
Spectra of Random
Graphs

Linyuan Lu

University of South Carolina

Selected Topics on Spectral Graph Theory (III)
Nankai University, Tianjin, May 29, 2014



Five talks

Spectra of Random Graphs Linyuan Lu – 2 / 68

Selected Topics on Spectral Graph Theory
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■ Classical random theory: Erdős-Rényi model

■ Power law graphs

■ Chung-Lu model

■ Edge-independent random graphs
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A graph consists of two sets V and E.

- V is the set of vertices (or nodes).
- E is the set of edges, where each edge is a pair of
vertices.

The degree of a vertex is the number of edges, which are
incident to that vertex.

Diameter: the maximum distance d(u, v), where u and v are
in the same connected component.
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A graph consists of two sets V and E.

- V is the set of vertices (or nodes).
- E is the set of edges, where each edge is a pair of
vertices.

The degree of a vertex is the number of edges, which are
incident to that vertex.

Diameter: the maximum distance d(u, v), where u and v are
in the same connected component.

Average distance: the average among all distance d(u, v) for
pairs of u and v in the same connected component.
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A random graph is a set of graphs together with a
probability distribution on that set.
Example: A random graph on 3 vertices and 2 edges with
the uniform distribution on it.
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A random graph is a set of graphs together with a
probability distribution on that set.
Example: A random graph on 3 vertices and 2 edges with
the uniform distribution on it.
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A random graph G almost surely satisfies a property P , if

Pr(G satisfies P ) = 1− on(1).
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- n nodes
- For each pair of vertices, create an edge independently
with probability p.

- The graph with e edges has the probability pe(1− p)(
n
2)−e.
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The probability of this
graph is

p4(1− p)2.
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Erdős-Rényi 1960s:

■ p ∼ c/n for 0 < c < 1: The largest connected
component of Gn,p is a tree and has about
1
α(log n− 5

2 log log n) vertices, where α = c− 1− log c.
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Erdős-Rényi 1960s:

■ p ∼ c/n for 0 < c < 1: The largest connected
component of Gn,p is a tree and has about
1
α(log n− 5

2 log log n) vertices, where α = c− 1− log c.

■ p ∼ 1/n+ c/n4/3, the largest connected component is
Θ(n2/3). Double jump: Θ(log n) → Θ(n2/3) → Θ(n).

■ p ∼ c/n for c > 1: Except for one “giant” component,
all the other components are relatively small. The giant
component has approximately f(c)n vertices, where

f(c) = 1− 1

c

∞
∑

k=1

kk−1

k!
(ce−c)k.



Diameter of G(n, p)

Spectra of Random Graphs Linyuan Lu – 9 / 68

Bollobás (1985): (denser graph)

diam(G(n, p)) =

⌊

log n
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if np ≫ log n.
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Bollobás (1985): (denser graph)

diam(G(n, p)) =

⌊

log n

log np

⌋

or

⌈

log n

log np

⌉

if np ≫ log n.

Chung Lu, (2000) (Sparser graph)

diam(G(n, p)) =

{

(1 + o(1)) log n
log np if np → ∞

Θ( log n
log np) if ∞ > np > 1.



Wigner’s semicircle law
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(Wigner, 1958)

- A is a real symmetric n× n matrix.
- Entries aij are independent random variables.
- E(a2k+1

ij ) = 0.

- E(a2ij) = m2.

- E(a2kij ) < M .

The distribution of eigenvalues of A converges into a
semicircle distribution of radius 2m

√
n.



Spectra of G(n, p)

Spectra of Random Graphs Linyuan Lu – 11 / 68

The eigenvalues of an Erdős-Rényi random graph follow the
semicircle law. ( Füredi and Komlós, 1981)

Laplacian eigenvalues also follow the semicircle law.
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Erdős-Rényi model G(n, p) is classical, simple, beautiful...,
but not suitable to model complex graphs.

■ What are complex graphs?

■ How to model these complex graphs by random graphs?

■ How to deduce the graph properties of these general
random graph models?



