectral radius of H satisfies

$$\rho(H) \le (r-1)! \alpha^{-\frac{1}{r}}.$$

Moreover, if H is strictly $\alpha\text{-subnormal then}$ $\rho(H) < (r-1)! \alpha^{-\frac{1}{r}}.$

Proof of Main Lemma

" \Leftarrow " Let $x := (x_1, ..., x_n)$ be the Perron-Frobenis eigenvector of H. Define B as follows:

$$B(v,e) = \begin{cases} \frac{(r-1)! \prod_{u \in e} x_u}{\rho(H) x_v^r} & \text{ if } v \in e \\ 0 & \text{ otherwise.} \end{cases}$$

From this definition, for any edge e, we have

$$\prod_{v \in e} B(v, e) = \prod_{v \in e} \frac{(r-1)! \prod_{u \in e} x_u}{\rho(H) x_v^r} = \left(\frac{(r-1)!}{\rho(H)}\right)^r = \alpha.$$

For any v,

$$\sum_{e} B(v,e) = \sum_{\{v,i_2,\cdots,i_r\}\in E(H)} \frac{(r-1)!\prod_{u\in e} x_u}{\rho(H)x_v^r} = \frac{\rho(H)}{\rho(H)} = 1.$$

$$\sum_{e} B(v,e) = \sum_{\{v,i_2,\cdots,i_r\}\in E(H)} \frac{(r-1)!\prod_{u\in e} x_u}{\rho(H)x_v^r} = \frac{\rho(H)}{\rho(H)} = 1.$$

To show that B is consistent, for any cycle $v_0e_1v_1e_2...v_l$ $(v_l = v_0)$, we have

$$\prod_{i=1}^{l} \frac{B(v_i, e_i)}{B(v_{i-1}, e_i)} = \prod_{i=1}^{l} \frac{x_{v_{i-1}}^r}{x_{v_i}^r} = 1.$$

" \Longrightarrow " Let B be consistently α -normal. For any non-zero vector $\mathbf{x} := (x_1, x_2, \dots, x_n) \in \mathbb{R}^n_{\geq 0}$, we have

$$r! \sum_{\{x_{v_1}, x_{v_2}, \dots, x_{v_r}\} \in E(H)} x_{v_1} x_{v_2} \cdots x_{v_r} = \frac{r!}{\alpha^{\frac{1}{r}}} \sum_{e \in E(H)} \prod_{v \in e} (B^{\frac{1}{r}}(v, e) x_v)$$
$$\leq \frac{r!}{\alpha^{\frac{1}{r}}} \sum_{e \in E(H)} \frac{\sum_{v \in e} (B(v, e) x_v^r)}{r}$$
$$= \frac{(r-1)!}{\alpha^{\frac{1}{r}}} \|x\|_r^r.$$
(1)

This inequality implies $\rho(H) \leq \frac{(r-1)!}{\alpha^{\frac{1}{r}}}$.

The equality holds if H is α -normal and there is a non-zero solution $\{x_i\}$ for the system of the following homogeneous linear equations: $e = \{x_{i_1}, x_{i_2}, \ldots, x_{i_r}\} \in E(H)$

$$B(v_{i_1}, e)^{1/r} \cdot x_{i_1} = B(v_{i_2}, e)^{1/r} \cdot x_{i_2} = \dots = B(v_{i_r}, e)^{1/r} \cdot x_{i_r}.$$
(2)

Picking any vertex v_0 and setting $x_{v_0}^* = 1$, define $x_u^* = \left(\prod_{i=1}^l \frac{B(v_{i-1}, e_i)}{B(v_i, e_i)}\right)^{1/r}$ if there is a path $v_0 e_1 v_1 e_2 \cdots v_l (= u)$ connecting v_0 and u. Since H is connected, such path must exist. The consistent condition guarantees that x_u^* is independent of the choice of the path. It is easy to check that (x_1^*, \ldots, x_n^*) is a solution of (2). Thus, $\rho(H) = \frac{(r-1)!}{a^{\frac{1}{r}}}$.

All these 3-graphs have spectral radius ρ_3 .

