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Selected Topics on Spectral Graph Theory
1.

Five talks

Graphs with Small Spectral Radius
Time: Friday (May 16) 4pm.-5:30p.m.

Laplacian and Random Walks on Graphs

Time: Thursday (May 22) 4pm.-5:30p.m.
Spectra of Random Graphs

Time: Thursday (May 29) 4pm.-5:30p.m.
Hypergraphs with Small Spectral Radius

Time: Friday (June 6) 4pm.-5:30p.m.

Laplacian of Random Hypergraphs
Time: Thursday (June 12) 4pm.-5:30p.m.
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- Backgrounds -

Linear Algebra Graph Theory

Probability Theory

|: Spectral Graph Theory |I: Random Graph Theory
lll: Random Matrix Theory
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- Outline '

m Classical random theory: Erdos-Rényi model

Spectra of Random Graphs Linyuan Lu — 4 / 68



- Outline '

m Classical random theory: Erdos-Rényi model

m Power law graphs

Spectra of Random Graphs Linyuan Lu — 4 / 68



- Outline '

m Classical random theory: Erdos-Rényi model

m Power law graphs

m Chung-Lu model

Spectra of Random Graphs Linyuan Lu — 4 / 68



Outline '

Classical random theory: Erdos-Rényi model

Power law graphs

Chung-Lu model

Edge-independent random graphs
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- Preliminary -

A graph consists of two sets V' and F.

-V is the set of vertices (or nodes).

- FE is the set of edges, where each edge is a pair of
vertices.

The degree of a vertex is the number of edges, which are
incident to that vertex.

Diameter: the maximum distance d(u,v), where u and v are
in the same connected component.
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- Preliminary -

A graph consists of two sets V' and F.

-V is the set of vertices (or nodes).

- FE is the set of edges, where each edge is a pair of
vertices.

The degree of a vertex is the number of edges, which are
incident to that vertex.

Diameter: the maximum distance d(u,v), where u and v are
in the same connected component.

Average distance: the average among all distance d(u,v) for
pairs of w and v in the same connected component.
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- Random graphs -

A random graph is a set of graphs together with a
probability distribution on that set.

Spectra of Random Graphs Linyuan Lu — 6 / 68



Random graphs -

A random graph is a set of graphs together with a
probability distribution on that set.

Example: A random graph on 3 vertices and 2 edges with
the uniform distribution on it.

O

O O
Probability %

O O
Probability % Probability %
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- Random graphs -

A random graph is a set of graphs together with a
probability distribution on that set.

Example: A random graph on 3 vertices and 2 edges with
the uniform distribution on it.

O
O O O ®
Probability % Probability % Probability %

A random graph GG almost surely satisties a property P, if

Pr(G satisfies P) =1 — 0,(1).
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Erd6s-Rényi model G(n, p)

n nodes
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- Erd6s-Rényi model G(n, p) -

- n nodes
- For each pair of vertices, create an edge independently
with probability p.
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- Erd6s-Rényi model G(n, p) -

- n nodes

- For each pair of vertices, create an edge independently
with probability p.

- The graph with e edges has the probability p®(1 — p) (5)-¢

The probability of this
graph is

p*(1—p)°.
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- Evolution of G(n, p) -

Erdos-Rényi 1960s:

m p~c/nfor0<c<1: The largest connected
component of G, Is a tree and has about
L(logn — 2loglogn) vertices, where o = ¢ — 1 — logc.
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- Evolution of G(n, p) -

Erdos-Rényi 1960s:

m p~c/nfor0<c<1: The largest connected
component of G, Is a tree and has about
L(logn — 2loglogn) vertices, where o = ¢ — 1 — logc.

m p~ 1/n+c/n*3, the largest connected component is
©(n?3). Double jump: O(logn) — O(n*?) = O(n).
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- Evolution of G(n, p) -

Erdos-Rényi 1960s:

m p~c/nfor0<c<1: The largest connected
component of G, Is a tree and has about
L(logn — 2loglogn) vertices, where o = ¢ — 1 — logc.

m p~ 1/n+c/n*3, the largest connected component is
©(n?3). Double jump: O(logn) — O(n*?) = O(n).

m p~ c/nforc>1: Except for one “giant” component,
all the other components are relatively small. The giant
component has approximately f(c)n vertices, where

0.0

1 K1
f(c):l—zz 5 (ce )k
k=1 '
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- Diameter of G(n, p) -

Bollobas (1985): (denser graph)

1 1 .
diam(G(n,p)) = [loogg:pJ or [1oogg:p_| if np > logn.
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- Diameter of G(n, p) -

Bollobas (1985): (denser graph)

1 1 .
diam(G(n,p)) = [loogg:pJ or [1oogg:p_| if np > logn.

