Hypergraphs with Small Spectral Radius

Linyuan Lu

University of South Carolina
Collaborator: Shoudong Man
Selected Topics on Spectral Graph Theory (IV) Nankai University, Tianjin, June 6, 2014

Five talks

Selected Topics on Spectral Graph Theory

1. Graphs with Small Spectral Radius Time: Friday (May 16) 4pm.-5:30p.m.
2. Laplacian and Random Walks on Graphs Time: Thursday (May 22) 4pm.-5:30p.m.
3. Spectra of Random Graphs Time: Thursday (May 29) 4pm.-5:30p.m.
4. Hypergraphs with Small Spectral Radius Time: Friday (June 6) 4pm.-5:30p.m.
5. Laplacian of Random Hypergraphs Time: Thursday (June 12) 4pm.-5:30p.m.

Backgrounds

I: Spectral Graph Theory II: Random Graph Theory III: Random Matrix Theory

Notations

■ $G=(V, E)$: a simple connected graph on n vertices

Notations

■ $G=(V, E)$: a simple connected graph on n vertices $A(G)$: the adjacency matrix

Notations

■ $G=(V, E)$: a simple connected graph on n vertices $A(G)$: the adjacency matrix $\phi_{G}(\lambda)=\operatorname{det}(\lambda I-A(G))$: the characteristic polynomial

Notations

■ $G=(V, E)$: a simple connected graph on n vertices $A(G)$: the adjacency matrix $\phi_{G}(\lambda)=\operatorname{det}(\lambda I-A(G))$: the characteristic polynomial $\rho(G)$ (spectral radius): the largest root of $\phi_{G}(\lambda)$

Notations

■ $G=(V, E)$: a simple connected graph on n vertices

- $A(G)$: the adjacency matrix
- $\phi_{G}(\lambda)=\operatorname{det}(\lambda I-A(G))$: the characteristic polynomial
- $\rho(G)$ (spectral radius): the largest root of $\phi_{G}(\lambda)$

S_{4}

$$
A\left(S_{4}\right)=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Notations

■ $G=(V, E)$: a simple connected graph on n vertices $A(G)$: the adjacency matrix
$\phi_{G}(\lambda)=\operatorname{det}(\lambda I-A(G))$: the characteristic polynomial $\rho(G)$ (spectral radius): the largest root of $\phi_{G}(\lambda)$

$$
A\left(S_{4}\right)=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

$$
\phi_{S_{4}}=\lambda^{4}-3 \lambda^{2}
$$

$$
\rho\left(S_{4}\right)=\sqrt{3}
$$

Perron-Frobenius theorem

- $A=\left(a_{i j}\right)$ is non-negative if $a_{i j} \geq 0$.

■ A is irreducible if there exists a m such that A^{m} is positive.
A is aperiodic if the greatest common divisor of all natural numbers m such that $\left(A^{m}\right)_{i i}>0$ is 1 .

Perron-Frobenius theorem

- $A=\left(a_{i j}\right)$ is non-negative if $a_{i j} \geq 0$.
- A is irreducible if there exists a m such that A^{m} is positive.
- A is aperiodic if the greatest common divisor of all natural numbers m such that $\left(A^{m}\right)_{i i}>0$ is 1 .

Perron-Frobenius theorem: If A is an aperiodic irreducible non-negative matrix with spectral radius r, then r is the largest eigenvalue in absolute value of A, and A has an eigenvector α with eigenvalue r whose components are all positive.

Facts on $\rho(G)$

Apply Perron-Frobenius theorem to the adjacency matrix of a connected graph G.

- The eigenvector for $\rho(G)$ can be chosen so that all entries are positive.

Facts on $\rho(G)$

Apply Perron-Frobenius theorem to the adjacency matrix of a connected graph G.

- The eigenvector for $\rho(G)$ can be chosen so that all entries are positive.
- If α is a positive vector corresponding to the eigenvector λ, then $\rho(G)=\lambda$.

Facts on $\rho(G)$

Apply Perron-Frobenius theorem to the adjacency matrix of a connected graph G.

- The eigenvector for $\rho(G)$ can be chosen so that all entries are positive.
- If α is a positive vector corresponding to the eigenvector λ, then $\rho(G)=\lambda$.
■ For any proper subgraph H of G, we have

$$
\rho(H)<\rho(G) .
$$

Graphs with $\rho(G)<2$

Smith [1970]: $\rho(G)<2$ if and only if G is a simple-laced Dynkin diagram.

Dynkin diagrams

■ In the theory of Lie groups and Lie algebras, the simple Lie algebras are classified by Dynkin diagrams of their root systems.

Dynkin diagrams

- In the theory of Lie groups and Lie algebras, the simple Lie algebras are classified by Dynkin diagrams of their root systems.
- There are four infinite families $\left(A_{n}, B_{n}, C_{n}\right.$, and $\left.D_{n}\right)$, and five exceptional cases $\left(E_{6}, E_{7}, E_{8}, F_{4}\right.$, and $\left.G_{2}\right)$.

Dynkin diagrams

- In the theory of Lie groups and Lie algebras, the simple Lie algebras are classified by Dynkin diagrams of their root systems.
- There are four infinite families $\left(A_{n}, B_{n}, C_{n}\right.$, and $\left.D_{n}\right)$, and five exceptional cases $\left(E_{6}, E_{7}, E_{8}, F_{4}\right.$, and $\left.G_{2}\right)$.
- If all roots have the same length, then the root system is said to be simply laced; this occurs in the cases A, D and E.

Dynkin diagrams

- In the theory of Lie groups and Lie algebras, the simple Lie algebras are classified by Dynkin diagrams of their root systems.
- There are four infinite families $\left(A_{n}, B_{n}, C_{n}\right.$, and $\left.D_{n}\right)$, and five exceptional cases $\left(E_{6}, E_{7}, E_{8}, F_{4}\right.$, and $\left.G_{2}\right)$.
- If all roots have the same length, then the root system is said to be simply laced; this occurs in the cases A, D and E.
- Smith's theorem gives an equivalent graph-theory definition for the simply-laced Dynkin diagrams.

Root system

A root system in \mathbb{R}^{n} is a finite set Φ of non-zero vectors (called roots) that satisfy the following conditions:
■ The roots span \mathbb{R}^{n}.

- The only scalar multiples of a root $x \in \Phi$ that belong to Φ are x itself and $-x$.
- For every root $x \in \Phi$, the set Φ is closed under reflection through the hyperplane perpendicular to x.
- If x and y are roots in Φ, then the projection of y onto the line through x is a half-integral multiple of x.

Connection

$$
\rho(A)<2
$$

Connection

$$
\begin{gathered}
\rho(A)<2 \Leftrightarrow \\
I-\frac{1}{2} A \text { is positive definite. }
\end{gathered}
$$

Connection

$$
\rho(A)<2 \Leftrightarrow
$$

$I-\frac{1}{2} A$ is positive definite. \Leftrightarrow
Write $I-\frac{1}{2} A=B B^{\prime}$.

Connection

$$
\rho(A)<2 \Leftrightarrow
$$

$I-\frac{1}{2} A$ is positive definite. \Leftrightarrow

$$
\text { Write } I-\frac{1}{2} A=B B^{\prime} . \Leftrightarrow
$$

Let $\alpha_{1}, \ldots, \alpha_{n}$ be the column vector of B.
Then $\alpha_{1}, \ldots, \alpha_{n}$ forms a base of a root system.

Graphs with $\rho(G)=2$

Smith [1970]: $\rho(G)=2$ if and only if G is a simple extended Dynkin diagram.