The hypergraphs listed in Theorem 1 except for $G_{1,1:k:1,3}^{(3)}$ (for $0 \le k \le 5$) are proper subgraphs of some hypergraphs in the list of Theorem 2. These hypergraphs have the spectral radius less than ρ_3 . We can also show $\rho(G_{1,1:k:1,3}^{(3)}) < \rho_3$ for all $k \in \{0, 1, 2, 3, 4, 5\}$.

The hypergraphs listed in Theorem 1 except for $G_{1,1:k:1,3}^{(3)}$ (for $0 \le k \le 5$) are proper subgraphs of some hypergraphs in the list of Theorem 2. These hypergraphs have the spectral radius less than ρ_3 . We can also show $\rho(G_{1,1:k:1,3}^{(3)}) < \rho_3$ for all $k \in \{0, 1, 2, 3, 4, 5\}$.

Now assume that H is a connected 3-graph with $\rho(H) \leq \rho_3$.

The hypergraphs listed in Theorem 1 except for $G_{1,1:k:1,3}^{(3)}$ (for $0 \le k \le 5$) are proper subgraphs of some hypergraphs in the list of Theorem 2. These hypergraphs have the spectral radius less than ρ_3 . We can also show $\rho(G_{1,1:k:1,3}^{(3)}) < \rho_3$ for all $k \in \{0, 1, 2, 3, 4, 5\}$.

Now assume that H is a connected 3-graph with $\rho(H) \leq \rho_3$. If H is not simple, then $\rho(H) > \rho_3$ unless $H = C_2^{(3)}$.

The hypergraphs listed in Theorem 1 except for $G_{1,1:k:1,3}^{(3)}$ (for $0 \le k \le 5$) are proper subgraphs of some hypergraphs in the list of Theorem 2. These hypergraphs have the spectral radius less than ρ_3 . We can also show $\rho(G_{1,1:k:1,3}^{(3)}) < \rho_3$ for all $k \in \{0, 1, 2, 3, 4, 5\}$.

Now assume that H is a connected 3-graph with $\rho(H) \leq \rho_3$. If H is not simple, then $\rho(H) > \rho_3$ unless $H = C_2^{(3)}$. We can assume that H is a simple 3-graph.

The hypergraphs listed in Theorem 1 except for $G_{1,1:k:1,3}^{(3)}$ (for $0 \le k \le 5$) are proper subgraphs of some hypergraphs in the list of Theorem 2. These hypergraphs have the spectral radius less than ρ_3 . We can also show $\rho(G_{1,1:k:1,3}^{(3)}) < \rho_3$ for all $k \in \{0, 1, 2, 3, 4, 5\}$.

Now assume that H is a connected 3-graph with $\rho(H) \leq \rho_3$. If H is not simple, then $\rho(H) > \rho_3$ unless $H = C_2^{(3)}$. We can assume that H is a simple 3-graph.

If H contains a cycle $C_k^{(3)}$, then $\rho(H) > \rho_3$ unless $H = C_k^{(3)}$.

The hypergraphs listed in Theorem 1 except for $G_{1,1:k:1,3}^{(3)}$ (for $0 \le k \le 5$) are proper subgraphs of some hypergraphs in the list of Theorem 2. These hypergraphs have the spectral radius less than ρ_3 . We can also show $\rho(G_{1,1:k:1,3}^{(3)}) < \rho_3$ for all $k \in \{0, 1, 2, 3, 4, 5\}$.

Now assume that H is a connected 3-graph with $\rho(H) \leq \rho_3$. If H is not simple, then $\rho(H) > \rho_3$ unless $H = C_2^{(3)}$. We can assume that H is a simple 3-graph.

If H contains a cycle $C_k^{(3)}$, then $\rho(H) > \rho_3$ unless $H = C_k^{(3)}$. We can assume that H is a hypertree.

The hypergraphs listed in Theorem 1 except for $G_{1,1:k:1,3}^{(3)}$ (for $0 \le k \le 5$) are proper subgraphs of some hypergraphs in the list of Theorem 2. These hypergraphs have the spectral radius less than ρ_3 . We can also show $\rho(G_{1,1:k:1,3}^{(3)}) < \rho_3$ for all $k \in \{0, 1, 2, 3, 4, 5\}$.

Now assume that H is a connected 3-graph with $\rho(H) \leq \rho_3$. If H is not simple, then $\rho(H) > \rho_3$ unless $H = C_2^{(3)}$. We can assume that H is a simple 3-graph.

