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■ A is irreducible if there exists a m such that Am is

positive.
■ A is aperiodic if the greatest common divisor of all

natural numbers m such that (Am)ii > 0 is 1.
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■ A = (aij) is non-negative if aij ≥ 0.
■ A is irreducible if there exists a m such that Am is

positive.
■ A is aperiodic if the greatest common divisor of all

natural numbers m such that (Am)ii > 0 is 1.

Perron-Frobenius theorem: If A is an aperiodic
irreducible non-negative matrix with spectral radius r, then r

is the largest eigenvalue in absolute value of A, and A has
an eigenvector α with eigenvalue r whose components are all
positive.
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a connected graph G.

■ The eigenvector for ρ(G) can be chosen so that all
entries are positive.
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Apply Perron-Frobenius theorem to the adjacency matrix of
a connected graph G.

■ The eigenvector for ρ(G) can be chosen so that all
entries are positive.

■ If α is a positive vector corresponding to the eigenvector
λ, then ρ(G) = λ.

■ For any proper subgraph H of G, we have

ρ(H) < ρ(G).
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Smith [1970]: ρ(G) < 2 if and only if G is a simple-laced
Dynkin diagram.
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■ In the theory of Lie groups and Lie algebras, the simple
Lie algebras are classified by Dynkin diagrams of their
root systems.

■ There are four infinite families (An, Bn, Cn, and Dn),
and five exceptional cases (E6, E7, E8, F4, and G2).

■ If all roots have the same length, then the root system is
said to be simply laced; this occurs in the cases A, D
and E.

■ Smith’s theorem gives an equivalent graph-theory
definition for the simply-laced Dynkin diagrams.
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A root system in R
n is a finite set Φ of non-zero vectors

(called roots) that satisfy the following conditions:

■ The roots span R
n.

■ The only scalar multiples of a root x ∈ Φ that belong to
Φ are x itself and −x.

■ For every root x ∈ Φ, the set Φ is closed under reflection
through the hyperplane perpendicular to x.

■ If x and y are roots in Φ, then the projection of y onto
the line through x is a half-integral multiple of x.
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ρ(A) < 2⇔

I − 1
2A is positive definite. ⇔

Write I − 1
2A = BB′. ⇔

Let α1, . . . , αn be the column vector of B.
Then α1, . . . , αn forms a base of a root system.
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Smith [1970]: ρ(G) = 2 if and only if G is a simple
extended Dynkin diagram.
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First, we show that Ãn, D̃n, Ẽ6, Ẽ7, and Ẽ8 all have
eigenvalue 2 with the positive eigenvectors below:
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By Perron-Frobenius’ theorem, Ãn, D̃n, Ẽ6, Ẽ7, and Ẽ8 all
have spectral radius 2. Since An, Dn, E6, E7, and E8 are
proper subgraphs, their spectral radii are less than 2.
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By Perron-Frobenius’ theorem, Ãn, D̃n, Ẽ6, Ẽ7, and Ẽ8 all
have spectral radius 2. Since An, Dn, E6, E7, and E8 are
proper subgraphs, their spectral radii are less than 2.

Now we show that the only connected graphs G with
ρ(G) ≤ 2 are in Smith’s list.

If G contains a cycle C, then ρ(G) > 2 unless G = C. We
can assume G is a tree.

If there is a vertex of degree at least 4, then ρ(G) > 2, unless
G = D5. We can assume the degrees of G is at most 3.

If there are two vertices of degree 3, then G contains a
subgraph D̃∗. Hence ρ(G) > 2, unless G = D̃n.
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If G has one vertex of degree 3, let i, j, k (say i ≤ j ≤ k) be
the length of three paths attached to v. Write G = Ei,j,k.

■ If i ≥ 2, then ρ(G) > ρ(E2,2,2) = 2 unless

G = E2,2,2 = Ẽ6.
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If G has one vertex of degree 3, let i, j, k (say i ≤ j ≤ k) be
the length of three paths attached to v. Write G = Ei,j,k.

■ If i ≥ 2, then ρ(G) > ρ(E2,2,2) = 2 unless

G = E2,2,2 = Ẽ6. We can assume i = 1.

■ If i = 1 and j ≥ 3, then ρ(G) > ρ(E1,3,3) = 2 unless

G = E1,3,3 = Ẽ7. We can assume i = 1 and j = 1 or 2.

■ If i = 1 and j = 1, then G = Dn.

■ If i = 1, j = 2, and k ≥ 5, then ρ(G) > ρ(E1,2,5) = 2

unless G = E1,2,5 = Ẽ8.

■ If i = 1, j = 2, and k = 2, 3, 4, then G = E6, E7, and
E8.

If all degrees of G are at most 2, then G = An. �
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For a real symmetric matrix A = (aij), consider the
following optimization problem.

maximize
∑n

i,j=1 aijxixj
subject to

∑n
i=1 x

2
i = 1.