Proof of Smith's theorem

First, we show that $\tilde{A}_{n}, \tilde{D}_{n}, \tilde{E}_{6}, \tilde{E}_{7}$, and \tilde{E}_{8} all have eigenvalue 2 with the positive eigenvectors below:

Continue

By Perron-Frobenius' theorem, $\tilde{A}_{n}, \tilde{D}_{n}, \tilde{E}_{6}, \tilde{E}_{7}$, and \tilde{E}_{8} all have spectral radius 2 . Since $A_{n}, D_{n}, E_{6}, E_{7}$, and E_{8} are proper subgraphs, their spectral radii are less than 2 .

Continue

By Perron-Frobenius' theorem, $\tilde{A}_{n}, \tilde{D}_{n}, \tilde{E}_{6}, \tilde{E}_{7}$, and \tilde{E}_{8} all have spectral radius 2 . Since $A_{n}, D_{n}, E_{6}, E_{7}$, and E_{8} are proper subgraphs, their spectral radii are less than 2.

Now we show that the only connected graphs G with $\rho(G) \leq 2$ are in Smith's list.

Continue

By Perron-Frobenius' theorem, $\tilde{A}_{n}, \tilde{D}_{n}, \tilde{E}_{6}, \tilde{E}_{7}$, and \tilde{E}_{8} all have spectral radius 2. Since $A_{n}, D_{n}, E_{6}, E_{7}$, and E_{8} are proper subgraphs, their spectral radii are less than 2.

Now we show that the only connected graphs G with $\rho(G) \leq 2$ are in Smith's list.
If G contains a cycle C, then $\rho(G)>2$ unless $G=C$.

Continue

By Perron-Frobenius' theorem, $\tilde{A}_{n}, \tilde{D}_{n}, \tilde{E}_{6}, \tilde{E}_{7}$, and \tilde{E}_{8} all have spectral radius 2. Since $A_{n}, D_{n}, E_{6}, E_{7}$, and E_{8} are proper subgraphs, their spectral radii are less than 2.

Now we show that the only connected graphs G with $\rho(G) \leq 2$ are in Smith's list.
If G contains a cycle C, then $\rho(G)>2$ unless $G=C$. We can assume G is a tree.

Continue

By Perron-Frobenius' theorem, $\tilde{A}_{n}, \tilde{D}_{n}, \tilde{E}_{6}, \tilde{E}_{7}$, and \tilde{E}_{8} all have spectral radius 2. Since $A_{n}, D_{n}, E_{6}, E_{7}$, and E_{8} are proper subgraphs, their spectral radii are less than 2.

Now we show that the only connected graphs G with $\rho(G) \leq 2$ are in Smith's list.
If G contains a cycle C, then $\rho(G)>2$ unless $G=C$. We can assume G is a tree.

If there is a vertex of degree at least 4 , then $\rho(G)>2$, unless $G=D_{5}$.

Continue

By Perron-Frobenius' theorem, $\tilde{A}_{n}, \tilde{D}_{n}, \tilde{E}_{6}, \tilde{E}_{7}$, and \tilde{E}_{8} all have spectral radius 2. Since $A_{n}, D_{n}, E_{6}, E_{7}$, and E_{8} are proper subgraphs, their spectral radii are less than 2.

Now we show that the only connected graphs G with $\rho(G) \leq 2$ are in Smith's list.
If G contains a cycle C, then $\rho(G)>2$ unless $G=C$. We can assume G is a tree.

If there is a vertex of degree at least 4 , then $\rho(G)>2$, unless $G=D_{5}$. We can assume the degrees of G is at most 3 .

Continue

By Perron-Frobenius' theorem, $\tilde{A}_{n}, \tilde{D}_{n}, \tilde{E}_{6}, \tilde{E}_{7}$, and \tilde{E}_{8} all have spectral radius 2. Since $A_{n}, D_{n}, E_{6}, E_{7}$, and E_{8} are proper subgraphs, their spectral radii are less than 2.

Now we show that the only connected graphs G with $\rho(G) \leq 2$ are in Smith's list.
If G contains a cycle C, then $\rho(G)>2$ unless $G=C$. We can assume G is a tree.

If there is a vertex of degree at least 4 , then $\rho(G)>2$, unless $G=D_{5}$. We can assume the degrees of G is at most 3 .

If there are two vertices of degree 3 , then G contains a subgraph \tilde{D}_{*}. Hence $\rho(G)>2$, unless $G=\tilde{D}_{n}$.

Continue

If G has one vertex of degree 3 , let i, j, k (say $i \leq j \leq k$) be the length of three paths attached to v. Write $G=E_{i, j, k}$.
■ If $i \geq 2$, then $\rho(G)>\rho\left(E_{2,2,2}\right)=2$ unless

$$
G=E_{2,2,2}=\tilde{E}_{6} .
$$

Continue

If G has one vertex of degree 3 , let i, j, k (say $i \leq j \leq k$) be the length of three paths attached to v. Write $G=E_{i, j, k}$.
■ If $i \geq 2$, then $\rho(G)>\rho\left(E_{2,2,2}\right)=2$ unless
$G=E_{2,2,2}=\tilde{E}_{6}$. We can assume $i=1$.

Continue

If G has one vertex of degree 3 , let i, j, k (say $i \leq j \leq k$) be the length of three paths attached to v. Write $G=E_{i, j, k}$.

- If $i \geq 2$, then $\rho(G)>\rho\left(E_{2,2,2}\right)=2$ unless
$G=E_{2,2,2}=\tilde{E}_{6}$. We can assume $i=1$.
- If $i=1$ and $j \geq 3$, then $\rho(G)>\rho\left(E_{1,3,3}\right)=2$ unless $G=E_{1,3,3}=\tilde{E}_{7}$.

Continue

If G has one vertex of degree 3 , let i, j, k (say $i \leq j \leq k$) be the length of three paths attached to v. Write $G=E_{i, j, k}$.

- If $i \geq 2$, then $\rho(G)>\rho\left(E_{2,2,2}\right)=2$ unless
$G=E_{2,2,2}=\tilde{E}_{6}$. We can assume $i=1$.
- If $i=1$ and $j \geq 3$, then $\rho(G)>\rho\left(E_{1,3,3}\right)=2$ unless $G=E_{1,3,3}=\tilde{E}_{7}$. We can assume $i=1$ and $j=1$ or 2 .

Continue

If G has one vertex of degree 3 , let i, j, k (say $i \leq j \leq k$) be the length of three paths attached to v. Write $G=E_{i, j, k}$.

- If $i \geq 2$, then $\rho(G)>\rho\left(E_{2,2,2}\right)=2$ unless
$G=E_{2,2,2}=\tilde{E}_{6}$. We can assume $i=1$.
- If $i=1$ and $j \geq 3$, then $\rho(G)>\rho\left(E_{1,3,3}\right)=2$ unless $G=E_{1,3,3}=\tilde{E}_{7}$. We can assume $i=1$ and $j=1$ or 2 .
- If $i=1$ and $j=1$, then $G=D_{n}$.

Continue

If G has one vertex of degree 3 , let i, j, k (say $i \leq j \leq k$) be the length of three paths attached to v. Write $G=E_{i, j, k}$.

- If $i \geq 2$, then $\rho(G)>\rho\left(E_{2,2,2}\right)=2$ unless $G=E_{2,2,2}=\tilde{E}_{6}$. We can assume $i=1$.
- If $i=1$ and $j \geq 3$, then $\rho(G)>\rho\left(E_{1,3,3}\right)=2$ unless $G=E_{1,3,3}=\tilde{E}_{7}$. We can assume $i=1$ and $j=1$ or 2 .
- If $i=1$ and $j=1$, then $G=D_{n}$.

If $i=1, j=2$, and $k \geq 5$, then $\rho(G)>\rho\left(E_{1,2,5}\right)=2$ unless $G=E_{1,2,5}=\tilde{E}_{8}$.