Examples of complex graphs
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WWW Graphs

Call Graphs

Collaboration Graphs

Gene Regulatory Graphs

Graph of U.S. Power Grid

Costars Graph of Actors

...



A subgraph of the Collaboration Graph
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Collaboration Graph at USC
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Czabarka Székely Lu
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Faculty, Ph.D. students, Postdocs, and visitors to the
Combinatorics Group at the University of South Carolina.



An IP Graph (by Bill Cheswick)
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BGP Graph
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Vertex: AS
(autonomous system)

Edges: AS pairs in
BGP routing table.



Large BGP subgraph
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Only a portion of 6400 vertices and 13000 edges is drawn.



Hollywood Graph
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Vertex: actors and
actress

Edges: co-playing in
the same movie

Only 10,000 out of
225,000 are shown.



Protein-interaction network
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Snel, Bork & Huynen, PNAS 99, 5890 (2002)



A subgraph of the Collaboration Graph
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■ Erdős has Erdős number 0.

■ Erdős’ coauthor has Erdős number 1.

■ Erdős’ coauthor’s coauthor has Erdős
number 2.
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■ Erdős has Erdős number 0.

■ Erdős’ coauthor has Erdős number 1.

■ Erdős’ coauthor’s coauthor has Erdős
number 2.

...

My Erdős number is 2.

Erdős number is the graph distance to Erdős in the
Collaboration graph.



Collaboration Graph
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■ Large

■ Sparse

■ Power law degree distribution

■ Small world phenomenon
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The number of vertices of degree k is approximately
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The number of vertices of degree k is approximately
proportional to k−β for some positive β.

A power law graph is a graph whose degree sequence
satisfies the power law.
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Left: The collaboration
graph follows the power
law degree distribution
with exponent β ≈ 3.0
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Left: The collaboration
graph follows the power
law degree distribution
with exponent β ≈ 3.0

Right: An IP graph
follows the power law de-
gree distribution with ex-
ponent β ≈ 2.4



Power law graphs
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Left: Part of the collab-
oration graph (authors
with Erdős number 2)

Right: An IP graph (by Bill
Cheswick)



Robustness of Power Law
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size degree distribution

25,3339

52,186
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■ How to model power law graphs?
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■ How to model power law graphs?

■ What graph properties can be derived

from the model?
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Random graph model with given expected degree sequence
(Chung-Lu model)

- n nodes with weights w1, w2, . . . , wn.

- For each pair (i, j), create an edge independently with
probability pij = wiwjρ, where ρ = 1

∑n
i=1 wi

.

- The graph H has probability

∏

ij∈E(H)

pij
∏

ij 6∈E(H)

(1− pij).

- The expected degree of vertex i is wi.
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The probability of the graph is

w3
1w

2
2w

2
3w4ρ

4(1− w2w4ρ)× (1− w3w4ρ)
4
∏

i=1

(1− w2
i ρ).
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For G = G(w1, . . . , wn), let

- d = 1
n

∑n
i=1wi

- d̃ =
∑n

i=1 w
2
i
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i=1 wi

.

- The volume of S: Vol(S) =
∑

i∈S wi.



Chung-Lu model

Spectra of Random Graphs Linyuan Lu – 32 / 68

For G = G(w1, . . . , wn), let

- d = 1
n

∑n
i=1wi

- d̃ =
∑n

i=1 w
2
i

∑n
i=1 wi

.

- The volume of S: Vol(S) =
∑

i∈S wi.

We have
d̃ ≥ d

“=” holds if and only if w1 = · · · = wn.



Chung-Lu model

Spectra of Random Graphs Linyuan Lu – 32 / 68

For G = G(w1, . . . , wn), let

- d = 1
n

∑n
i=1wi

- d̃ =
∑n

i=1 w
2
i

∑n
i=1 wi

.

- The volume of S: Vol(S) =
∑

i∈S wi.

We have
d̃ ≥ d

“=” holds if and only if w1 = · · · = wn.

A connected component S is called a giant component if

vol(S) = Θ(vol(G)).