Suppose the maximum value λ is achieved at x∗. Then

■

∑n
j=1 aijx

∗
j = λx∗i for each i. I.e., Ax∗ = λx∗.

■ λ = ρ(A).



Hypermatrix

Hypergraphs with Small Spectral Radius Linyuan Lu – 16 / 54

A real non-negative hypermatrix A = (ai1i2···ir) is called
symmetric if it aσ(i1)σ(i2)···σ(ir) = ai1i2···ir for any permutation
σ of indices.
Consider the following optimization problem.



Hypermatrix

Hypergraphs with Small Spectral Radius Linyuan Lu – 16 / 54

A real non-negative hypermatrix A = (ai1i2···ir) is called
symmetric if it aσ(i1)σ(i2)···σ(ir) = ai1i2···ir for any permutation
σ of indices.
Consider the following optimization problem.

maximize
∑n

i1,...,ir=1 ai1i2···irxi1xi2 · · · xir
subject to

∑n
i=1 x

p
i = 1.



Hypermatrix

Hypergraphs with Small Spectral Radius Linyuan Lu – 16 / 54
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A real non-negative hypermatrix A = (ai1i2···ir) is called
symmetric if it aσ(i1)σ(i2)···σ(ir) = ai1i2···ir for any permutation
σ of indices.
Consider the following optimization problem.

maximize
∑n

i1,...,ir=1 ai1i2···irxi1xi2 · · · xir
subject to

∑n
i=1 x

p
i = 1.

Suppose the maximum value λ is achieved at x∗. Then

■

∑n
i2...,ir=1 aii2···irx

∗
i2
· · · x∗ir = λrx∗i

r−1 for each i such that
xi 6= 0.

■ λ is called (the largest) p-spectrum of A.
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■ E ⊂
(
V
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: the set of (hyper)edges.
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The r-uniform hypergraph (or r-graph) H = (V,E):

■ V : the vertex set.

■ E ⊂
(
V
r

)
: the set of (hyper)edges.

An example of 3-graph:

H has 11 vertices and 6 edges.
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■ A closed walk: a walk with v0 = vl.
■ A cycle: a path with v0 = vl.
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■ A walk: v0e1v1e2v2 · · · , elvl where vi−1, vi ∈ ei for
1 ≤ i ≤ l.

■ A path: a walk so that all vi’s ei’s are distinct.
■ A closed walk: a walk with v0 = vl.
■ A cycle: a path with v0 = vl.

H is connected if for any two vertices u, v, there is a
uv-path: v0e1v1e2v2 · · · , elvl so that v0 = u and vl = v.

H is simple if |e ∩ e′| ≤ 1 for any e, e′ ∈ E.

A hypertree is an acyclic connected hypergraph.
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The spectral radius of H is

ρ(H) = r! max
(x1,x2,...,xn)∈Rn−0

∑
{i1,i2,...,ir}∈E xi1xi2 · · · xir∑

v∈V xrv

= r! max
‖x‖r=1

∑

{i1,i2,...,ir}∈E
xi1xi2 · · ·xir .
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The spectral radius of H is

ρ(H) = r! max
(x1,x2,...,xn)∈Rn−0

∑
{i1,i2,...,ir}∈E xi1xi2 · · · xir∑

v∈V xrv

= r! max
‖x‖r=1

∑

{i1,i2,...,ir}∈E
xi1xi2 · · ·xir .

x = (x1, x2, . . . , xn) is called an eigenvector of ρ(H) if the
above maximum reaches at x.

ρ(H) maximizes 3!(x1x2x3+x3x4x5)
subject to x31+x32+x33+x34+x35 = 1.

ρ(H) = 2
3
√
2, eigenvector x = (1, 1,

3
√
2, 1, 1).



Spectra of hypergraphs
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■ Spectrum of real symmetric hypermatrix

◆ Qi [2005]
◆ Chang-Pearson-Zhang [2008]
◆ Fridland-Gaubert [2010]
◆ Friedland-Gaubert-Han [2013]

■ Spectrum of adjacency tensor of hypergraphs

◆ Cooper and Dutle [2012]
◆ Keevash-Lenz-Mubayi [2013+]
◆ Nikiforov [2013+]

■ Laplacian of hypergraphs

◆ Chung [1993]
◆ Rodŕıguz [2009]
◆ Lu-Peng [2012]
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Perron-Frobenius theorem for graphs: Let A be the
adjacency matrix of a connected graph G. Then

■ A has a unique (up to a scale) positive eigenvector α.
■ The eigenvector corresponds to the largest eigenvalue of

A.
■ Any nonnegative eigenvector must be positive.
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Perron-Frobenius theorem for graphs: Let A be the
adjacency matrix of a connected graph G. Then

■ A has a unique (up to a scale) positive eigenvector α.
■ The eigenvector corresponds to the largest eigenvalue of

A.
■ Any nonnegative eigenvector must be positive.

Perron-Frobenius theorem for hypergraphs
[Cooper-Dutle 2012,Fridland-Gaubert-2010, Nikiforov
2013+] If H is connected, then there is a unique positive
eigenvector (up to a scale) for ρ(H).
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Let A
(r)
n denote the simple r-uniform path on n edges and

ρr := lim
n→∞

ρ(A(r)
n ).