Continue

If G has one vertex of degree 3 , let i, j, k (say $i \leq j \leq k$) be the length of three paths attached to v. Write $G=E_{i, j, k}$.
■ If $i \geq 2$, then $\rho(G)>\rho\left(E_{2,2,2}\right)=2$ unless $G=E_{2,2,2}=\tilde{E}_{6}$. We can assume $i=1$.

- If $i=1$ and $j \geq 3$, then $\rho(G)>\rho\left(E_{1,3,3}\right)=2$ unless $G=E_{1,3,3}=\tilde{E}_{7}$. We can assume $i=1$ and $j=1$ or 2 .
- If $i=1$ and $j=1$, then $G=D_{n}$.

■ If $i=1, j=2$, and $k \geq 5$, then $\rho(G)>\rho\left(E_{1,2,5}\right)=2$ unless $G=E_{1,2,5}=\tilde{E}_{8}$.
■ If $i=1, j=2$, and $k=2,3,4$, then $G=E_{6}, E_{7}$, and E_{8}.

Continue

If G has one vertex of degree 3 , let i, j, k (say $i \leq j \leq k$) be the length of three paths attached to v. Write $G=E_{i, j, k}$.
■ If $i \geq 2$, then $\rho(G)>\rho\left(E_{2,2,2}\right)=2$ unless $G=E_{2,2,2}=\tilde{E}_{6}$. We can assume $i=1$.

- If $i=1$ and $j \geq 3$, then $\rho(G)>\rho\left(E_{1,3,3}\right)=2$ unless $G=E_{1,3,3}=\tilde{E}_{7}$. We can assume $i=1$ and $j=1$ or 2 .
- If $i=1$ and $j=1$, then $G=D_{n}$.

■ If $i=1, j=2$, and $k \geq 5$, then $\rho(G)>\rho\left(E_{1,2,5}\right)=2$ unless $G=E_{1,2,5}=\tilde{E}_{8}$.

- If $i=1, j=2$, and $k=2,3,4$, then $G=E_{6}, E_{7}$, and E_{8}.

If all degrees of G are at most 2 , then $G=A_{n}$.

Rayleigh quotient

For a real symmetric matrix $A=\left(a_{i j}\right)$, consider the following optimization problem.

Rayleigh quotient

For a real symmetric matrix $A=\left(a_{i j}\right)$, consider the following optimization problem.
maximize $\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}$ subject to $\sum_{i=1}^{n} x_{i}^{2}=1$.

Rayleigh quotient

For a real symmetric matrix $A=\left(a_{i j}\right)$, consider the following optimization problem.
maximize $\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}$ subject to $\sum_{i=1}^{n} x_{i}^{2}=1$.
Suppose the maximum value λ is achieved at x^{*}. Then
■ $\quad \sum_{j=1}^{n} a_{i j} x_{j}^{*}=\lambda x_{i}^{*}$ for each i. I.e., $A x^{*}=\lambda x^{*}$.

Rayleigh quotient

For a real symmetric matrix $A=\left(a_{i j}\right)$, consider the following optimization problem.
maximize $\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}$ subject to $\sum_{i=1}^{n} x_{i}^{2}=1$.
Suppose the maximum value λ is achieved at x^{*}. Then
■ $\quad \sum_{j=1}^{n} a_{i j} x_{j}^{*}=\lambda x_{i}^{*}$ for each i. I.e., $A x^{*}=\lambda x^{*}$.

- $\lambda=\rho(A)$.

Hypermatrix

A real non-negative hypermatrix $A=\left(a_{i_{1} i_{2} \cdots i_{r}}\right)$ is called symmetric if it $a_{\sigma\left(i_{1}\right) \sigma\left(i_{2}\right) \cdots \sigma\left(i_{r}\right)}=a_{i_{1} i_{2} \cdots i_{r}}$ for any permutation σ of indices.
Consider the following optimization problem.

Hypermatrix

A real non-negative hypermatrix $A=\left(a_{i_{1} i_{2} \cdots i_{r}}\right)$ is called symmetric if it $a_{\sigma\left(i_{1}\right) \sigma\left(i_{2}\right) \cdots \sigma\left(i_{r}\right)}=a_{i_{1} i_{2} \cdots i_{r}}$ for any permutation σ of indices.
Consider the following optimization problem. maximize $\sum_{i_{1}, \ldots, i_{r}=1}^{n} a_{i_{1} i_{2} \cdots i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}$ subject to $\sum_{i=1}^{n} x_{i}^{p}=1$.

Hypermatrix

A real non-negative hypermatrix $A=\left(a_{i_{1} i_{2} \cdots i_{r}}\right)$ is called symmetric if it $a_{\sigma\left(i_{1}\right) \sigma\left(i_{2}\right) \cdots \sigma\left(i_{r}\right)}=a_{i_{1} i_{2} \cdots i_{r}}$ for any permutation σ of indices.
Consider the following optimization problem. maximize $\sum_{i_{1}, \ldots, i_{r}=1}^{n} a_{i_{1} i_{2} \cdots i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}$ subject to $\sum_{i=1}^{n} x_{i}^{p}=1$.
Suppose the maximum value λ is achieved at x^{*}. Then
■ $\sum_{i_{2} \ldots, i_{r}=1}^{n} a_{i i_{2} \cdots i_{r}} x_{i_{2}}^{*} \cdots x_{i_{r}}^{*}=\lambda r x_{i}^{* r-1}$ for each i such that $x_{i} \neq 0$.

Hypermatrix

A real non-negative hypermatrix $A=\left(a_{i_{1} i_{2} \cdots i_{r}}\right)$ is called symmetric if it $a_{\sigma\left(i_{1}\right) \sigma\left(i_{2}\right) \cdots \sigma\left(i_{r}\right)}=a_{i_{1} i_{2} \cdots i_{r}}$ for any permutation σ of indices.
Consider the following optimization problem. maximize $\sum_{i_{1}, \ldots, i_{r}=1}^{n} a_{i_{1} i_{2} \cdots i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}$ subject to $\sum_{i=1}^{n} x_{i}^{p}=1$.
Suppose the maximum value λ is achieved at x^{*}. Then
■ $\sum_{i_{2} \ldots, i_{r}=1}^{n} a_{i i_{2} \cdots i_{r}} x_{i_{2}}^{*} \cdots x_{i_{r}}^{*}=\lambda r x_{i}^{* r-1}$ for each i such that $x_{i} \neq 0$.

- λ is called (the largest) p-spectrum of A.

Part II: hypergraphs

The r-uniform hypergraph (or r-graph) $H=(V, E)$:
■ V : the vertex set.

- $E \subset\binom{V}{r}$: the set of (hyper)edges.

Part II: hypergraphs

The r-uniform hypergraph (or r-graph) $H=(V, E)$:
■ V : the vertex set.

- $E \subset\binom{V}{r}$: the set of (hyper)edges.

An example of 3 -graph:

H has 11 vertices and 6 edges.

Basic concepts

■ A walk: $v_{0} e_{1} v_{1} e_{2} v_{2} \cdots, e_{l} v_{l}$ where $v_{i-1}, v_{i} \in e_{i}$ for $1 \leq i \leq l$.

- A path: a walk so that all v_{i} 's e_{i} 's are distinct.

■ A closed walk: a walk with $v_{0}=v_{l}$.

- A cycle: a path with $v_{0}=v_{l}$.

Basic concepts

■ A walk: $v_{0} e_{1} v_{1} e_{2} v_{2} \cdots, e_{l} v_{l}$ where $v_{i-1}, v_{i} \in e_{i}$ for $1 \leq i \leq l$.
■ A path: a walk so that all v_{i} 's e_{i} 's are distinct.