If H contains a cycle $C_k^{(3)}$, then $\rho(H) > \rho_3$ unless $H = C_k^{(3)}$. We can assume that H is a hypertree.

If H contains a vertex of degree ≥ 4 , then $\rho(H) > \rho_3$ unless $H = S_4^{(3)}$.

The hypergraphs listed in Theorem 1 except for $G_{1,1:k:1,3}^{(3)}$ (for $0 \le k \le 5$) are proper subgraphs of some hypergraphs in the list of Theorem 2. These hypergraphs have the spectral radius less than ρ_3 . We can also show $\rho(G_{1,1:k:1,3}^{(3)}) < \rho_3$ for all $k \in \{0, 1, 2, 3, 4, 5\}$.

Now assume that H is a connected 3-graph with $\rho(H) \leq \rho_3$. If H is not simple, then $\rho(H) > \rho_3$ unless $H = C_2^{(3)}$. We can assume that H is a simple 3-graph.

If H contains a cycle $C_k^{(3)}$, then $\rho(H) > \rho_3$ unless $H = C_k^{(3)}$. We can assume that H is a hypertree.

If H contains a vertex of degree ≥ 4 , then $\rho(H) > \rho_3$ unless $H = S_4^{(3)}$. We can assume all vertex degrees are at most 3.

If there exists two vertexes u and v with $d_u = d_v = 3$, then H contains $\tilde{D}_k^{(3)}$ as a subgraph. We have $\rho(H) > \rho_3$ unless $H = \tilde{D}_n^{(3)}$.

If there exists two vertexes u and v with $d_u = d_v = 3$, then H contains $\tilde{D}_k^{(3)}$ as a subgraph. We have $\rho(H) > \rho_3$ unless $H = \tilde{D}_n^{(3)}$.

Suppose that v is the unique vertex with degree 3 and all other vertices have degree at most 2. Consider the three branches attached to v.

If every branch has at least two edges, then H contains $\tilde{E}_6^{(3)}$ as a subgraph. We have $\rho(H) > \rho(\tilde{E}_6^{(3)}) = \rho_3$. unless $H = \tilde{E}_6^{(3)}$.

If there exists two vertexes u and v with $d_u = d_v = 3$, then H contains $\tilde{D}_k^{(3)}$ as a subgraph. We have $\rho(H) > \rho_3$ unless $H = \tilde{D}_n^{(3)}$.

Suppose that v is the unique vertex with degree 3 and all other vertices have degree at most 2. Consider the three branches attached to v.

If every branch has at least two edges, then H contains $\tilde{E}_6^{(3)}$ as a subgraph. We have $\rho(H) > \rho(\tilde{E}_6^{(3)}) = \rho_3$. unless $H = \tilde{E}_6^{(3)}$.

If there exists two vertexes u and v with $d_u = d_v = 3$, then H contains $\tilde{D}_k^{(3)}$ as a subgraph. We have $\rho(H) > \rho_3$ unless $H = \tilde{D}_n^{(3)}$.

Suppose that v is the unique vertex with degree 3 and all other vertices have degree at most 2. Consider the three branches attached to v.

 If every branch has at least two edges, then H contains *˜*E₆⁽³⁾ as a subgraph. We have *ρ*(H) > *ρ*(*˜*E₆⁽³⁾) = *ρ*₃.

 unless H = *˜*E₆⁽³⁾.

 Thus we can assume that the first branch consists of only one edge.

If there exists two vertexes u and v with $d_u = d_v = 3$, then H contains $\tilde{D}_k^{(3)}$ as a subgraph. We have $\rho(H) > \rho_3$ unless $H = \tilde{D}_n^{(3)}$.

Suppose that v is the unique vertex with degree 3 and all other vertices have degree at most 2. Consider the three branches attached to v.

If every branch has at least two edges, then H contains $\tilde{E}_6^{(3)}$ as a subgraph. We have $\rho(H) > \rho(\tilde{E}_6^{(3)}) = \rho_3$. unless $H = \tilde{E}_6^{(3)}$. Thus we can assume that the first branch consists of

only one edge.

An edge e is called a *branching edge* if every vertex of e is not a leaf vertex.

If the second branch has at least two edges and the third branch consist of a branching edge, then H consists of a subgraph G', which can be eventually contracted to G shown below.