· · ·
A

(3)
n

It is not hard to show ρr = (r − 1)! r
√
4.
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Let A
(r)
n denote the simple r-uniform path on n edges and

ρr := lim
n→∞

ρ(A(r)
n ).

· · ·
A

(3)
n

It is not hard to show ρr = (r − 1)! r
√
4.

Question: Can we classify all r-uniform hypergraphs H
with ρ(H) ≤ ρr?
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Theorem [Lu-Man, 2013+] The complete list of all
connected 3-uniform hypergraph H with ρ(H) = ρ3 consists
of 4 families and 12 exceptional hypergraphs.

· · ·

C
(3)
n

(n ≥ 3)

· · ·
D̃

(3)
n (n ≥ 5)

Ẽ
(3)
6

· · ·
B̃

(3)
n (n ≥ 8)

· · ·
B̃D

(3)

n (n ≥ 6)

Ẽ
(3)
7

Ẽ
(3)
8
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F
(3)
2,3,4 F

(3)
2,2,7

C
(3)
2

F
(3)
1,5,6

S
(3)
4

F
(3)
1,4,8

F
(3)
1,3,14

G
(3)
1,1:0:1,4 G

(3)
1,1:6:1,3



Classification for ρ(H) < ρ3
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Theorem [Lu-Man, 2013+] The complete list of all
connected 3-uniform hypergraph H with ρ(H) < ρ3 consists
of 7 families and 31 exceptional hypergraphs.

· · ·
A

(3)
n (n ≥ 1)

· · ·
B

(3)
n (n ≥ 5)

· · ·
B̄

(3)
n (n ≥ 7)

· · ·
BD

(3)
n (n ≥ 5)

· · ·
B′(3)n (n ≥ 6)

· · ·
D′(3)n (n ≥ 4)

· · ·
Dn (n ≥ 3)

■ E
(3)
6 , E

(3)
7 , E

(3)
8 , F

(3)
2,3,3, F

(3)
1,5,5.

■ F
(3)
2,2,k (for 2 ≤ k ≤ 6)

■ F
(3)
1,3,k (for 3 ≤ k ≤ 13)

■ F
(3)
1,4,k (for 4 ≤ k ≤ 7).

■ G
(3)
1,1:k:1,3 (for 0 ≤ k ≤ 5).



Three families
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E
(3)
i,j,k : ↓

i

←j →
k

F
(3)
i,j,k :

↑i

←j →
k

i↑

←j →
k

l↑

←
k
→mG

(3)
i,j:k:l,m :
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Lemma [Lu-Man 2013+] An r-uniform hypergraph H has
spectral radius ρ(H) = (r − 1)!α−1/r if and only if H has a
consistently α-normal labeling.
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Lemma [Lu-Man 2013+] An r-uniform hypergraph H has
spectral radius ρ(H) = (r − 1)!α−1/r if and only if H has a
consistently α-normal labeling.

A α-normal labeling assigns a positive number to each
incidence relation (v, e) a value B(v, e) satisfying

■

∏
v : v∈eB(v, e) = α for any edge e.

■

∑
e : v∈eB(v, e) = 1 for any vertex v.
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Lemma [Lu-Man 2013+] An r-uniform hypergraph H has
spectral radius ρ(H) = (r − 1)!α−1/r if and only if H has a
consistently α-normal labeling.

A α-normal labeling assigns a positive number to each
incidence relation (v, e) a value B(v, e) satisfying

■

∏
v : v∈eB(v, e) = α for any edge e.

■

∑
e : v∈eB(v, e) = 1 for any vertex v.

B is called consistent if for any cycle v0e1v1e2 . . . vl (vl = v0)

l∏

i=1

B(vi, ei)

B(vi−1, ei)
= 1.

If H is a hypertree, then any α-normal labeling is
automatically consistent.



1
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Corollary: An r-uniform hypergraph H has spectral radius
ρ(H) = ρr if and only if H has a consistent 1

4-normal
labeling.
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Corollary: An r-uniform hypergraph H has spectral radius
ρ(H) = ρr if and only if H has a consistent 1

4-normal
labeling.

1
4

3
4

1
3

2
3

2
3

1
3

3
4

1
4

1
4 3

4

1
4

3
4

An example of 1
4-

labeling. Here all
leaf vertices are la-
beled by 1.



Graphs with ρ(G) = 2
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Ãn, D̃n, E6, E7, and E8, all have
1
4-Labeling.