Chung Lu, (2000) (Sparser graph)

[ (L+o(1)2L ifnp — oo

logn -
\ O (iognp) if oo > np > 1.

diam(G(n,p)) = <
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- Wigner’'s semicircle law

(Wigner, 1958)

- A is a real symmetric n X n matrix.

- Entries q;; are independent random variables.
2U+1y\ __

- E(af) < M.

The distribution of eigenvalues of A converges into a
semicircle distribution of radius 2m+/n.
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- Spectra of G(n,p) -

The eigenvalues of an Erdos-Rényi random graph follow the
semicircle law. ( Firedi and Komléds, 1981)

16 . . .
14 | #
12 L el

18 I G
= G

den=s1ty

a b
&

_a-l 1 1 1 IE‘

-18 -3 5 a 1H

elgenvalues

i 8 Laplacian eigenvalues also follow the semicircle law.
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- Challenge '

Erdés-Rényi model G(n, p) is classical, simple, beautiful...,
but not suitable to model complex graphs.
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- Challenge -

Erdés-Rényi model G(n, p) is classical, simple, beautiful...,
but not suitable to model complex graphs.

m What are complex graphs?

m How to model these complex graphs by random graphs?

m How to deduce the graph properties of these general
random graph models?

Spectra of Random Graphs Linyuan Lu — 12 / 68



- Examples of complex graphs -

WWW Graphs

Call Graphs
Collaboration Graphs
Gene Regulatory Graphs
Graph of U.S. Power Grid
Costars Graph of Actors
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- Collaboration Graph at USC -

Jln—Yeh Dove Sun
OUYanE Jonas
WU Sandberg

Chudak \ L|n Jordan

P.L. Erdds Katona nggs —— 7h Odlyzko
Graham
“ Chen- West
Toroczka| Sali Fured| V Martln
Howard I\/I|Ian hung
Wormald Mlklos
Spouge Johnson d eltman Zhao Johns 6n Fenner
Blro Karolyl Llang
~~
Dankelmann Ya Pralat
Czabarka Sze e Cooper
Bokal \ / Narayan
Mohr Chln
Wagner - WangShahrokhl Entrlger Smith Boehnlein  Walters
Dutle

Faculty, Ph.D. students, Postdocs, and visitors to the
ombinatorics Group at the University of South Carolina.
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BGP Graph

Vertex: AS
(autonomous system)

Edges: AS pairs in
BGP routing table.

A subgraph of a BGP graph

I ﬁj'ﬂ"[n-u
& 1
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Large BGP subgra
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Hollywood Graph

Vertex: actors and
actress

Edges: co-playing in
the same movie

Only 10,000 out of
225.000 are shown.
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Protein-interaction network

Snel, Bork & Huynen, PNAS 99, 5890 (2002)
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A subgraph of the Collaboration Graph
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- Folklore of Erdos numbers -

m Erdos has Erdos number O.

B Erdos’ coauthor has Erdos number 1.

m Erdos coauthor's coauthor has Erdos
number 2.
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- Folklore of Erdos numbers -

m Erdos has Erdos number O.

B Erdos’ coauthor has Erdos number 1.

m Erdos coauthor's coauthor has Erdos
number 2.

My Erdos number is 2.

Erdos number is the graph distance to Erdds in the
Collaboration graph.
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Collaboration Graph

An induced subgraph of the collaboration graph {with Erdos number ar most 2).

Made by Fan Chung Graham and Lincoln L in 2002,
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- Characteristics -

« Large
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- Characteristics -

« Large
s Sparse
« Power law degree distribution
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- Characteristics '

« Large

s Sparse

« Power law degree distribution
» Small world phenomenon
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- The power law -

The number of vertices of degree k is approximately
proportional to k~° for some positive f.