Note that the sum of the labelings of G at the center vertex is $\frac{4}{9} + \frac{1}{3} + \frac{1}{4} > 1$. Thus G is strictly $\frac{1}{4}$ -supernormal and $\rho(G) > \rho_3$. We have $\rho(H) > \rho(G') > \rho_3$.

The first and second branch each consist of one edge and the third branch consists of at least one branching edge. Since $\rho(\widetilde{BD}_n^{(3)}) = \rho_3$, H can not contain $\widetilde{BD}_n^{(3)}$ as a proper subgraph. Thus the only possible hypergraphs are $\widetilde{BD}_n^{(3)}$ and $BD_n^{(3)}$.

- The first and second branch each consist of one edge and the third branch consists of at least one branching edge. Since $\rho(\widetilde{BD}_n^{(3)}) = \rho_3$, H can not contain $\widetilde{BD}_n^{(3)}$ as a proper subgraph. Thus the only possible hypergraphs are $\widetilde{BD}_n^{(3)}$ and $BD_n^{(3)}$.
- There is no branching edge in H. Let i, j, k $(i \leq j \leq k)$ be the length of three branches of the vertex v and denote this graph by $E_{i,j,k}^{(3)}$. We have shown that i = 1. Note that $E_{1,3,3}^{(3)} = \tilde{E}_7^{(3)}$ and $E_{1,2,5}^{(3)} = \tilde{E}_8^{(3)}$ have spectral radius ρ_3 . So (j,k) can only have the following choices: (2,5), (2,4), (3,3), (2,3), (2,2) and $(1,k), k \geq 1$. The corresponding graphs are $\tilde{E}_8^{(3)}$, $E_8^{(3)}$, $\tilde{E}_7^{(3)}$, $E_7^{(3)}$, $E_6^{(3)}$, and $D_n^{(3)}$.

Now we can assume that all degrees of vertices in H have degrees at most 2.

- If H has no branching edge, then $H = A_n$ (a path).
- If H has exactly one branching edge, then $H = F_{i,j,k}^{(3)}$. We will first show that $\rho(F_{3,3,3}^{(3)}) > \rho_3$ (see below).

Now we can assume that all degrees of vertices in H have degrees at most 2.

- If H has no branching edge, then $H = A_n$ (a path).
- If H has exactly one branching edge, then $H = F_{i,j,k}^{(3)}$. We will first show that $\rho(F_{3,3,3}^{(3)}) > \rho_3$ (see below).

When i = 2 and j = 3, as $\rho(F_{2,3,4}^{(3)}) = \rho_3$, there are only two possible hypergraphs: $F_{2,3,3}^{(3)}$ and $F_{2,3,4}^{(3)}$.

When i = 2 and j = 3, as $\rho(F_{2,3,4}^{(3)}) = \rho_3$, there are only two possible hypergraphs: $F_{2,3,3}^{(3)}$ and $F_{2,3,4}^{(3)}$.

When i = 2 and j = 2, as $\rho(F_{2,2,7}^{(3)}) = \rho_3$, we must have $2 \le k \le 7$.

When i = 2 and j = 3, as $\rho(F_{2,3,4}^{(3)}) = \rho_3$, there are only two possible hypergraphs: $F_{2,3,3}^{(3)}$ and $F_{2,3,4}^{(3)}$.

When i = 2 and j = 2, as $\rho(F_{2,2,7}^{(3)}) = \rho_3$, we must have $2 \le k \le 7$.

When i = 1, as $\rho(F_{1.5.6}^{(3)}) = \rho_3$, we must have $j \leq 5$. When j = 5, we have two possible hypergraphs: $F_{1.5.5}^{(3)}$ and $F_{1.5.6}^{(3)}$. When j = 4, as $\rho(F_{1.4.8}^{(3)}) = \rho_3$, we have 5 possible hypergraphs: $F_{1.4,k}^{(3)}$ for $4 \le k \le 8$. When j = 3, as $\rho(F_{1,3,14}^{(3)}) = \rho_3$, we have 12 possible hypergraphs: $F_{1,3,k}^{(3)}$ for $3 \le k \le 14$. When j = 2, all the values of k are possible, and we get the family $B_n^{(3)}$. When j = 1, all the values of k are possible, and we get the family $D'_{n}^{(3)}$.