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
21

21
2

1
21
2
1
21
2
1
2 1

2 1
2
· · ·

Cn

Ẽ6

1
4

3
4

1
3

1
3

3
4

1
4

1
3

3
4

1
4

Ẽ7

1
4

3
4

1
3

2
3

3
8

1
4

1
4

3
4

1
3

2
3

3
8

Ẽ8

1
4

3
4

5
12

2
5

3
8

1
3

1
4

1
4

1
3

3
5

5
8

2
3

3
4

1
4

1
2

1
2

1
2

1
2

· · ·
1
4

D̃n

1
4

1
2

1
2

1
4
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A hypergraph H is called α-supernormal if there exists a
weighted incidence matrix B satisfying

1.
∑

e : v∈eB(v, e) ≥ 1, for any v ∈ V (H).
2.

∏
v∈eB(v, e) ≤ α, for any e ∈ E(H).
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A hypergraph H is called α-supernormal if there exists a
weighted incidence matrix B satisfying

1.
∑

e : v∈eB(v, e) ≥ 1, for any v ∈ V (H).
2.

∏
v∈eB(v, e) ≤ α, for any e ∈ E(H).

Lemma: Let H be an r-uniform hypergraph. If H is strictly
and consistently α-super normal, then the spectral radius of
H satisfies

ρ(H) > (r − 1)!α−
1

r .



α-subnormal
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A hypergraph H is called α-subnormal if there exists a
weighted incidence matrix B satisfying

1.
∑

e : v∈eB(v, e) ≤ 1, for any v ∈ V (H).
2.

∏
v∈eB(v, e) ≥ α, for any e ∈ E(H).
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A hypergraph H is called α-subnormal if there exists a
weighted incidence matrix B satisfying

1.
∑

e : v∈eB(v, e) ≤ 1, for any v ∈ V (H).
2.

∏
v∈eB(v, e) ≥ α, for any e ∈ E(H).

Lemma: Let H be an r-uniform hypergraph. If H is
α-subnormal, then the spectral radius of H satisfies

ρ(H) ≤ (r − 1)!α−
1

r .

Moreover, if H is strictly α-subnormal then
ρ(H) < (r − 1)!α−

1

r .
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“⇐=” Let x := (x1, ..., xn) be the Perron-Frobenis
eigenvector of H. Define B as follows:

B(v, e) =

{
(r−1)!

∏
u∈e

xu

ρ(H)xr
v

if v ∈ e

0 otherwise.

From this definition, for any edge e, we have

∏

v∈e
B(v, e) =

∏

v∈e

(r − 1)!
∏

u∈e xu
ρ(H)xrv

=

(
(r − 1)!

ρ(H)

)r

= α.



Continue

Hypergraphs with Small Spectral Radius Linyuan Lu – 33 / 54

For any v,

∑

e

B(v, e) =
∑

{v,i2,··· ,ir}∈E(H)

(r − 1)!
∏

u∈e xu
ρ(H)xrv

=
ρ(H)

ρ(H)
= 1.
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For any v,

∑

e

B(v, e) =
∑

{v,i2,··· ,ir}∈E(H)

(r − 1)!
∏

u∈e xu
ρ(H)xrv

=
ρ(H)

ρ(H)
= 1.

To show that B is consistent, for any cycle v0e1v1e2 . . . vl
(vl = v0), we have

l∏

i=1

B(vi, ei)

B(vi−1, ei)
=

l∏

i=1

xrvi−1

xrvi
= 1.
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“=⇒” Let B be consistently α-normal. For any non-zero
vector x := (x1, x2, . . . , xn) ∈ R

n
≥0, we have

r!
∑

{xv1
,xv2

,...,xvr
}∈E(H)

xv1xv2 · · · xvr =
r!

α
1

r

∑

e∈E(H)

∏

v∈e
(B

1

r (v, e)xv)

≤ r!

α
1

r

∑

e∈E(H)

∑
v∈e(B(v, e)xrv)

r

=
(r − 1)!

α
1

r

‖x‖rr. (1)

This inequality implies ρ(H) ≤ (r−1)!
α

1
r

.
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The equality holds if H is α-normal and there is a non-zero
solution {xi} for the system of the following homogeneous
linear equations: e = {xi1, xi2, . . . , xir} ∈ E(H)

B(vi1, e)
1/r · xi1 = B(vi2, e)

1/r · xi2 = · · · = B(vir , e)
1/r · xir .

(2)

Picking any vertex v0 and setting x∗v0 = 1, define

x∗u =
(∏l

i=1
B(vi−1,ei)
B(vi,ei)

)1/r

if there is a path

v0e1v1e2 · · · vl(= u) connecting v0 and u. Since H is
connected, such path must exist. The consistent condition
guarantees that x∗u is independent of the choice of the path.
It is easy to check that (x∗1, . . . , x

∗
n) is a solution of (2).

Thus, ρ(H) = (r−1)!
α

1
r

.
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4-normal labelings for r = 3
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When r = 3 and α = 1
4 , then ρ(H) = ρ3.