- A closed walk: a walk with $v_{0}=v_{l}$.
- A cycle: a path with $v_{0}=v_{l}$.
H is connected if for any two vertices u, v, there is a $u v$-path: $v_{0} e_{1} v_{1} e_{2} v_{2} \cdots, e_{l} v_{l}$ so that $v_{0}=u$ and $v_{l}=v$.

Basic concepts

■ A walk: $v_{0} e_{1} v_{1} e_{2} v_{2} \cdots, e_{l} v_{l}$ where $v_{i-1}, v_{i} \in e_{i}$ for $1 \leq i \leq l$.
■ A path: a walk so that all v_{i} 's e_{i} 's are distinct.

- A closed walk: a walk with $v_{0}=v_{l}$.
- A cycle: a path with $v_{0}=v_{l}$.
H is connected if for any two vertices u, v, there is a $u v$-path: $v_{0} e_{1} v_{1} e_{2} v_{2} \cdots, e_{l} v_{l}$ so that $v_{0}=u$ and $v_{l}=v$.
H is simple if $\left|e \cap e^{\prime}\right| \leq 1$ for any $e, e^{\prime} \in E$.

Basic concepts

■ A walk: $v_{0} e_{1} v_{1} e_{2} v_{2} \cdots, e_{l} v_{l}$ where $v_{i-1}, v_{i} \in e_{i}$ for $1 \leq i \leq l$.

- A path: a walk so that all v_{i} 's e_{i} 's are distinct.
- A closed walk: a walk with $v_{0}=v_{l}$.
- A cycle: a path with $v_{0}=v_{l}$.
H is connected if for any two vertices u, v, there is a $u v$-path: $v_{0} e_{1} v_{1} e_{2} v_{2} \cdots, e_{l} v_{l}$ so that $v_{0}=u$ and $v_{l}=v$.
H is simple if $\left|e \cap e^{\prime}\right| \leq 1$ for any $e, e^{\prime} \in E$.
A hypertree is an acyclic connected hypergraph.

Spectral radius of H

The spectral radius of H is

$$
\begin{aligned}
\rho(H) & =r!\max _{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}-0} \frac{\sum_{\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \in E} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}}{\sum_{v \in V} x_{v}^{r}} \\
& =r!\max _{\|\mathbf{x}\|_{r}=1} \sum_{\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \in E} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} .
\end{aligned}
$$

Spectral radius of H

The spectral radius of H is

$$
\begin{aligned}
\rho(H) & =r!\max _{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}-0} \frac{\sum_{\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \in E} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}}{\sum_{v \in V} x_{v}^{r}} \\
& =r!\max _{\|\mathbf{x}\|_{r}=1} \sum_{\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \in E} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} .
\end{aligned}
$$

$\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called an eigenvector of $\rho(H)$ if the above maximum reaches at \mathbf{x}.

Spectral radius of H

The spectral radius of H is

$$
\begin{aligned}
\rho(H) & =r!\max _{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}-0} \frac{\sum_{\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \in E} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}}{\sum_{v \in V} x_{v}^{r}} \\
& =r!\max _{\|\mathbf{x}\|_{r}=1} \sum_{\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \in E} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} .
\end{aligned}
$$

$\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called an eigenvector of $\rho(H)$ if the above maximum reaches at \mathbf{x}.

$\rho(H)$ maximizes $3!\left(x_{1} x_{2} x_{3}+x_{3} x_{4} x_{5}\right)$ subject to $x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}+x_{5}^{3}=1$.

Spectral radius of H

The spectral radius of H is

$$
\begin{aligned}
\rho(H) & =r!\max _{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}-0} \frac{\sum_{\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \in E} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}}{\sum_{v \in V} x_{v}^{r}} \\
& =r!\max _{\|\mathbf{x}\|_{r}=1} \sum_{\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \in E} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} .
\end{aligned}
$$

$\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called an eigenvector of $\rho(H)$ if the above maximum reaches at \mathbf{x}.

$\rho(H)$ maximizes $3!\left(x_{1} x_{2} x_{3}+x_{3} x_{4} x_{5}\right)$ subject to $x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}+x_{5}^{3}=1$.

$$
\rho(H)=2 \sqrt[3]{2}, \text { eigenvector } \mathbf{x}=(1,1, \sqrt[3]{2}, 1,1)
$$

Spectra of hypergraphs

- Spectrum of real symmetric hypermatrix
- Qi [2005]
- Chang-Pearson-Zhang [2008]
- Fridland-Gaubert [2010]
- Friedland-Gaubert-Han [2013]
- Spectrum of adjacency tensor of hypergraphs
- Cooper and Dutle [2012]
- Keevash-Lenz-Mubayi [2013+]
- Nikiforov [2013+]
- Laplacian of hypergraphs
- Chung [1993]
- Rodríguz [2009]
- Lu-Peng [2012]

Perron-Frobenius theory

Perron-Frobenius theorem for graphs: Let A be the adjacency matrix of a connected graph G. Then

- A has a unique (up to a scale) positive eigenvector α.
- The eigenvector corresponds to the largest eigenvalue of A.
- Any nonnegative eigenvector must be positive.

Perron-Frobenius theory

Perron-Frobenius theorem for graphs: Let A be the adjacency matrix of a connected graph G. Then

- A has a unique (up to a scale) positive eigenvector α.
- The eigenvector corresponds to the largest eigenvalue of A.
- Any nonnegative eigenvector must be positive.

Perron-Frobenius theorem for hypergraphs [Cooper-Dutle 2012,Fridland-Gaubert-2010, Nikiforov 2013+] If H is connected, then there is a unique positive eigenvector (up to a scale) for $\rho(H)$.

Limit point of spectral radius

Let $A_{n}^{(r)}$ denote the simple r-uniform path on n edges and

$$
\rho_{r}:=\lim _{n \rightarrow \infty} \rho\left(A_{n}^{(r)}\right) .
$$

It is not hard to show $\rho_{r}=(r-1)!\sqrt[r]{4}$.

Limit point of spectral radius

Let $A_{n}^{(r)}$ denote the simple r-uniform path on n edges and

$$
\rho_{r}:=\lim _{n \rightarrow \infty} \rho\left(A_{n}^{(r)}\right) .
$$

It is not hard to show $\rho_{r}=(r-1)!\sqrt[r]{4}$.
Question: Can we classify all r-uniform hypergraphs H with $\rho(H) \leq \rho_{r}$?

Classification for $\rho(H)=\rho_{3}$

Theorem [Lu-Man, 2013+] The complete list of all connected 3 -uniform hypergraph H with $\rho(H)=\rho_{3}$ consists of 4 families and 12 exceptional hypergraphs.

Continue

Classification for $\rho(H)<\rho_{3}$

Theorem [Lu-Man, 2013+] The complete list of all connected 3 -uniform hypergraph H with $\rho(H)<\rho_{3}$ consists of 7 families and 31 exceptional hypergraphs.

- $F_{1,3, k}^{(3)}($ for $3 \leq k \leq 13)$
- $F_{1,4, k}^{(3)}($ for $4 \leq k \leq 7)$.
- $G_{1,1::: 1,3}^{(3)}($ for $0 \leq k \leq 5)$.

Three families

$$
F_{i, j, k}^{(3)}:
$$

$G_{i, j: k: l, m}^{(3)}:$

Our method

Lemma [Lu-Man 2013+] An r-uniform hypergraph H has spectral radius $\rho(H)=(r-1)!\alpha^{-1 / r}$ if and only if H has a consistently α-normal labeling.

Our method

Lemma [Lu-Man 2013+] An r-uniform hypergraph H has spectral radius $\rho(H)=(r-1)!\alpha^{-1 / r}$ if and only if H has a consistently α-normal labeling.