Connected components
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Chung and Lu (2001) For G = G(w1, . . . , wn),

■ If d̃ < 1− ǫ, then almost surely, all components have
volume at most O(

√
n log n).
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Chung and Lu (2001) For G = G(w1, . . . , wn),

■ If d̃ < 1− ǫ, then almost surely, all components have
volume at most O(

√
n log n).

■ If d > 1 + ǫ, then almost surely there is a unique giant
component of volume Θ(Vol(G)). All other components
have size at most

{

log n
d−1−log d−ǫd if 1

1−ǫ < d < 2
1−ǫ

log n
1+log d−log 4+2 log(1−ǫ) if d > 4

e(1−ǫ)2 .



Volume of Giant Component
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Chung and Lu (2004)
If the average degree is strictly greater than 1, then almost
surely the giant component in a graph G in G(w) has

volume (λ0 +O
(√

n log3.5 n
Vol(G) )

)

Vol(G), where λ0 is the unique

positive root of the following equation:

n
∑

i=1

wie
−wiλ = (1− λ)

n
∑

i=1

wi.



A real application
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Apply to the Collaboration Graph (2002 data):
The size of giant component is predicted to be about
177, 400 by our theory. This is rather close to the actual
value 176, 000, within an error bound of less than 1%.



G(n, p) versus G(w1, . . . , wn)
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Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?
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degrees generates the smallest giant component among all
possible degree distribution with the same volume?
Chung Lu (2004)

■ Yes, for 1 < d ≤ e
e−1 .

■ No, for sufficiently large d.
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Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?
Chung Lu (2004)

■ Yes, for 1 < d ≤ e
e−1 .

■ No, for sufficiently large d.
■ When d ≥ 4

e , almost surely the giant component of
G(w1, . . . , wn) has volume at least

(

1

2

(

1 +

√

1− 4

de

)

+ o(1)

)

Vol(G).

This is asymptotically best possible.



Diameter of G(w1, . . . , wn)
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Chung Lu (2002)

■ For a random graph G with admissible expected degree
sequence (w1, . . . , wn), the average distance is almost
surely (1 + o(1)) logn

log d̃
.
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Chung Lu (2002)

■ For a random graph G with admissible expected degree
sequence (w1, . . . , wn), the average distance is almost
surely (1 + o(1)) logn

log d̃
.

■ For a random graph G with strongly admissible expected
degree sequence (w1, . . . , wn), the diameter is almost
surely Θ( log n

log d̃
).
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Chung Lu (2002)

■ For a random graph G with admissible expected degree
sequence (w1, . . . , wn), the average distance is almost
surely (1 + o(1)) logn

log d̃
.

■ For a random graph G with strongly admissible expected
degree sequence (w1, . . . , wn), the diameter is almost
surely Θ( log n

log d̃
).

These results apply to G(n, p) and random power law graph
with β > 3.
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A random subgraph of the Collabo-

ration Graph.

A Connected component of G(n, p)

with n = 500 and p = 0.002.
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A random subgraph of the Collabo-

ration Graph.

A Connected component of G(n, p)

with n = 500 and p = 0.002.

- Dense core for non-admissible graphs.
- No dense core for admissible graphs.
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Chung, Lu (2002)

- Examples: the WWW graph, Collaboration graph, etc.
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- Non-admissible.
- Containing a dense core, with diameter log log n.
- Mostly vertices are within the distance of O(log log n)
from the core.
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Chung, Lu (2002)

- Examples: the WWW graph, Collaboration graph, etc.
- Non-admissible.
- Containing a dense core, with diameter log log n.
- Mostly vertices are within the distance of O(log log n)
from the core.

- There are some vertices at the distance of O(log n).

The diameter is Θ(log n), while the average distance is
O(log log n).
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■ Faloutsos et al. (1999) The eigenvalues of the
Internet graph do not follow the semicircle law.

■ Farkas et. al. (2001), Goh et. al. (2001) The
spectrum of a power law graph follows a “triangular-like”
distribution.

■ Mihail and Papadimitriou (2002) They showed that
the large eigenvalues are determined by the large
degrees. Thus, the significant part of the spectrum of a
power law graph follows the power law.