· · ·

C
(3)
n

1
21
2

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 · · ·1

4

D̃
(3)
n

1
4

1
4

1
2

1
2

· · ·

B̃
(3)
n

1
4

3
4

1
3

2
3

1
2

3
4

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

2
3

3
4

1
3

1
4

3
4

1
4

· · ·

BD
(3)
n

1
4

1
2

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

2
3

3
4

1
2

1
3

1
4

3
4

1
4

Ẽ
(3)
6

1
4

1
3

3
4

3
4

1
3

1
41

33
41

4 Ẽ
(3)
7

1
4

1
3

3
8

2
3

3
4

3
4

2
3

3
8

1
3

1
41

4
Ẽ

(3)
8

3
4

5
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2
5

3
8

1
3

1
4

1
4

1
3

3
5

5
8

2
3

3
41

4
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F
(3)
2,3,4

1
4

1
3

3
8

3
5

5
8

2
3

3
4

3
4

2
3

5
8

2
5

3
8

1
3

1
4

1
4 3

4 1
32

3

F
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F
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1
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4
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3

5
8
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9
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1
4
3
4

1
4
3
4

All these 3-graphs have spectral radius ρ3.
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The hypergraphs listed in Theorem 1 except for G
(3)
1,1:k:1,3 (for

0 ≤ k ≤ 5) are proper subgraphs of some hypergraphs in the
list of Theorem 2. These hypergraphs have the spectral

radius less than ρ3. We can also show ρ(G
(3)
1,1:k:1,3) < ρ3 for

all k ∈ {0, 1, 2, 3, 4, 5}.
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Now assume that H is a connected 3-graph with ρ(H) ≤ ρ3.
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The hypergraphs listed in Theorem 1 except for G
(3)
1,1:k:1,3 (for

0 ≤ k ≤ 5) are proper subgraphs of some hypergraphs in the
list of Theorem 2. These hypergraphs have the spectral

radius less than ρ3. We can also show ρ(G
(3)
1,1:k:1,3) < ρ3 for
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Now assume that H is a connected 3-graph with ρ(H) ≤ ρ3.

If H is not simple, then ρ(H) > ρ3 unless H = C
(3)
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The hypergraphs listed in Theorem 1 except for G
(3)
1,1:k:1,3 (for

0 ≤ k ≤ 5) are proper subgraphs of some hypergraphs in the
list of Theorem 2. These hypergraphs have the spectral

radius less than ρ3. We can also show ρ(G
(3)
1,1:k:1,3) < ρ3 for

all k ∈ {0, 1, 2, 3, 4, 5}.
Now assume that H is a connected 3-graph with ρ(H) ≤ ρ3.

If H is not simple, then ρ(H) > ρ3 unless H = C
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2 . We

can assume that H is a simple 3-graph.

If H contains a cycle C
(3)
k , then ρ(H) > ρ3 unless H = C

(3)
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The hypergraphs listed in Theorem 1 except for G
(3)
1,1:k:1,3 (for

0 ≤ k ≤ 5) are proper subgraphs of some hypergraphs in the
list of Theorem 2. These hypergraphs have the spectral

radius less than ρ3. We can also show ρ(G
(3)
1,1:k:1,3) < ρ3 for

all k ∈ {0, 1, 2, 3, 4, 5}.
Now assume that H is a connected 3-graph with ρ(H) ≤ ρ3.

If H is not simple, then ρ(H) > ρ3 unless H = C
(3)
2 . We

can assume that H is a simple 3-graph.

If H contains a cycle C
(3)
k , then ρ(H) > ρ3 unless H = C

(3)
k .

We can assume that H is a hypertree.
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The hypergraphs listed in Theorem 1 except for G
(3)
1,1:k:1,3 (for

0 ≤ k ≤ 5) are proper subgraphs of some hypergraphs in the
list of Theorem 2. These hypergraphs have the spectral

radius less than ρ3. We can also show ρ(G
(3)
1,1:k:1,3) < ρ3 for

all k ∈ {0, 1, 2, 3, 4, 5}.
Now assume that H is a connected 3-graph with ρ(H) ≤ ρ3.

If H is not simple, then ρ(H) > ρ3 unless H = C
(3)
2 . We

can assume that H is a simple 3-graph.

If H contains a cycle C
(3)
k , then ρ(H) > ρ3 unless H = C

(3)
k .

We can assume that H is a hypertree.

If H contains a vertex of degree ≥ 4, then ρ(H) > ρ3 unless

H = S
(3)
4 .
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The hypergraphs listed in Theorem 1 except for G
(3)
1,1:k:1,3 (for

0 ≤ k ≤ 5) are proper subgraphs of some hypergraphs in the
list of Theorem 2. These hypergraphs have the spectral

radius less than ρ3. We can also show ρ(G
(3)
1,1:k:1,3) < ρ3 for

all k ∈ {0, 1, 2, 3, 4, 5}.
Now assume that H is a connected 3-graph with ρ(H) ≤ ρ3.

If H is not simple, then ρ(H) > ρ3 unless H = C
(3)
2 . We

can assume that H is a simple 3-graph.