A α-normal labeling assigns a positive number to each incidence relation (v, e) a value $B(v, e)$ satisfying

- $\prod_{v: v \in e} B(v, e)=\alpha$ for any edge e.

■ $\quad \sum_{e: v \in e} B(v, e)=1$ for any vertex v.

Our method

Lemma [Lu-Man 2013+] An r-uniform hypergraph H has spectral radius $\rho(H)=(r-1)!\alpha^{-1 / r}$ if and only if H has a consistently α-normal labeling.

A α-normal labeling assigns a positive number to each incidence relation (v, e) a value $B(v, e)$ satisfying

- $\prod_{v: v \in e} B(v, e)=\alpha$ for any edge e.
- $\quad \sum_{e: v \in e} B(v, e)=1$ for any vertex v.
B is called consistent if for any cycle $v_{0} e_{1} v_{1} e_{2} \ldots v_{l}\left(v_{l}=v_{0}\right)$

$$
\prod_{i=1}^{l} \frac{B\left(v_{i}, e_{i}\right)}{B\left(v_{i-1}, e_{i}\right)}=1
$$

If H is a hypertree, then any α-normal labeling is automatically consistent.

$\frac{1}{4}$-labeling

Corollary: An r-uniform hypergraph H has spectral radius $\rho(H)=\rho_{r}$ if and only if H has a consistent $\frac{1}{4}$-normal labeling.

$\frac{1}{4}$-labeling

Corollary: An r-uniform hypergraph H has spectral radius $\rho(H)=\rho_{r}$ if and only if H has a consistent $\frac{1}{4}$-normal labeling.

An example of $\frac{1}{4}$ labeling. Here all leaf vertices are labeled by 1 .

Graphs with $\rho(G)=2$

$\tilde{A}_{n}, \tilde{D}_{n}, E_{6}, E_{7}$, and E_{8}, all have $\frac{1}{4}$-Labeling.

α-supernormal

A hypergraph H is called α-supernormal if there exists a weighted incidence matrix B satisfying

1. $\quad \sum_{e: v \in e} B(v, e) \geq 1$, for any $v \in V(H)$.
2. $\prod_{v \in e} B(v, e) \leq \alpha$, for any $e \in E(H)$.

α-supernormal

A hypergraph H is called α-supernormal if there exists a weighted incidence matrix B satisfying

1. $\quad \sum_{e: v \in e} B(v, e) \geq 1$, for any $v \in V(H)$.
2. $\prod_{v \in e} B(v, e) \leq \alpha$, for any $e \in E(H)$.

Lemma: Let H be an r-uniform hypergraph. If H is strictly and consistently α-super normal, then the spectral radius of H satisfies

$$
\rho(H)>(r-1)!\alpha^{-\frac{1}{r}} .
$$

α-subnormal

A hypergraph H is called α-subnormal if there exists a weighted incidence matrix B satisfying

1. $\quad \sum_{e: v \in e} B(v, e) \leq 1$, for any $v \in V(H)$.
2. $\prod_{v \in e} B(v, e) \geq \alpha$, for any $e \in E(H)$.

α-subnormal

A hypergraph H is called α-subnormal if there exists a weighted incidence matrix B satisfying

1. $\quad \sum_{e: v \in e} B(v, e) \leq 1$, for any $v \in V(H)$.
2. $\prod_{v \in e} B(v, e) \geq \alpha$, for any $e \in E(H)$.

Lemma: Let H be an r-uniform hypergraph. If H is α-subnormal, then the spectral radius of H satisfies

$$
\rho(H) \leq(r-1)!\alpha^{-\frac{1}{r}} .
$$

Moreover, if H is strictly α-subnormal then $\rho(H)<(r-1)!\alpha^{-\frac{1}{r}}$.

Proof of Main Lemma

" " Let $x:=\left(x_{1}, \ldots, x_{n}\right)$ be the Perron-Frobenis eigenvector of H. Define B as follows:

$$
B(v, e)= \begin{cases}\frac{(r-1)!\prod_{u e_{e}} x_{u}}{\rho(H) x_{v}^{v}} & \text { if } v \in e \\ 0 & \text { otherwise. }\end{cases}
$$

From this definition, for any edge e, we have

$$
\prod_{v \in e} B(v, e)=\prod_{v \in e} \frac{(r-1)!\prod_{u \in e} x_{u}}{\rho(H) x_{v}^{r}}=\left(\frac{(r-1)!}{\rho(H)}\right)^{r}=\alpha
$$

Continue

For any v,

$$
\sum_{e} B(v, e)=\sum_{\left\{v, i_{2}, \cdots, i_{r}\right\} \in E(H)} \frac{(r-1)!\prod_{u \in e} x_{u}}{\rho(H) x_{v}^{r}}=\frac{\rho(H)}{\rho(H)}=1
$$

Continue

For any v,

$$
\sum_{e} B(v, e)=\sum_{\left\{v, i_{2}, \cdots, i_{r}\right\} \in E(H)} \frac{(r-1)!\prod_{u \in e} x_{u}}{\rho(H) x_{v}^{r}}=\frac{\rho(H)}{\rho(H)}=1
$$

To show that B is consistent, for any cycle $v_{0} e_{1} v_{1} e_{2} \ldots v_{l}$ ($v_{l}=v_{0}$), we have

$$
\prod_{i=1}^{l} \frac{B\left(v_{i}, e_{i}\right)}{B\left(v_{i-1}, e_{i}\right)}=\prod_{i=1}^{l} \frac{x_{v_{i-1}}^{r}}{x_{v_{i}}^{r}}=1
$$

Continue

$" \Longrightarrow "$ Let B be consistently α-normal. For any non-zero vector $\mathbf{x}:=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}_{\geq 0}^{n}$, we have

This inequality implies $\rho(H) \leq \frac{(r-1)!}{\alpha^{\frac{1}{r}}}$.

Continue

The equality holds if H is α-normal and there is a non-zero solution $\left\{x_{i}\right\}$ for the system of the following homogeneous linear equations: $e=\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{r}}\right\} \in E(H)$

$$
B\left(v_{i_{1}}, e\right)^{1 / r} \cdot x_{i_{1}}=B\left(v_{i_{2}}, e\right)^{1 / r} \cdot x_{i_{2}}=\cdots=B\left(v_{i_{r}}, e\right)^{1 / r} \cdot x_{i_{r}}
$$

(2)

Picking any vertex v_{0} and setting $x_{v_{0}}^{*}=1$, define
$x_{u}^{*}=\left(\prod_{i=1}^{l} \frac{B\left(v_{i-1}, e_{i}\right)}{B\left(v_{i}, e_{i}\right)}\right)^{1 / r}$ if there is a path
$v_{0} e_{1} v_{1} e_{2} \cdots v_{l}(=u)$ connecting v_{0} and u. Since H is connected, such path must exist. The consistent condition guarantees that x_{u}^{*} is independent of the choice of the path. It is easy to check that $\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ is a solution of (2).

Thus, $\rho(H)=\frac{(r-1)!}{\alpha^{\frac{1}{T}}}$.

$\frac{1}{4}$-normal labelings for $r=3$

When $r=3$ and $\alpha=\frac{1}{4}$, then $\rho(H)=\rho_{3}$.

$\tilde{B}_{n}^{(3)}$

Continue

Hypergraphs with Small Spectral Radius

Continue

All these 3-graphs have spectral radius ρ_{3}.

Proof of classification

The hypergraphs listed in Theorem 1 except for $G_{1,1: k: 1,3}^{(3)}$ (for $0 \leq k \leq 5$) are proper subgraphs of some hypergraphs in the list of Theorem 2. These hypergraphs have the spectral radius less than ρ_{3}. We can also show $\rho\left(G_{1,1: k: 1,3}^{(3)}\right)<\rho_{3}$ for all $k \in\{0,1,2,3,4,5\}$.