18EBEE 4 T T ——Trr —
B il "zcollakl.degres" &
loaaE |

1088 |-

188 |

the number of wvertices

168 |

1
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- The power law -

The number of vertices of degree k is approximately
proportional to k~° for some positive f.

18EBEE 4 T T ——Trr —
B il "zcollakl.degres" &
loaaE |

1088 |-

188 |

the number of wvertices

168 |

1

A power law graph is a graph whose degree sequence
satisfies the power law.
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- Power law distribution

108088 +

A T T T
. "collabl.degree"
n I
i
o laEEa - -
oy I
L
|1| -
ol 1886 | -
- I
o
E |
o 186G | % -
= - .
= .
c - .
o 18 | i -
= I
+ ﬁ%%@
- pe R
i L TR | L |||||wnl L L
1 1a laa
degrees

laoa

Left: The collaboration
graph follows the power
law degree distribution
with exponent 8 ~ 3.0

Spectra of Random Graphs
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- Power law distribution

1880@a8

| Left: The collaboration
{  graph follows the power
;1 law degree distribution
[ SR ?;:_ _.d with exponent 3 = 3.0

Right:  An IP graph & et

follows the power law de- ™F

gree distribution with ex- ¢ "1

ponent 5 ~ 2.4 B
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Power law graphs

Left: Part of the collab-
oration graph (authors
with Erdos number 2

Right: An IP graph (
Cheswick

Spectra of Random Graphs
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Robustness of Power Law

size degree distribution
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- Basic questions -

s How to model power law graphs?
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- Basic questions -

s How to model power law graphs?

s \What graph properties can be derived
from the model?
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B  Model Glwy,wy,...,wi)

Random graph model with given expected degree sequence
(Chung-Lu model)

- n nodes with weights wy, wo, ..., w,.
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Model G(wy,ws, ..., w,)

Random graph model with given expected degree sequence
(Chung-Lu model)

- n nodes with weights wy, wo, ..., w,.

- For each pair (7, j), create an edge independently with
probability p;; = w;w;p, where p = Z?:ll -
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Model G(wy,ws, ..., w,)

Random graph model with given expected degree sequence
(Chung-Lu model)

- n nodes with weights wy, wo, ..., w,.

- For each pair (7, j), create an edge independently with
probability p;; = w;w;p, where p = 5 11 -

- The graph H has probability

H ng H 1_ng

ijeE(H ij¢E(H

Spectra of Random Graphs Linyuan Lu — 30 / 68



Model G(wy,ws, ..., w,)

Random graph model with given expected degree sequence
(Chung-Lu model)

- n nodes with weights wy, wo, ..., w,.

- For each pair (7, j), create an edge independently with
probability p;; = w;w;p, where p = 5 11 -

- The graph H has probability

H pzy H 1_ng

ijeE(H ij¢E(H

- The expected degree of vertex 7 is w;.
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- An example: G(whwz,w&w@ '
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- An example: G(w1,w2,w3,w4) '
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An example: G(w1,w2,w3,w4) '
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An example: G(W17w27w37w4> -

The probability of the graph is

wiwswswp® (1 — wowyp) X (1 — wswyp) H(l —wip).

1=1
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- Chung-Lu model -

- The volume of S Vol(S) = > . qw;.
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- Chung-Lu model

- The volume of S Vol(S) = > . qw;.
We have )
d>d

holds if and only if w; = — w,,.
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- Chung-Lu model

n 2

d = el
- The volume of S Vol(S) = > . qw;.

We have

d>d
“=" holds if and only if w; = --- = w,.