µi ≈
√

di.
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Chung, Vu, and Lu (2003)
Suppose w1 ≥ w2 ≥ . . . ≥ wn. Let µi be i-th largest
eigenvalue of G(w1, w2, . . . , wn). Let m = w1 and
d̃ =

∑n
i=1w

2
i ρ. Almost surely we have:

■ (1−o(1))max{√m, d̃} ≤ µ1 ≤ 7
√
log n ·max{√m, d̃}.
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Suppose w1 ≥ w2 ≥ . . . ≥ wn. Let µi be i-th largest
eigenvalue of G(w1, w2, . . . , wn). Let m = w1 and
d̃ =

∑n
i=1w

2
i ρ. Almost surely we have:

■ (1−o(1))max{√m, d̃} ≤ µ1 ≤ 7
√
log n ·max{√m, d̃}.

■ µ1 = (1 + o(1))d̃, if d̃ >
√
m log n.
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Chung, Vu, and Lu (2003)
Suppose w1 ≥ w2 ≥ . . . ≥ wn. Let µi be i-th largest
eigenvalue of G(w1, w2, . . . , wn). Let m = w1 and
d̃ =
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i=1w

2
i ρ. Almost surely we have:

■ (1−o(1))max{√m, d̃} ≤ µ1 ≤ 7
√
log n ·max{√m, d̃}.

■ µ1 = (1 + o(1))d̃, if d̃ >
√
m log n.

■ µ1 = (1 + o(1))
√
m, if

√
m > d̃ log2 n.
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Chung, Vu, and Lu (2003)
Suppose w1 ≥ w2 ≥ . . . ≥ wn. Let µi be i-th largest
eigenvalue of G(w1, w2, . . . , wn). Let m = w1 and
d̃ =

∑n
i=1w

2
i ρ. Almost surely we have:

■ (1−o(1))max{√m, d̃} ≤ µ1 ≤ 7
√
log n ·max{√m, d̃}.

■ µ1 = (1 + o(1))d̃, if d̃ >
√
m log n.

■ µ1 = (1 + o(1))
√
m, if

√
m > d̃ log2 n.

■ µk ≈
√
wk and µn+1−k ≈ −√

wk, if
√
wk > d̃ log2 n.



Random power law graphs
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The first k and last k eigenvalues of the random power law
graph with β > 2.5 follows the power law distribution with
exponent 2β − 1. It results a “triangular-like” shape.
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Random walks on a graph G:

πk+1 = AD−1πk.

AD−1 ∼ D−1/2AD−1/2.
✍✌
✎☞
v ✍✌

✎☞

✍✌
✎☞

✍✌
✎☞

✲
�
�
�
�
�
�
��✒✻

1
dv

1
dv1

dv
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Random walks on a graph G:

πk+1 = AD−1πk.

AD−1 ∼ D−1/2AD−1/2.
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dv
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dv1
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Laplacian spectrum

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2

are the eigenvalues of L = I −D−1/2AD−1/2.
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Random walks on a graph G:

πk+1 = AD−1πk.

AD−1 ∼ D−1/2AD−1/2.
✍✌
✎☞
v ✍✌

✎☞

✍✌
✎☞

✍✌
✎☞

✲
�
�
�
�
�
�
��✒✻

1
dv

1
dv1

dv

Laplacian spectrum

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2

are the eigenvalues of L = I −D−1/2AD−1/2.
The eigenvalues of AD−1 are 1, 1− λ1, . . . , 1− λn−1.



Laplacian Spectral Radius
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Let

- wmin = min{w1, . . . , wn},
- d = 1

n

∑n
i=1wi,

- g(n) — a function tending to infinity arbitrarily slowly.

Chung, Vu, and Lu (2003)

■ If wmin ≫ log2 n, then almost surely the Laplacian
spectrum λi’s of G(w1, . . . , wn) satisfy

max
i6=0

|1− λi| ≤ (1 + o(1))
4√
d
+

g(n) log2 n

wmin
.
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Let

- wmin = min{w1, . . . , wn},
- d = 1

n

∑n
i=1wi,

- g(n) — a function tending to infinity arbitrarily slowly.