Proof of classification

The hypergraphs listed in Theorem 1 except for $G_{1,1: k: 1,3}^{(3)}$ (for $0 \leq k \leq 5$) are proper subgraphs of some hypergraphs in the list of Theorem 2. These hypergraphs have the spectral radius less than ρ_{3}. We can also show $\rho\left(G_{1,1: k: 1,3}^{(3)}\right)<\rho_{3}$ for all $k \in\{0,1,2,3,4,5\}$.
Now assume that H is a connected 3 -graph with $\rho(H) \leq \rho_{3}$.

Proof of classification

The hypergraphs listed in Theorem 1 except for $G_{1,1: k: 1,3}^{(3)}$ (for $0 \leq k \leq 5$) are proper subgraphs of some hypergraphs in the list of Theorem 2. These hypergraphs have the spectral radius less than ρ_{3}. We can also show $\rho\left(G_{1,1: k: 1,3}^{(3)}\right)<\rho_{3}$ for all $k \in\{0,1,2,3,4,5\}$.
Now assume that H is a connected 3-graph with $\rho(H) \leq \rho_{3}$. If H is not simple, then $\rho(H)>\rho_{3}$ unless $H=C_{2}^{(3)}$.

Proof of classification

The hypergraphs listed in Theorem 1 except for $G_{1,1: k: 1,3}^{(3)}$ (for $0 \leq k \leq 5$) are proper subgraphs of some hypergraphs in the list of Theorem 2. These hypergraphs have the spectral radius less than ρ_{3}. We can also show $\rho\left(G_{1,1: k: 1,3}^{(3)}\right)<\rho_{3}$ for all $k \in\{0,1,2,3,4,5\}$.
Now assume that H is a connected 3 -graph with $\rho(H) \leq \rho_{3}$. If H is not simple, then $\rho(H)>\rho_{3}$ unless $H=C_{2}^{(3)}$. We can assume that H is a simple 3-graph.

Proof of classification

The hypergraphs listed in Theorem 1 except for $G_{1,1: k: 1,3}^{(3)}$ (for $0 \leq k \leq 5$) are proper subgraphs of some hypergraphs in the list of Theorem 2. These hypergraphs have the spectral radius less than ρ_{3}. We can also show $\rho\left(G_{1,1: k: 1,3}^{(3)}\right)<\rho_{3}$ for all $k \in\{0,1,2,3,4,5\}$.
Now assume that H is a connected 3-graph with $\rho(H) \leq \rho_{3}$. If H is not simple, then $\rho(H)>\rho_{3}$ unless $H=C_{2}^{(3)}$. We can assume that H is a simple 3 -graph.
If H contains a cycle $C_{k}^{(3)}$, then $\rho(H)>\rho_{3}$ unless $H=C_{k}^{(3)}$.

Proof of classification

The hypergraphs listed in Theorem 1 except for $G_{1,1: k: 1,3}^{(3)}$ (for $0 \leq k \leq 5$) are proper subgraphs of some hypergraphs in the list of Theorem 2. These hypergraphs have the spectral radius less than ρ_{3}. We can also show $\rho\left(G_{1,1: k: 1,3}^{(3)}\right)<\rho_{3}$ for all $k \in\{0,1,2,3,4,5\}$.
Now assume that H is a connected 3 -graph with $\rho(H) \leq \rho_{3}$. If H is not simple, then $\rho(H)>\rho_{3}$ unless $H=C_{2}^{(3)}$. We can assume that H is a simple 3 -graph.
If H contains a cycle $C_{k}^{(3)}$, then $\rho(H)>\rho_{3}$ unless $H=C_{k}^{(3)}$. We can assume that H is a hypertree.

Proof of classification

The hypergraphs listed in Theorem 1 except for $G_{1,1: k: 1,3}^{(3)}$ (for $0 \leq k \leq 5$) are proper subgraphs of some hypergraphs in the list of Theorem 2. These hypergraphs have the spectral radius less than ρ_{3}. We can also show $\rho\left(G_{1,1: k: 1,3}^{(3)}\right)<\rho_{3}$ for all $k \in\{0,1,2,3,4,5\}$.
Now assume that H is a connected 3 -graph with $\rho(H) \leq \rho_{3}$. If H is not simple, then $\rho(H)>\rho_{3}$ unless $H=C_{2}^{(3)}$. We can assume that H is a simple 3 -graph.
If H contains a cycle $C_{k}^{(3)}$, then $\rho(H)>\rho_{3}$ unless $H=C_{k}^{(3)}$. We can assume that H is a hypertree.
If H contains a vertex of degree ≥ 4, then $\rho(H)>\rho_{3}$ unless $H=S_{4}^{(3)}$.

Proof of classification

The hypergraphs listed in Theorem 1 except for $G_{1,1: k: 1,3}^{(3)}$ (for $0 \leq k \leq 5$) are proper subgraphs of some hypergraphs in the list of Theorem 2. These hypergraphs have the spectral radius less than ρ_{3}. We can also show $\rho\left(G_{1,1: k: 1,3}^{(3)}\right)<\rho_{3}$ for all $k \in\{0,1,2,3,4,5\}$.
Now assume that H is a connected 3 -graph with $\rho(H) \leq \rho_{3}$. If H is not simple, then $\rho(H)>\rho_{3}$ unless $H=C_{2}^{(3)}$. We can assume that H is a simple 3 -graph.
If H contains a cycle $C_{k}^{(3)}$, then $\rho(H)>\rho_{3}$ unless $H=C_{k}^{(3)}$. We can assume that H is a hypertree.
If H contains a vertex of degree ≥ 4, then $\rho(H)>\rho_{3}$ unless $H=S_{4}^{(3)}$. We can assume all vertex degrees are at most 3 .

Continue

If there exists two vertexes u and v with $d_{u}=d_{v}=3$, then H contains $\tilde{D}_{k}^{(3)}$ as a subgraph. We have $\rho(H)>\rho_{3}$ unless $H=\tilde{D}_{n}^{(3)}$.

Continue

If there exists two vertexes u and v with $d_{u}=d_{v}=3$, then H contains $\tilde{D}_{k}^{(3)}$ as a subgraph. We have $\rho(H)>\rho_{3}$ unless $H=\tilde{D}_{n}^{(3)}$.

Suppose that v is the unique vertex with degree 3 and all other vertices have degree at most 2 . Consider the three branches attached to v.
■ If every branch has at least two edges, then H contains $\tilde{E}_{6}^{(3)}$ as a subgraph. We have $\rho(H)>\rho\left(\tilde{E}_{6}^{(3)}\right)=\rho_{3}$. unless $H=\tilde{E}_{6}^{(3)}$.

Continue

If there exists two vertexes u and v with $d_{u}=d_{v}=3$, then H contains $\tilde{D}_{k}^{(3)}$ as a subgraph. We have $\rho(H)>\rho_{3}$ unless $H=\tilde{D}_{n}^{(3)}$.

Suppose that v is the unique vertex with degree 3 and all other vertices have degree at most 2 . Consider the three branches attached to v.
■ If every branch has at least two edges, then H contains $\tilde{E}_{6}^{(3)}$ as a subgraph. We have $\rho(H)>\rho\left(\tilde{E}_{6}^{(3)}\right)=\rho_{3}$. unless $H=\tilde{E}_{6}^{(3)}$.

Continue

If there exists two vertexes u and v with $d_{u}=d_{v}=3$, then H contains $\tilde{D}_{k}^{(3)}$ as a subgraph. We have $\rho(H)>\rho_{3}$ unless $H=\tilde{D}_{n}^{(3)}$.
Suppose that v is the unique vertex with degree 3 and all other vertices have degree at most 2 . Consider the three branches attached to v.
■ If every branch has at least two edges, then H contains $\tilde{E}_{6}^{(3)}$ as a subgraph. We have $\rho(H)>\rho\left(\tilde{E}_{6}^{(3)}\right)=\rho_{3}$. unless $H=\tilde{E}_{6}^{(3)}$.
Thus we can assume that the first branch consists of only one edge.