A connected component S is called a giant component if

vol(S) = O(vol(G)).
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- Connected components -

Chung and Lu (2001) For G = G(wy, ..., w,),

m Ifd<1— e, then almost surely, all components have
volume at most O(y/nlogn).
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- Connected components -

Chung and Lu (2001) For G = G(wy, ..., w,),

m Ifd<1— e, then almost surely, all components have
volume at most O(4/nlogn).

m |fd>1+¢, then almost surely there is a unique giant
component of volume ©(Vol(G)). All other components
have size at most

( logn T 2
) d—1-logd—cd it = <d < 1=
OET: ifd > -1
| 1+log d—log4+2log(1—¢) e(l1—e)?-
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- Volume of Giant Component -

Chung and Lu (2004)

If the average degree is strictly greater than 1, then almost
surely the giant component in a graph G in G(w) has

volume (Ao + O( nl\‘}giz;))\/ol(G), where \q is the unique

positive root of the following equation:

iwiewi)‘ = (1—-\) i w;.
i=1 1=1
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- A real application -

Apply to the Collaboration Graph (2002 data):
The size of giant component is predicted to be about
177,400 by our theory. This is rather close to the actual
value 176,000, within an error bound of less than 1%.

g [

100000 |-

g

1o |

Humbar ol companenis

10 F

i
1 10 100 1000 000l 00000 e

CompTent sike
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- G(n,p) versus G(wi,...,w,) -

Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?
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Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?

Chung Lu (2004)

u Yes,for1<d§6_i1.
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- G(n,p) versus G(wi,...,w,) -

Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?

Chung Lu (2004)

B Yes for1<d§€_i1.
m No, for sufficiently large d.
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- G(n,p) versus G(wi,...,w,) -

Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?

Chung Lu (2004)

m Yes, forl <d< .

m No, for sufficiently large d.

m Whend> %, almost surely the giant component of
G(wi,...,w,) has volume at least

(%(1 - \/1 - %) + 0(1))V01(G)-

This is asymptotically best possible.
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- Diameter of G(wy, ..., w,) -

Chung Lu (2002)

m For a random graph G with admissible expected degree
sequence (wq, ..., w,), the average distance is almost

surely (1 + 0(1))&3.
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- Diameter of G(wy, ..., w,) -

Chung Lu (2002)

m For a random graph G with admissible expected degree
sequence (wq, ..., w,), the average distance is almost

L logn

surely (1 0(1))1ogd”

m For a random graph G with strongly admissible expected
degree sequence (wq, ..., w,), the diameter is almost
surely ©(:82).

log d

Spectra of Random Graphs
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- Diameter of G(wy, ..., w,) -

Chung Lu (2002)

m For a random graph G with admissible expected degree

sequence (wq, ..., w,), the average distance is almost
surely (1 + 0(1))&3.

m For a random graph G with strongly admissible expected
degree sequence (wq, ..., w,), the diameter is almost
surely @(ﬁig).

These results apply to G(n, p) and random power law graph
with 5 > 3.
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Non-admissible graph
versus admissible graph -

A random subgraph of the Collabo- A Connected component of G(n, p)
ration Graph. with n = 500 and p = 0.002.
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Non-admissible graph
versus admissible graph -

A random subgraph of the Collabo- A Connected component of G(n, p)
ration Graph. with n = 500 and p = 0.002.

- Dense core for non-admissible graphs.
sa NO dense core for admissible graphs.
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- Power law graphs with 3 € (2, 3) -

Chung, Lu (2002)
- Examples: the WWW graph, Collaboration graph, etc.
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Chung, Lu (2002)

- Examples: the WWW graph, Collaboration graph, etc.
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Spectra of Random Graphs Linyuan Lu — 39 / 68



- Power law graphs with 5 € (2, 3)

Chung, Lu (2002)

- Examples: the WWW graph, Collaboration graph, etc.

- Non-admissible.
- Containing a dense core, with diameter log logn.
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- Mostly vertices are within the distance of O(loglogn)

from the core.
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- Containing a dense core, with diameter log logn.

- Mostly vertices are within the distance of O(loglogn)
from the core.
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- Power law graphs with 3 € (2, 3) -

Chung, Lu (2002)

- Examples: the WWW graph, Collaboration graph, etc.

- Non-admissible.

- Containing a dense core, with diameter log logn.

- Mostly vertices are within the distance of O(loglogn)
from the core.

- There are some vertices at the distance of O(logn).

The diameter is O(logn), while the average distance is
O(loglogn).
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- Experimental results '

m Faloutsos et al. (1999) The eigenvalues of the
Internet graph do not follow the semicircle law.

m Farkas et. al. (2001), Goh et. al. (2001) The
spectrum of a power law graph follows a “triangular-like”

distribution.
m  Mihail and Papadimitriou (2002) They showed that

the large eigenvalues are determined by the large
degrees. Thus, the significant part of the spectrum of a
power law graph follows the power law.