If H contains a cycle C
(3)
k , then ρ(H) > ρ3 unless H = C

(3)
k .

We can assume that H is a hypertree.

If H contains a vertex of degree ≥ 4, then ρ(H) > ρ3 unless

H = S
(3)
4 . We can assume all vertex degrees are at most 3.
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If there exists two vertexes u and v with du = dv = 3, then

H contains D̃
(3)
k as a subgraph. We have ρ(H) > ρ3 unless

H = D̃
(3)
n .
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If there exists two vertexes u and v with du = dv = 3, then

H contains D̃
(3)
k as a subgraph. We have ρ(H) > ρ3 unless

H = D̃
(3)
n .

Suppose that v is the unique vertex with degree 3 and all
other vertices have degree at most 2. Consider the three
branches attached to v.

■ If every branch has at least two edges, then H contains

Ẽ
(3)
6 as a subgraph. We have ρ(H) > ρ(Ẽ

(3)
6 ) = ρ3.

unless H = Ẽ
(3)
6 .
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If there exists two vertexes u and v with du = dv = 3, then

H contains D̃
(3)
k as a subgraph. We have ρ(H) > ρ3 unless

H = D̃
(3)
n .

Suppose that v is the unique vertex with degree 3 and all
other vertices have degree at most 2. Consider the three
branches attached to v.

■ If every branch has at least two edges, then H contains

Ẽ
(3)
6 as a subgraph. We have ρ(H) > ρ(Ẽ

(3)
6 ) = ρ3.

unless H = Ẽ
(3)
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If there exists two vertexes u and v with du = dv = 3, then

H contains D̃
(3)
k as a subgraph. We have ρ(H) > ρ3 unless

H = D̃
(3)
n .

Suppose that v is the unique vertex with degree 3 and all
other vertices have degree at most 2. Consider the three
branches attached to v.

■ If every branch has at least two edges, then H contains

Ẽ
(3)
6 as a subgraph. We have ρ(H) > ρ(Ẽ

(3)
6 ) = ρ3.

unless H = Ẽ
(3)
6 .

Thus we can assume that the first branch consists of
only one edge.
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If there exists two vertexes u and v with du = dv = 3, then

H contains D̃
(3)
k as a subgraph. We have ρ(H) > ρ3 unless

H = D̃
(3)
n .

Suppose that v is the unique vertex with degree 3 and all
other vertices have degree at most 2. Consider the three
branches attached to v.

■ If every branch has at least two edges, then H contains

Ẽ
(3)
6 as a subgraph. We have ρ(H) > ρ(Ẽ

(3)
6 ) = ρ3.

unless H = Ẽ
(3)
6 .

Thus we can assume that the first branch consists of
only one edge.

An edge e is called a branching edge if every vertex of e
is not a leaf vertex.
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■ If the second branch has at least two edges and the third
branch consist of a branching edge, then H consists of a
subgraph G′, which can be eventually contracted to G

shown below.

1
4

3
4

1
4
3
4 4
9

2
3 1

4
3
4

1
4

G has a 1
4-supernormal labeling

Note that the sum of the labelings of G at the center
vertex is 4

9 +
1
3 +

1
4 > 1. Thus G is strictly 1

4-supernormal
and ρ(G) > ρ3. We have ρ(H) > ρ(G′) > ρ3.
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■ The first and second branch each consist of one edge
and the third branch consists of at least one branching

edge. Since ρ(B̃D
(3)

n ) = ρ3, H can not contain B̃D
(3)

n as
a proper subgraph. Thus the only possible hypergraphs

are B̃D
(3)

n and BD
(3)
n .
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■ The first and second branch each consist of one edge
and the third branch consists of at least one branching

edge. Since ρ(B̃D
(3)

n ) = ρ3, H can not contain B̃D
(3)

n as
a proper subgraph. Thus the only possible hypergraphs

are B̃D
(3)

n and BD
(3)
n .

■ There is no branching edge in H. Let i, j, k (i ≤ j ≤ k)
be the length of three branches of the vertex v and

denote this graph by E
(3)
i,j,k. We have shown that i = 1.

Note that E
(3)
1,3,3 = Ẽ

(3)
7 and E

(3)
1,2,5 = Ẽ

(3)
8 have spectral

radius ρ3. So (j, k) can only have the following choices:
(2, 5), (2, 4), (3, 3), (2, 3), (2, 2) and (1, k), k ≥ 1. The

corresponding graphs are Ẽ
(3)
8 , E

(3)
8 , Ẽ

(3)
7 , E

(3)
7 , E

(3)
6 ,

and D
(3)
n .
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Now we can assume that all degrees of vertices in H have
degrees at most 2.

■ If H has no branching edge, then H = An (a path).

■ If H has exactly one branching edge, then H = F
(3)
i,j,k.

We will first show that ρ(F
(3)
3,3,3) > ρ3 (see below).

1
4

1
3

3
8

3
4

2
3

5
8
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Now we can assume that all degrees of vertices in H have
degrees at most 2.