Continue

If there exists two vertexes u and v with $d_{u}=d_{v}=3$, then H contains $\tilde{D}_{k}^{(3)}$ as a subgraph. We have $\rho(H)>\rho_{3}$ unless $H=\tilde{D}_{n}^{(3)}$.

Suppose that v is the unique vertex with degree 3 and all other vertices have degree at most 2 . Consider the three branches attached to v.
■ If every branch has at least two edges, then H contains $\tilde{E}_{6}^{(3)}$ as a subgraph. We have $\rho(H)>\rho\left(\tilde{E}_{6}^{(3)}\right)=\rho_{3}$. unless $H=\tilde{E}_{6}^{(3)}$.
Thus we can assume that the first branch consists of only one edge.

An edge e is called a branching edge if every vertex of e is not a leaf vertex.

Continue

- If the second branch has at least two edges and the third branch consist of a branching edge, then H consists of a subgraph G^{\prime}, which can be eventually contracted to G shown below.

G has a $\frac{1}{4}$-supernormal labeling

Note that the sum of the labelings of G at the center vertex is $\frac{4}{9}+\frac{1}{3}+\frac{1}{4}>1$. Thus G is strictly $\frac{1}{4}$-supernormal and $\rho(G)>\rho_{3}$. We have $\rho(H)>\rho\left(G^{\prime}\right)>\rho_{3}$.

Continue

- The first and second branch each consist of one edge and the third branch consists of at least one branching edge. Since $\rho\left(\widetilde{B D}_{n}^{(3)}\right)=\rho_{3}, H$ can not contain $\widetilde{B D}_{n}^{(3)}$ as a proper subgraph. Thus the only possible hypergraphs are $\widetilde{B D}_{n}^{(3)}$ and $B D_{n}^{(3)}$.

Continue

- The first and second branch each consist of one edge and the third branch consists of at least one branching edge. Since $\rho\left(\widetilde{B D}_{n}^{(3)}\right)=\rho_{3}, H$ can not contain $\widetilde{B D}_{n}^{(3)}$ as a proper subgraph. Thus the only possible hypergraphs are $\widetilde{B D}_{n}^{(3)}$ and $B D_{n}^{(3)}$.
- There is no branching edge in H. Let $i, j, k(i \leq j \leq k)$ be the length of three branches of the vertex v and denote this graph by $E_{i, j, k}^{(3)}$. We have shown that $i=1$. Note that $E_{1,3,3}^{(3)}=\tilde{E}_{7}^{(3)}$ and $E_{1,2,5}^{(3)}=\tilde{E}_{8}^{(3)}$ have spectral radius ρ_{3}. So (j, k) can only have the following choices: $(2,5),(2,4),(3,3),(2,3),(2,2)$ and $(1, k), k \geq 1$. The corresponding graphs are $\tilde{E}_{8}^{(3)}, E_{8}^{(3)}, \tilde{E}_{7}^{(3)}, E_{7}^{(3)}, E_{6}^{(3)}$, and $D_{n}^{(3)}$.

Continue

Now we can assume that all degrees of vertices in H have degrees at most 2 .

- If H has no branching edge, then $H=A_{n}$ (a path).
- If H has exactly one branching edge, then $H=F_{i, j, k}^{(3)}$.

We will first show that $\rho\left(F_{3,3,3}^{(3)}\right)>\rho_{3}$ (see below).

Continue

Now we can assume that all degrees of vertices in H have degrees at most 2 .

- If H has no branching edge, then $H=A_{n}$ (a path).
- If H has exactly one branching edge, then $H=F_{i, j, k}^{(3)}$.

We will first show that $\rho\left(F_{3,3,3}^{(3)}\right)>\rho_{3}$ (see below).

So H must not contain the subgraph $F_{3,3,3}^{(3)}$. Since $i \leq j \leq k$, we must have $i=1$ or 2 .

Continue

When $i=2$ and $j=3$, as $\rho\left(F_{2,3,4}^{(3)}\right)=\rho_{3}$, there are only two possible hypergraphs: $F_{2,3,3}^{(3)}$ and $F_{2,3,4}^{(3)}$.

Continue

When $i=2$ and $j=3$, as $\rho\left(F_{2,3,4}^{(3)}\right)=\rho_{3}$, there are only two possible hypergraphs: $F_{2,3,3}^{(3)}$ and $F_{2,3,4}^{(3)}$.
When $i=2$ and $j=2$, as $\rho\left(F_{2,2,7}^{(3)}\right)=\rho_{3}$, we must have $2 \leq k \leq 7$.

Continue

When $i=2$ and $j=3$, as $\rho\left(F_{2,3,4}^{(3)}\right)=\rho_{3}$, there are only two possible hypergraphs: $F_{2,3,3}^{(3)}$ and $F_{2,3,4}^{(3)}$.
When $i=2$ and $j=2$, as $\rho\left(F_{2,2,7}^{(3)}\right)=\rho_{3}$, we must have $2 \leq k \leq 7$.
When $i=1$, as $\rho\left(F_{1,5,6}^{(3)}\right)=\rho_{3}$, we must have $j \leq 5$. When $j=5$, we have two possible hypergraphs: $F_{1,5,5}^{(3)}$ and $F_{1,5,6}^{(3)}$. When $j=4$, as $\rho\left(F_{1,4,8}^{(3)}\right)=\rho_{3}$, we have 5 possible hypergraphs: $F_{1,4, k}^{(3)}$ for $4 \leq k \leq 8$. When $j=3$, as $\rho\left(F_{1,3,14}^{(3)}\right)=\rho_{3}$, we have 12 possible hypergraphs: $F_{1,3, k}^{(3)}$ for $3 \leq k \leq 14$. When $j=2$, all the values of k are possible, and we get the family $B_{n}^{(3)}$. When $j=1$, all the values of k are possible, and we get the family $D_{n}^{\prime(3)}$.

Continue

- If H has exactly two branching edges, then
$H=G_{i, j: k: l, m}^{(3)}(i \leq j, l \leq m)$.
If $i+j \geq 3$ and $l+m \geq 3$, then H contains a subgraph $G_{1,2: k: 1,2}^{(3)}=\tilde{B}_{k+8}^{(3)}$. Since the family $\tilde{B}_{n}^{(3)}$ have the spectral radius equal to ρ_{3}, we conclude H must be $\tilde{B}_{n}^{(3)}$ itself. For the remaining cases, we can assume $i=j=1$. We have $\rho(H) \geq \rho\left(G_{1,1: 0: 2,2}^{(3)}\right)>\rho_{3}$ (see the labeling below.)

a $\frac{1}{4}$-supernormal labeling of $G_{1,1: 0: 2,2}^{(3)}$

Continue

In particular, there is no such hypergraph with $m \geq 5$.

Continue

In particular, there is no such hypergraph with $m \geq 5$.
If $m=4$, then we only get one hypergraph $G_{1,1: 0: 1,4}^{(3)}$.

Continue

In particular, there is no such hypergraph with $m \geq 5$.
If $m=4$, then we only get one hypergraph $G_{1,1: 0: 1,4}^{(3)}$.
If $m=3$, as $\rho\left(G_{1,1: 6: 1,3}^{(3)}\right)=\rho_{3}$, we get 7 hypergraphs:
$\rho\left(G_{1,1: k: 1,3}^{(3)}\right)$ for $0 \leq k \leq 6$.