Nz%\/dj
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- Eigenvalues of G(wy, ..., w,) -

Chung, Vu, and Lu (2003)

Suppose wy > wy > ... > w,. Let u; be i-th largest
eigenvalue of G(wy,wy, ..., wy,). Let m = w; and
d=>"",w?p. Almost surely we have:

B (1—o(1)) max{y/m,d} < 1 < 7v/Iogn - max{y/m,d}.
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d=>"",w?p. Almost surely we have:
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m = (14+0(1))d, if d> /mlogn.
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Chung, Vu, and Lu (2003)

Suppose wy > wy > ... > w,. Let u; be i-th largest
eigenvalue of G(wy,wy, ..., wy,). Let m = w; and
d=>"",w?p. Almost surely we have:

B (1—o(1)) max{y/m,d} < 1 < 7v/Iogn - max{y/m,d}.
m = (14+0(1))d, if d> /mlogn.
B = (1+0(1))y/m, if /m > dlog®n.
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- Eigenvalues of G(wy, ..., w,) -

Chung, Vu, and Lu (2003)

Suppose wy > wy > ... > w,. Let u; be i-th largest
eigenvalue of G(wy,wy, ..., wy,). Let m = w; and
d=>"",w?p. Almost surely we have:

m (1—o(1)) max{y/m,d} < 1 < 7/ITogn - max{/m,d}.
m = (14+0(1))d, if d> /mlogn.

B = (1+0(1))y/m, if /m > dlog®n.

B~ wg and pypop & —Jwg, i Jwy > c’lvlog2 n.
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Random power law graphs

The first & and last k eigenvalues of the random power law
graph with 8 > 2.5 follows the power law distribution with
exponent 25 — 1. It results a “triangular-like” shape.
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- Laplacian spectrum

Random walks on a graph G-

Tl — AD_17T]€.
AD 1 ~ D V2AD1/2

e
O
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- Laplacian spectrum

Random walks on a graph G-

Tl — AD_17T]{;.
AD 1 ~ D V2AD1/2

Laplacian spectrum
O0=X <A << A1 <2

are the eigenvalues of L =1 — D 1/24D~1/2
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- Laplacian spectrum -

Random walks on a graph G-

Tl — AD_17T]{;.
AD 1 ~ D V2AD1/2

Laplacian spectrum
O0=X <A << A1 <2

are the eigenvalues of L =1 — D 1/24D~1/2
The eigenvalues of AD tare 1,1 —X\,...,1—\,_;.

=

=
=

D
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Laplacian Spectral Radius '

- Wpip = minfwy, ..., wy},
- d=L" w
- n 1=1 1

- g(n) — a function tending to infinity arbitrarily slowly.
Chung, Vu, and Lu (2003)

mf wyy, > log2 n, then almost surely the Laplacian
spectrum \;'s of G(wq, ..., w,) satisfy
4 log?
max [1— | < (14 o(1))— 4 dr)log’n
170 \/a Wmin
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Laplacian Spectral Radius '

- d=33 0w
- g(n) — a function tending to infinity arbitrarily slowly.

Chung, Vu, and Lu (2003)

m I wy > log2 n, then almost surely the Laplacian
spectrum \;'s of G(wq, ..., w,) satisfy

4 g(n)log*n
max |1 — ;| < (14 ol | .
|1 = A < (1+0(1) = + L0

m If w,, > Vd, the Laplacian spectrum follows the

semi-circle distribution with radius r ~ =

i
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- General random graphs '

General edge-independent random graphs:
m n: the number of vertices.

m p;;: a probability for ij being an edge.
m Edges are mutually independent.