If H has exactly two branching edges, then $H = G_{i,j:k:l,m}^{(3)}$ $(i \leq j, l \leq m)$. If $i + j \geq 3$ and $l + m \geq 3$, then H contains a subgraph $G_{1,2:k:1,2}^{(3)} = \tilde{B}_{k+8}^{(3)}$. Since the family $\tilde{B}_n^{(3)}$ have the spectral radius equal to ρ_3 , we conclude H must be $\tilde{B}_n^{(3)}$ itself. For the remaining cases, we can assume i = j = 1. We have $\rho(H) \geq \rho(G_{1,1:0:2,2}^{(3)}) > \rho_3$ (see the labeling below.)

In particular, there is no such hypergraph with $m \geq 5$.

In particular, there is no such hypergraph with $m \ge 5$. If m = 4, then we only get one hypergraph $G_{1,1:0:1,4}^{(3)}$.

In particular, there is no such hypergraph with $m \ge 5$. If m = 4, then we only get one hypergraph $G_{1,1:0:1,4}^{(3)}$. If m = 3, as $\rho(G_{1,1:6:1,3}^{(3)}) = \rho_3$, we get 7 hypergraphs: $\rho(G_{1,1:k:1,3}^{(3)})$ for $0 \le k \le 6$.

In particular, there is no such hypergraph with $m \ge 5$. If m = 4, then we only get one hypergraph $G_{1,1:0:1,4}^{(3)}$. If m = 3, as $\rho(G_{1,1:6:1,3}^{(3)}) = \rho_3$, we get 7 hypergraphs: $\rho(G_{1,1:k:1,3}^{(3)})$ for $0 \le k \le 6$.

If m = 2, then any k works. We get the family $\bar{B}_n^{(3)}$.

In particular, there is no such hypergraph with $m \ge 5$. If m = 4, then we only get one hypergraph $G_{1,1:0:1,4}^{(3)}$. If m = 3, as $\rho(G_{1,1:6:1,3}^{(3)}) = \rho_3$, we get 7 hypergraphs: $\rho(G_{1,1:k:1,3}^{(3)})$ for $0 \le k \le 6$. If m = 2, then any k works. We get the family $\bar{B}_n^{(3)}$. If m = 1, then any k works. We get the family $B_n'^{(3)}$.

H contains at least three branching edges. Since all degrees of vertices are at most 2, any branching edges lie in a path. Thus, H contains a subgraph M' in the following figure. By contracting the middle edges connecting the branching edges, we get a hypergraph M. We can see that M admits the following ¹/₄-supernormal labeling.

a subgraph M'

after contraction: M

We have $\rho(H) \ge \rho(M') \ge \rho(M) > \rho_3$.

An *r*-uniform hypergraph H = (V, E) is called reducible if every edge *e* contains a leaf vertex v_e .

- An r-uniform hypergraph H = (V, E) is called reducible if every edge e contains a leaf vertex v_e .
- Removing v_e from each e, we get a H' = (V', E'), i.e., $V' = V \setminus \{v_e : e \in E\}$ and $E' = \{e v_e : e \in E\}$.

- An r-uniform hypergraph H = (V, E) is called reducible if every edge e contains a leaf vertex v_e .
- Removing v_e from each e, we get a H' = (V', E'), i.e., $V' = V \setminus \{v_e : e \in E\}$ and $E' = \{e v_e : e \in E\}$.
- We say that H' is reduced from H and H extends H'.

- An r-uniform hypergraph H = (V, E) is called reducible if every edge e contains a leaf vertex v_e .
- Removing v_e from each e, we get a H' = (V', E'), i.e., $V' = V \setminus \{v_e : e \in E\}$ and $E' = \{e v_e : e \in E\}$.
- We say that H' is reduced from H and H extends H'.

Lemma If H exends H', then

$$\rho(H) \leq \rho_r \text{ iff } \rho(H') \leq \rho_{r-1}.$$

Proof

 $\rho(H) \leq \rho_r$ implies that H has a consistently α -normal labeling with $\alpha \leq \frac{1}{4}$. Since the labeling near every leaf vertex is 1, this labeling induces an α -normal labeling of H'. Thus, $\rho(H') \leq \rho_{r-1}$.