Chung, Vu, and Lu (2003)

■ If wmin ≫ log2 n, then almost surely the Laplacian
spectrum λi’s of G(w1, . . . , wn) satisfy

max
i6=0

|1− λi| ≤ (1 + o(1))
4√
d
+

g(n) log2 n

wmin
.

■ If wmin ≫
√
d, the Laplacian spectrum follows the

semi-circle distribution with radius r ≈ 2√
d
.



General random graphs
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General edge-independent random graphs:

■ n: the number of vertices.

■ pij: a probability for ij being an edge.

■ Edges are mutually independent.

Question: What can we say about the spectrum of the
adjacency matrix and the Laplacian matrix?



Notation
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- A: adjacency matrix

- Ā := (pij): the expectation of A

- ∆: the maximum expected degree

- δ: the minimum expected degree

- D: the diagonal matrix of degrees

- D̄: the expectation of D

- L := I −D−1/2AD−1/2: the normalized Laplacian

- L̄ := I − D̄−1/2ĀD̄−1/2: the Laplacian of Ā



Known results
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Oliveira [2010]: For ∆ ≥ C lnn, with high probability we
have

|λi(A)− λi(Ā)| ≤ 4
√
∆ lnn.

For δ ≥ C lnn, with high probability we have

λi(L)− λi(L̄) ≤ 14
√

ln(4n)/δ.
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Oliveira [2010]: For ∆ ≥ C lnn, with high probability we
have

|λi(A)− λi(Ā)| ≤ 4
√
∆ lnn.

For δ ≥ C lnn, with high probability we have

λi(L)− λi(L̄) ≤ 14
√

ln(4n)/δ.

Chung-Radcliffe [2011] reduces the constant coefficient

using a new matrix Chernoff inequality.
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Lu-Peng [2012+]: If ∆ ≫ ln4 n, then almost surely

|λi(A)− λi(Ā)| ≤ (2 + o(1))
√
∆.
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Lu-Peng [2012+]: If ∆ ≫ ln4 n, then almost surely

|λi(A)− λi(Ā)| ≤ (2 + o(1))
√
∆.

Lu-Peng [2012+]:

Let Λ := {λi(L̄) : |1− λi(L̄)| = ω(1/
√
lnn)}.

If δ ≫ max{|Λ|, ln4 n}, then almost surely

|λi(L)− λi(L̄)| ≤



2 +

√

∑

λ∈Λ
(1− λ)2 + o(1)





1√
δ
.
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Lu-Peng [2012+]: If ∆ ≫ ln4 n, then almost surely

|λi(A)− λi(Ā)| ≤ (2 + o(1))
√
∆.

Lu-Peng [2012+]:

Let Λ := {λi(L̄) : |1− λi(L̄)| = ω(1/
√
lnn)}.

If δ ≫ max{|Λ|, ln4 n}, then almost surely

|λi(L)− λi(L̄)| ≤



2 +

√

∑

λ∈Λ
(1− λ)2 + o(1)





1√
δ
.

In both case, we remove the multiplicative factor
√
lnn.
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B = (bij) is a random symmetric matrix satisfying:

- bij: independent, but not necessary identical,
- |bij| ≤ K,
- E(bij) = 0,
- Var(bij) ≤ σ2.
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B = (bij) is a random symmetric matrix satisfying:

- bij: independent, but not necessary identical,
- |bij| ≤ K,
- E(bij) = 0,
- Var(bij) ≤ σ2.

Füredi-Komlós [1981]:

‖B‖ ≤ 2σ
√
n+ cn1/3 lnn.



Random symmetric matrices

Spectra of Random Graphs Linyuan Lu – 49 / 68

B = (bij) is a random symmetric matrix satisfying:

- bij: independent, but not necessary identical,
- |bij| ≤ K,
- E(bij) = 0,
- Var(bij) ≤ σ2.