Question: What can we say about the spectrum of the
adjacency matrix and the Laplacian matrix?
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Notation

- A: adjacency matrix

- A := (p;): the expectation of A

- A: the maximum expected degree

- 0: the minimum expected degree

- D: the diagonal matrix of degrees

- D: the expectation of D

- L:=1—DY2AD"12: the normalized Laplacian

- L:=1—D"12AD"12: the Laplacian of A
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- Known results '

Oliveira [2010]: For A > C'Inn, with high probability we
have

Xi(A) — N(A)| < 4vVAlnn.
For 0 > C'Inn, with high probability we have
Ni(L) — N\i(L) < 14+/In(4n) /6.
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- Known results '

Oliveira [2010]: For A > C'Inn, with high probability we
have

Xi(A) — N(A)| < 4vVAlnn.
For 0 > C'Inn, with high probability we have
Mi(L) — Ni(L) < 144/In(4n) /6.
Chung-Radcliffe [2011] reduces the constant coefficient

using a new matrix Chernoff inequality.
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- Our results '

Lu-Peng [2012+4]: If A >> In"n, then almost surely

Ai(A) = Ni(A)] < (2+0(1)) VA,
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- Our results '

Lu-Peng [2012+4]: If A >> In"n, then almost surely

Ai(A) = Ni(A)] < (2+0(1)) VA,

Lu-Peng [2012+]:
Let A :={\(L): |1 = N(L)| =w(1/VInn)}.

If § > max{|A|,In*n}, then almost surely

(L) = ()] < (2+ Z(1A>2+o<1>) %

AEA
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- Our results '

Lu-Peng [2012+4]: If A >> In"n, then almost surely

Ai(A) = Ni(A)] < (2+0(1)) VA,

Lu-Peng [2012+]:
Let A :={\(L): |1 = N(L)| =w(1/VInn)}.

If § > max{|A|,In*n}, then almost surely

: o) L
N(L) = N(D)| < |2+ %(1—» + 0(1) 7

- [N DOth case, we remove the multiplicative factor vInn.
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B = (b;;) is a random symmetric matrix satisfying:

- b;;: Independent, but not necessary identical,
- by < K,

- E(b;) =0,

- V&I’(sz) S 0'2.

- Random symmetric matrices '
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B = (b;;) is a random symmetric matrix satisfying:

- b;;: Independent, but not necessary identical,

- by < K,
- E(b;) =0,

- Random symmetric matrices '

- V&I’(sz) S 0'2.

Fiiredi-Komlés [1981]:

|B|| < 20v/n + en'1nn.
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- Random symmetric matrices '

B = (b;;) is a random symmetric matrix satisfying:

- b;;: Independent, but not necessary identical,
- by < K,

- E(b;) =0,

- V&I’(sz) S 0'2.

Fiiredi-Komlés [1981]:

|B|| < 20+v/n + en'/?Inn.

Vu [2007]:

|B|| < 20/ + ¢(Ko)*n'* Inn.
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- Our result '

Lu-Peng [2012+4]: We further assume Var(b;;) < o7;. Let
A = maxXi<i<n 2?21 02-2].. If A > C'K?In*n, then
asymptotically almost surely

IB|| < 2VA + CVKAY*1Inn.

m [t generalizes Vu's theorem.

m [his result is asymptotically tight.
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- Graph percolation '

m (: a connected graph on n vertices

m p: a probability (0 <p<1)

G,: a random spanning subgraph of GG, obtained as follows:
for each edge f of (&, independently,

Pr(f is an edge of G,) = p.
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- Graph percolation '

m (: a connected graph on n vertices

m p: a probability (0 <p<1)

G,: a random spanning subgraph of GG, obtained as follows:
for each edge f of (&, independently,

Pr(f is an edge of G,) = p.

L

o o—©

o—©O
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- Spectrum of G, -

Lu-Peng [2012+]:

4
m lfp> an, then almost surely we have

Xi(A(Gy)) = pA(A(G))] < (2+ 0(1))V/pA.
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- Spectrum of G, -

Lu-Peng [2012+]:

m lfp> ln L then almost surely we have

Xi(A(Gy)) = pA(A(G))] < (2+ 0(1))V/pA.

m Suppose that all but £ Laplacian eigenvalues A of G
satisfies |1 — \| = O(\/ﬂ) If § > max{k,In*n}, then

, almost surely we have

for p > max{k 1“ L

N (L(G,)-MLG)) < (2430, (1= X)2o(1)))
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- Method -

We will illustrate Wigner's trace method through the sketch
proof of the following result.
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Method '

We will illustrate Wigner's trace method through the sketch
proof of the following result.