■ If H has no branching edge, then H = An (a path).

■ If H has exactly one branching edge, then H = F
(3)
i,j,k.

We will first show that ρ(F
(3)
3,3,3) > ρ3 (see below).

1
4

1
3

3
8

3
4

2
3

5
8

So H must not contain the subgraph F
(3)
3,3,3. Since

i ≤ j ≤ k, we must have i = 1 or 2.
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When i = 2 and j = 3, as ρ(F
(3)
2,3,4) = ρ3, there are only two

possible hypergraphs: F
(3)
2,3,3 and F

(3)
2,3,4.
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When i = 2 and j = 3, as ρ(F
(3)
2,3,4) = ρ3, there are only two

possible hypergraphs: F
(3)
2,3,3 and F

(3)
2,3,4.

When i = 2 and j = 2, as ρ(F
(3)
2,2,7) = ρ3, we must have

2 ≤ k ≤ 7.
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When i = 2 and j = 3, as ρ(F
(3)
2,3,4) = ρ3, there are only two

possible hypergraphs: F
(3)
2,3,3 and F

(3)
2,3,4.

When i = 2 and j = 2, as ρ(F
(3)
2,2,7) = ρ3, we must have

2 ≤ k ≤ 7.

When i = 1, as ρ(F
(3)
1,5,6) = ρ3, we must have j ≤ 5. When

j = 5, we have two possible hypergraphs: F
(3)
1,5,5 and F

(3)
1,5,6.

When j = 4, as ρ(F
(3)
1,4,8) = ρ3, we have 5 possible

hypergraphs: F
(3)
1,4,k for 4 ≤ k ≤ 8. When j = 3, as

ρ(F
(3)
1,3,14) = ρ3, we have 12 possible hypergraphs: F

(3)
1,3,k for

3 ≤ k ≤ 14. When j = 2, all the values of k are possible,

and we get the family B
(3)
n . When j = 1, all the values of k

are possible, and we get the family D′(3)n .
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■ If H has exactly two branching edges, then

H = G
(3)
i,j:k:l,m (i ≤ j, l ≤ m).

If i+ j ≥ 3 and l +m ≥ 3, then H contains a subgraph

G
(3)
1,2:k:1,2 = B̃

(3)
k+8. Since the family B̃

(3)
n have the spectral

radius equal to ρ3, we conclude H must be B̃
(3)
n itself.

For the remaining cases, we can assume i = j = 1. We

have ρ(H) ≥ ρ(G
(3)
1,1:0:2,2) > ρ3 (see the labeling below.)

a 1
4-supernormal labeling of G

(3)
1,1:0:2,2

1
4

4
9

2
3

3
4

1
4

3
4

5
9

1
3

1
4
3
4

1
3
2
3

1
43

4
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In particular, there is no such hypergraph with m ≥ 5.
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In particular, there is no such hypergraph with m ≥ 5.

If m = 4, then we only get one hypergraph G
(3)
1,1:0:1,4.
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In particular, there is no such hypergraph with m ≥ 5.

If m = 4, then we only get one hypergraph G
(3)
1,1:0:1,4.

If m = 3, as ρ(G
(3)
1,1:6:1,3) = ρ3, we get 7 hypergraphs:

ρ(G
(3)
1,1:k:1,3) for 0 ≤ k ≤ 6.
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In particular, there is no such hypergraph with m ≥ 5.

If m = 4, then we only get one hypergraph G
(3)
1,1:0:1,4.

If m = 3, as ρ(G
(3)
1,1:6:1,3) = ρ3, we get 7 hypergraphs:

ρ(G
(3)
1,1:k:1,3) for 0 ≤ k ≤ 6.

If m = 2, then any k works. We get the family B̄
(3)
n .
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In particular, there is no such hypergraph with m ≥ 5.

If m = 4, then we only get one hypergraph G
(3)
1,1:0:1,4.

If m = 3, as ρ(G
(3)
1,1:6:1,3) = ρ3, we get 7 hypergraphs:

ρ(G
(3)
1,1:k:1,3) for 0 ≤ k ≤ 6.

If m = 2, then any k works. We get the family B̄
(3)
n .

If m = 1, then any k works. We get the family B′(3)n .
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■ H contains at least three branching edges. Since all
degrees of vertices are at most 2, any branching edges lie
in a path. Thus, H contains a subgraph M ′ in the
following figure. By contracting the middle edges
connecting the branching edges, we get a hypergraph M .
We can see that M admits the following 1

4-supernormal
labeling.

· · · · · ·
a subgraph M ′

after contraction: M

1
4

3
4

4
9

5
9

1
4

3
4

4
9

5
9

1
4

3
4

1
4

3
4

1
4

3
4

We have ρ(H) ≥ ρ(M ′) ≥ ρ(M) > ρ3. �
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■ An r-uniform hypergraph H = (V,E) is called reducible
if every edge e contains a leaf vertex ve.
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■ An r-uniform hypergraph H = (V,E) is called reducible
if every edge e contains a leaf vertex ve.