Proof

 $\rho(H) \leq \rho_r \text{ implies that } H \text{ has a consistently } \alpha\text{-normal} \\
\text{labeling with } \alpha \leq \frac{1}{4}. \text{ Since the labeling near every leaf vertex} \\
\text{is 1, this labeling induces an } \alpha\text{-normal labeling of } H'. Thus, \\
\rho(H') \leq \rho_{r-1}.$

Every step can be reversed.

Proof

 $\rho(H) \leq \rho_r \text{ implies that } H \text{ has a consistently } \alpha\text{-normal} \\
\text{labeling with } \alpha \leq \frac{1}{4}. \text{ Since the labeling near every leaf vertex} \\
\text{is 1, this labeling induces an } \alpha\text{-normal labeling of } H'. Thus, \\
\rho(H') \leq \rho_{r-1}.$

Every step can be reversed.

" $\rho(H) = \rho_r$ iff $\rho(H') = \rho_{r-1}$ " can be proved in a similar way.

The case $r \geq 4$

Theorem [Lu, Man, 2013+]

- For $r \ge 5$, every r-uniform hypergraph with $\rho(H) \le \rho_r$ is reducible.
- For r = 4, there is only one irreducible r-uniform hypergraph with $\rho(H) = \rho_r$ and four irreducible r-uniform hypergraph with $\rho(H) < \rho_r$

Classification for $r \ge 4$

Theorem [Lu-Man 2013+] Let $r \ge 4$ and $\rho_r = (r-1)!\sqrt[r]{4}$. If the spectral radius of a connected r-uniform hypergraph H is equal to ρ_r , then H must be one of the following graphs:

- 1. Extended from 3-graphs: $C_n^{(r)}$, $\tilde{D}_n^{(r)}$, $\tilde{B}_n^{(r)}$, $\tilde{BD}_n^{(r)}$, $C_2^{(r)}$, $S_4^{(r)}$, $\tilde{E}_6^{(r)}$, $\tilde{E}_7^{(r)}$, $\tilde{E}_8^{(r)}$, $F_{2,3,4}^{(r)}$, $F_{2,2,7}^{(r)}$, $F_{1,5,6}^{(r)}$, $F_{1,4,8}^{(r)}$, $F_{1,3,14}^{(r)}$, $G_{1,1:0:1,4}^{(r)}$, and $G_{1,1:6:1,3}^{(r)}$.
- 2. Extended from the 4-graph: $H_{1,1,2,2}^{(r)}$.

Classification for $r \ge 4$

Theorem [Lu-Man 2013+] Let $r \ge 4$ and $\rho_r = (r-1)!\sqrt[r]{4}$. If the spectral radius of a connected r-uniform hypergraph H is less than ρ_r , then H must be one of the following graphs:

1. Extended from 3-graphs: $A_n^{(r)}$, $D_n^{(r)}$, $D'_n^{(r)}$, $B_n^{(r)}$, $B'_n^{(r)}$, $\bar{B}_n^{(r)}$, $BD_n^{(r)}$, $E_6^{(r)}$, $E_7^{(r)}$, $E_8^{(r)}$, $F_{2,3,3}^{(r)}$, $F_{2,2,j}^{(r)}$ (for $2 \le j \le 6$), $F_{1,3,j}^{(r)}$ (for $3 \le j \le 13$), $F_{1,4,j}^{(r)}$ (for $4 \le j \le 7$), $F_{1,5,5}^{(r)}$, and $G_{1,1:j:1,3}^{(r)}$ (for $0 \le j \le 5$). 2. Extended from 4-graphs: $H_{1,1,1,1}^{(r)}$, $H_{1,1,1,2}^{(r)}$, $H_{1,1,1,3}^{(r)}$, $H_{1,1,1,4}^{(r)}$.

Open problem

Are these *r*-uniform hypergraphs with $\rho(H) \leq \rho_r$ associated to some algebraic or geometric structures as the ADE system does?

Open problem

Are these *r*-uniform hypergraphs with $\rho(H) \leq \rho_r$ associated to some algebraic or geometric structures as the ADE system does?

Reference: Linyuan Lu and Shoudong Man, Connected Hypergraphs with Small Spectral Radius http://arxiv.org/pdf/1402.5402

Homepage: http://www.math.sc.edu/ \sim lu/

Thank You