Lu-Peng [2012+]: If B = (b;;) is a random symmetric
matrix satisfying:

- b;;: independent, but not necessary identical,
- |bi| < K,

- E(by) =0,

- V&I’(sz) S O',?j.

then almost surely

|B|| < 2VA 4+ CVEKAY Inn,

o8 \Wwhere A\ = maXij<;<n Z?:l 022]
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- Sketch proof -

WLOG, we can assume K =1 and b;; = 0. Using Wigner's
trace method, we have

E (Trace Bk Z E 1119 2223 SRR bik_likbikil)

Zl 227 oyl
Lk/2j+1

-> = Tlem

p=2 wegG(n,k,p) eeE(w

Here G(n, k,p) is the set of “good” closed walks w in K, of
length £ on p vertices, where each edge in w appears more
than once (¢. > 2).
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- Continue -

Let G(k, p) be the set of good closed walks w of length % on
the complete graph K, where vertices first appear in w in
the order 1,2,...,p.
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Continue

Let G(k, p) be the set of good closed walks w of length % on
the complete graph K, where vertices first appear in w in

the order 1,2,...,p.

All walks in G(n, k, p) can be coded by a walk in G(k, p) plus
the ordered p distinct vertices. Let
n]2 = {(vi,ve,...,v,) € [n)P: v1,v9,...,v, are distinct}.
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Continue

Let G(k, p) be the set of good closed walks w of length % on
the complete graph K, where vertices first appear in w in

the order 1,2,...,p.

All walks in G(n, k, p) can be coded by a walk in G(k, p) plus
the ordered p distinct vertices. Let

n]2 = {(vi,ve,...,v,) € [n)P: v1,v9,...,v, are distinct}.
Define a rooted tree T'(w) so that the edge

10541 € E(T(w)) if it brings in a new vertex 7,11 when it
occurs first time.
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continue -
o Z > 11 m
weg(k

p) (V1 ’Up) n]2 zyeE(w

Z > >3] avxvy

vi=1vy=1 Up—l g;yEE

n p—1 n
S ‘ S o 2 § 2
Z Z H O-Un(y)vy O-Un(p)vp

) ?}1—1 ’02— ’Up_1:]. y:2 ?}pzl
n p—1
<A Z SPIEDIN I L
— Un(y)Vy
’JJEQ~ v1—1 vo=1 Up—1=1 y=2
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-v Continue -
u [2007] proved

k

G(k,p)| < <2p _2

)22k2p+3pk2p+2(k . 2]7 4+ 4)]{:—2}9%—2.
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-v Continue -
u [2007] proved

‘G(k’p)‘ < ( k )22k2p+3pk2p+2(k . 2p 4+ 4)/{7—2}9—1—2.
2p — 2
We get
k/2+1
‘E (Trace(Bk))‘ < Z o < nAP~! Q(k,p)|
wegG(n,k) ee E(w) p=2
k/2+1 I
< Ap—l 22k—2p+3 k—2p+2 L —9 4 k—2p+2
=n 2 <2p - 2) p ey
p=2
k/2+1

=n S(n,k,p).
o
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- Continue

One can show

16k*
A

S(nakap_l) < S(nakap)
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- Continue

One can show

16k*
A

Smﬁlakal)__l) < Eﬂﬁlak7Z0‘

- 4~ A
For any even integer £ such that £* < &5, we get

k/2+1

|E (Trace(Bk))| < Z S(n, k,p)

p=2
k/2+1

1 k/2+1—p
< S(nkk/2+1) ) (5)

p=2

<25(n,k,k/2+1)

_ nzk-!—QAk/Q.
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continue
For even k, we have

Pr(||B|| > 2VA + CAY*Inn)
= Pr(||B||F > (2VA 4+ CAY*Inn)¥)
< Pr(Trace(B*) > (2VA + CAY*1Inn)F)

E(T BF
< (Trace(B7)) (Markov's inequality)
(2vVA + CAY4Inn))k
n2k+2Ak/2
<

(2v A + CAY4Inn))*

_ 4n6—(1+0(1))%/€A_1/4 lnn.

Setting k = (?)1/4, this probability is o(1) for sufficiently
Iarge C.