■ Removing ve from each e, we get a H ′ = (V ′, E ′), i.e.,
V ′ = V \ {ve : e ∈ E} and E ′ = {e− ve : e ∈ E}.
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■ An r-uniform hypergraph H = (V,E) is called reducible
if every edge e contains a leaf vertex ve.

■ Removing ve from each e, we get a H ′ = (V ′, E ′), i.e.,
V ′ = V \ {ve : e ∈ E} and E ′ = {e− ve : e ∈ E}.

■ We say that H ′ is reduced from H and H extends H ′.

E7 E
(3)
7
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■ An r-uniform hypergraph H = (V,E) is called reducible
if every edge e contains a leaf vertex ve.

■ Removing ve from each e, we get a H ′ = (V ′, E ′), i.e.,
V ′ = V \ {ve : e ∈ E} and E ′ = {e− ve : e ∈ E}.

■ We say that H ′ is reduced from H and H extends H ′.

E7 E
(3)
7

Lemma If H exends H ′, then

ρ(H) ≤ ρr iff ρ(H ′) ≤ ρr−1.
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ρ(H) ≤ ρr implies that H has a consistently α-normal
labeling with α ≤ 1

4 . Since the labeling near every leaf vertex
is 1, this labeling induces an α-normal labeling of H ′. Thus,
ρ(H ′) ≤ ρr−1.
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ρ(H) ≤ ρr implies that H has a consistently α-normal
labeling with α ≤ 1

4 . Since the labeling near every leaf vertex
is 1, this labeling induces an α-normal labeling of H ′. Thus,
ρ(H ′) ≤ ρr−1.

Every step can be reversed.
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ρ(H) ≤ ρr implies that H has a consistently α-normal
labeling with α ≤ 1

4 . Since the labeling near every leaf vertex
is 1, this labeling induces an α-normal labeling of H ′. Thus,
ρ(H ′) ≤ ρr−1.

Every step can be reversed.

“ρ(H) = ρr iff ρ(H ′) = ρr−1” can be proved in a similar way.
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Theorem [Lu, Man, 2013+]

■ For r ≥ 5, every r-uniform hypergraph with ρ(H) ≤ ρr is
reducible.

■ For r = 4, there is only one irreducible r-uniform
hypergraph with ρ(H) = ρr and four irreducible
r-uniform hypergraph with ρ(H) < ρr

H
(4)
1,1,2,2 H

(4)
1,1,1,1 H

(4)
1,1,1,2

H
(4)
1,1,1,3 H

(4)
1,1,1,4
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Theorem [Lu-Man 2013+] Let r ≥ 4 and
ρr = (r − 1)! r

√
4. If the spectral radius of a connected

r-uniform hypergraph H is equal to ρr, then H must be one
of the following graphs:

1. Extended from 3-graphs: C
(r)
n , D̃

(r)
n , B̃

(r)
n , B̃D

(r)

n , C
(r)
2 ,

S
(r)
4 , Ẽ

(r)
6 , Ẽ

(r)
7 , Ẽ

(r)
8 , F

(r)
2,3,4, F

(r)
2,2,7, F

(r)
1,5,6, F

(r)
1,4,8, F

(r)
1,3,14,

G
(r)
1,1:0:1,4, and G

(r)
1,1:6:1,3.

2. Extended from the 4-graph: H
(r)
1,1,2,2.
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Theorem [Lu-Man 2013+] Let r ≥ 4 and
ρr = (r − 1)! r

√
4. If the spectral radius of a connected

r-uniform hypergraph H is less than ρr, then H must be one
of the following graphs:

1. Extended from 3-graphs: A
(r)
n , D

(r)
n , D′(r)n , B

(r)
n , B′(r)n ,

B̄
(r)
n , BD

(r)
n , E

(r)
6 , E

(r)
7 , E

(r)
8 , F

(r)
2,3,3, F

(r)
2,2,j (for

2 ≤ j ≤ 6), F
(r)
1,3,j (for 3 ≤ j ≤ 13), F

(r)
1,4,j (for

4 ≤ j ≤ 7), F
(r)
1,5,5, and G

(r)
1,1:j:1,3 (for 0 ≤ j ≤ 5).

2. Extended from 4-graphs: H
(r)
1,1,1,1, H

(r)
1,1,1,2, H

(r)
1,1,1,3,

H
(r)
1,1,1,4.
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Are these r-uniform hypergraphs with ρ(H) ≤ ρr associated
to some algebraic or geometric structures as the ADE
system does?
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Are these r-uniform hypergraphs with ρ(H) ≤ ρr associated
to some algebraic or geometric structures as the ADE
system does?

Reference: Linyuan Lu and Shoudong Man, Connected
Hypergraphs with Small Spectral Radius
http://arxiv.org/pdf/1402.5402

Homepage: http://www.math.sc.edu/∼ lu/

Thank You
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