Continue

In particular, there is no such hypergraph with $m \geq 5$.
If $m=4$, then we only get one hypergraph $G_{1,1: 0: 1,4}^{(3)}$.
If $m=3$, as $\rho\left(G_{1,1: 6: 1,3}^{(3)}\right)=\rho_{3}$, we get 7 hypergraphs:
$\rho\left(G_{1,1: k: 1,3}^{(3)}\right)$ for $0 \leq k \leq 6$.
If $m=2$, then any k works. We get the family $\bar{B}_{n}^{(3)}$.

Continue

In particular, there is no such hypergraph with $m \geq 5$.
If $m=4$, then we only get one hypergraph $G_{1,1: 0: 1,4}^{(3)}$.
If $m=3$, as $\rho\left(G_{1,1: 6: 1,3}^{(3)}\right)=\rho_{3}$, we get 7 hypergraphs:
$\rho\left(G_{1,1: k: 1,3}^{(3)}\right)$ for $0 \leq k \leq 6$.
If $m=2$, then any k works. We get the family $\bar{B}_{n}^{(3)}$.
If $m=1$, then any k works. We get the family $B_{n}^{\prime(3)}$.

Continue

- H contains at least three branching edges. Since all degrees of vertices are at most 2 , any branching edges lie in a path. Thus, H contains a subgraph M^{\prime} in the following figure. By contracting the middle edges connecting the branching edges, we get a hypergraph M. We can see that M admits the following $\frac{1}{4}$-supernormal labeling.

a subgraph M^{\prime}

after contraction: M

We have $\rho(H) \geq \rho\left(M^{\prime}\right) \geq \rho(M)>\rho_{3}$.

Reduction and Extension

An r-uniform hypergraph $H=(V, E)$ is called reducible if every edge e contains a leaf vertex v_{e}.

Reduction and Extension

An r-uniform hypergraph $H=(V, E)$ is called reducible if every edge e contains a leaf vertex v_{e}.

Removing v_{e} from each e, we get a $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, i.e., $V^{\prime}=V \backslash\left\{v_{e}: e \in E\right\}$ and $E^{\prime}=\left\{e-v_{e}: e \in E\right\}$.

Reduction and Extension

An r-uniform hypergraph $H=(V, E)$ is called reducible if every edge e contains a leaf vertex v_{e}.

■ Removing v_{e} from each e, we get a $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, i.e., $V^{\prime}=V \backslash\left\{v_{e}: e \in E\right\}$ and $E^{\prime}=\left\{e-v_{e}: e \in E\right\}$.
■ We say that H^{\prime} is reduced from H and H extends H^{\prime}.

Reduction and Extension

- An r-uniform hypergraph $H=(V, E)$ is called reducible if every edge e contains a leaf vertex v_{e}.

■ Removing v_{e} from each e, we get a $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, i.e., $V^{\prime}=V \backslash\left\{v_{e}: e \in E\right\}$ and $E^{\prime}=\left\{e-v_{e}: e \in E\right\}$.
■ We say that H^{\prime} is reduced from H and H extends H^{\prime}.

Lemma If H exends H^{\prime}, then

$$
\rho(H) \leq \rho_{r} \text { iff } \rho\left(H^{\prime}\right) \leq \rho_{r-1}
$$

Proof

$\rho(H) \leq \rho_{r}$ implies that H has a consistently α-normal labeling with $\alpha \leq \frac{1}{4}$. Since the labeling near every leaf vertex is 1 , this labeling induces an α-normal labeling of H^{\prime}. Thus, $\rho\left(H^{\prime}\right) \leq \rho_{r-1}$.

Proof

$\rho(H) \leq \rho_{r}$ implies that H has a consistently α-normal labeling with $\alpha \leq \frac{1}{4}$. Since the labeling near every leaf vertex is 1 , this labeling induces an α-normal labeling of H^{\prime}. Thus, $\rho\left(H^{\prime}\right) \leq \rho_{r-1}$.
Every step can be reversed.

Proof

$\rho(H) \leq \rho_{r}$ implies that H has a consistently α-normal labeling with $\alpha \leq \frac{1}{4}$. Since the labeling near every leaf vertex is 1 , this labeling induces an α-normal labeling of H^{\prime}. Thus, $\rho\left(H^{\prime}\right) \leq \rho_{r-1}$.
Every step can be reversed.
" $\rho(H)=\rho_{r}$ iff $\rho\left(H^{\prime}\right)=\rho_{r-1}$ " can be proved in a similar way.

The case $r \geq 4$

Theorem [Lu, Man, 2013+]

- For $r \geq 5$, every r-uniform hypergraph with $\rho(H) \leq \rho_{r}$ is reducible.
■ For $r=4$, there is only one irreducible r-uniform hypergraph with $\rho(H)=\rho_{r}$ and four irreducible r-uniform hypergraph with $\rho(H)<\rho_{r}$

Classification for $r \geq 4$

Theorem [Lu-Man 2013+] Let $r \geq 4$ and

$\rho_{r}=(r-1)!\sqrt[r]{4}$. If the spectral radius of a connected r-uniform hypergraph H is equal to ρ_{r}, then H must be one of the following graphs:

1. Extended from 3-graphs: $C_{n}^{(r)}, \tilde{D}_{n}^{(r)}, \tilde{B}_{n}^{(r)}, \widetilde{B D}{ }_{n}^{(r)}, C_{2}^{(r)}$,
$S_{4}^{(r)}, \tilde{E}_{6}^{(r)}, \tilde{E}_{7}^{(r)}, \tilde{E}_{8}^{(r)}, F_{2,3,4}^{(r)}, F_{2,2,7}^{(r)}, F_{1,5,6}^{(r)}, F_{1,4,8}^{(r)}, F_{1,3,14}^{(r)}$, $G_{1,1: 0: 1,4}^{(r)}$, and $G_{1,1: 6: 1,3}^{(r)}$.
2. Extended from the 4-graph: $H_{1,1,2,2}^{(r)}$.

Classification for $r \geq 4$

Theorem [Lu-Man 2013+] Let $r \geq 4$ and

$\rho_{r}=(r-1)!\sqrt[r]{4}$. If the spectral radius of a connected r-uniform hypergraph H is less than ρ_{r}, then H must be one of the following graphs:

1. Extended from 3-graphs: $A_{n}^{(r)}, D_{n}^{(r)}, D_{n}^{\prime(r)}, B_{n}^{(r)}, B_{n}^{(r)}$, $\bar{B}_{n}^{(r)}, B D_{n}^{(r)}, E_{6}^{(r)}, E_{7}^{(r)}, E_{8}^{(r)}, F_{2,3,3}^{(r)}, F_{2,2, j}^{(r)}$ (for $2 \leq j \leq 6$), $F_{1,3, j}^{(r)}\left(\right.$ for $3 \leq j \leq 13$), $F_{1,4, j}^{(r)}$ (for $4 \leq j \leq 7), F_{1,5,5}^{(r)}$, and $G_{1,1: j: 1,3}^{(r)}($ for $0 \leq j \leq 5)$.
2. Extended from 4-graphs: $H_{1,1,1,1}^{(r)}, H_{1,1,1,2}^{(r)}, H_{1,1,1,3}^{(r)}$,

$$
H_{1,1,1,4}^{(r)}
$$

Open problem

Are these r-uniform hypergraphs with $\rho(H) \leq \rho_{r}$ associated to some algebraic or geometric structures as the ADE system does?

Open problem

Are these r-uniform hypergraphs with $\rho(H) \leq \rho_{r}$ associated to some algebraic or geometric structures as the ADE system does?

Reference: Linyuan Lu and Shoudong Man, Connected Hypergraphs with Small Spectral Radius http://arxiv.org/pdf/1402.5402
Homepage: http://www.math.sc.edu/~ lu/

Thank You