()

Spectra of Random Graphs Linyuan Lu — 59 / 68



continue
For even k, we have

Pr(||B|| > 2VA + CAY*Inn)
= Pr(||B||F > (2VA 4+ CAY*Inn)¥)
< Pr(Trace(B*) > (2VA + CAY*1Inn)F)

E(T BF
< (Trace(B7)) (Markov's inequality)
(2vVA + CAY4Inn))k
n2k+2Ak/2
<

(2v A + CAY4Inn))*

_ 4n6—(1+0(1))%/€A_1/4 lnn.

Setting k = (?)1/4, this probability is o(1) for sufficiently
Iarge C.

()
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- Percolation threshold p. '

m For p < p., almost surely there is no giant component

m For p > p., almost surely there is a giant component.

Dc
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- Motivations -

m Graph theory: random graphs

m [heoretical physics: crystals melting

m Sociology: the spread of disease on contact networks
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- Percolation of Z* '
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Percolation of Z¢

) A
s
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- Percolation of Z* '

Lo i i S

Kesten (1980): p.(Z*) = .
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- Percolation of 7 '
e

(] [
] o AT
=, rzmrht&ﬁwfﬂ:dﬁ%
B I
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o . ge

-

Kesten (1980): p.(Z*) = .

Lorenz and Ziff (1997, simulation):
p(Z3) ~ 0.2488126 4 0.0000005 if it exists.
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- Percolation of Z¢

R

(] [
n o F e A T
=, rzmrht&ﬁwfﬂ:dﬁ%
B I

Erﬁ@qu—{aﬂ# iRl
ﬁ%%%ﬁ H
s

= a gs

-

Kesten (1980): p.(Z*) = .

Lorenz and Ziff (1997, simulation):
p(Z3) ~ 0.2488126 4 0.0000005 if it exists.

- Kesten (1990): p.(Z?) ~ - as d — cc.

Spectra of Random Graphs
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- d-regular graphs '

Alon, Benjamini, Stacey (2004): Suppose d > 2 and let
(G,) be a sequence of d-regular expanders with
girth(G,) — oo, then
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Percolation of dense graphs

Bollobas, Borgs, Chayes, and Riordan (2008): Suppose
that GG is a dense graph (i.e., average degree d = O(n)). Let
1t be the largest eigenvalue of the adjacency matrix of G.

Then

De =~

1
"
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Percolation of dense graphs

Bollobas, Borgs, Chayes, and Riordan (2008): Suppose
that GG is a dense graph (i.e., average degree d = O(n)). Let
1t be the largest eigenvalue of the adjacency matrix of G.
Then .

pc%_-

14

Remark: The requirement of “dense graph” is essential.
Their methods can not be extended to sparse graphs.
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- Percolation of sparse graphs -

Chung, Lu, Horn [2008]:

m fp< % then G, has no giant component.
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- Percolation of sparse graphs -

Chung, Lu, Horn [2008]:

m fp< % then G, has no giant component.

m The cor.1dition p > % in general does not imply that G,
has a giant component.
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- Percolation of sparse graphs -

Chung, Lu, Horn [2008]:
m fp< l then G, has no giant component.

m The condltlon D > = in general does not imply that G,
has a giant component

m pr>ﬁ, A =0(d), and o = o(=
glant component.

—7), then G, has a
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Percolation of G(w)

Bhamidi-van der Hofstad-van Leeuwaarden [2012]:
Consider G(w), where w = (wyq, ..., w,) follows the power
law of exponent 8. If E(_"_, w?) converges and is bounded,

then the percolation threshed is (1 + 0(1))%.

m For >4, E(D, w)) converges. The largest
component has the size ©(n??) at the critical window.
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- Percolation of G(w) '

Bhamidi-van der Hofstad-van Leeuwaarden [2012]:
Consider G(w), where w = (wyq, ..., w,) follows the power
law of exponent 8. If E(_"_, w?) converges and is bounded,

1

then the percolation threshed is (1 + o(1))-.

m For >4, E(D, w)) converges. The largest
component has the size ©(n??) at the critical window.

m For2< (<3 EO, w’) diverges. The largest
B_
component has the size ©(ns=1) at the critical window.
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