Füredi-Komlós [1981]:

‖B‖ ≤ 2σ
√
n+ cn1/3 lnn.

Vu [2007]:

‖B‖ ≤ 2σ
√
n+ c(Kσ)1/2n1/4 lnn.



Our result
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Lu-Peng [2012+]: We further assume Var(bij) ≤ σ2
ij. Let

∆ := max1≤i≤n

∑n
j=1 σ

2
ij. If ∆ ≥ C ′K2 ln4 n, then

asymptotically almost surely

‖B‖ ≤ 2
√
∆+ C

√
K∆1/4 lnn.

■ It generalizes Vu’s theorem.

■ This result is asymptotically tight.



Graph percolation
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■ G: a connected graph on n vertices

■ p: a probability (0 ≤ p ≤ 1)

Gp: a random spanning subgraph of G, obtained as follows:
for each edge f of G, independently,

Pr(f is an edge of Gp) = p.
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■ G: a connected graph on n vertices

■ p: a probability (0 ≤ p ≤ 1)

Gp: a random spanning subgraph of G, obtained as follows:
for each edge f of G, independently,

Pr(f is an edge of Gp) = p.
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Lu-Peng [2012+]:

■ If p ≫ ln4 n
∆ , then almost surely we have

|λi(A(Gp))− pλi(A(G))| ≤ (2 + o(1))
√

p∆.
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Lu-Peng [2012+]:

■ If p ≫ ln4 n
∆ , then almost surely we have

|λi(A(Gp))− pλi(A(G))| ≤ (2 + o(1))
√

p∆.

■ Suppose that all but k Laplacian eigenvalues λ of G
satisfies |1− λ| = o( 1√

lnn
). If δ ≫ max{k, ln4 n}, then

for p ≫ max{k
δ ,

ln4 n
δ }, almost surely we have

|λi(L(Gp))−λi(L(G))|≤(2+
√

∑k
i=1(1− λi)2+o(1)))

1√
pδ
.

�
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We will illustrate Wigner’s trace method through the sketch
proof of the following result.
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We will illustrate Wigner’s trace method through the sketch
proof of the following result.

Lu-Peng [2012+]: If B = (bij) is a random symmetric
matrix satisfying:

- bij: independent, but not necessary identical,
- |bij| ≤ K,
- E(bij) = 0,
- Var(bij) ≤ σ2

ij.

then almost surely

‖B‖ ≤ 2
√
∆+ C

√
K∆1/4 lnn,

where ∆ := max1≤i≤n

∑n
j=1 σ

2
ij.
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WLOG, we can assume K = 1 and bii = 0. Using Wigner’s
trace method, we have

E
(

Trace(Bk)
)

=
∑

i1,i2,...,ik

E(bi1i2bi2i3 . . . bik−1ikbiki1)

=

⌊k/2⌋+1
∑

p=2

∑

w∈G(n,k,p)

∏

e∈E(w)

E(bqee ).

Here G(n, k, p) is the set of “good” closed walks w in Kn of
length k on p vertices, where each edge in w appears more
than once (qe ≥ 2).
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Let G̃(k, p) be the set of good closed walks w of length k on
the complete graph Kp where vertices first appear in w in
the order 1, 2, . . . , p.
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Let G̃(k, p) be the set of good closed walks w of length k on
the complete graph Kp where vertices first appear in w in
the order 1, 2, . . . , p.

All walks in G(n, k, p) can be coded by a walk in G̃(k, p) plus
the ordered p distinct vertices. Let
[n]p := {(v1, v2, . . . , vp) ∈ [n]p : v1, v2, . . . , vp are distinct}.
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Let G̃(k, p) be the set of good closed walks w of length k on
the complete graph Kp where vertices first appear in w in
the order 1, 2, . . . , p.

All walks in G(n, k, p) can be coded by a walk in G̃(k, p) plus
the ordered p distinct vertices. Let
[n]p := {(v1, v2, . . . , vp) ∈ [n]p : v1, v2, . . . , vp are distinct}.
Define a rooted tree T (w) so that the edge
ijij+1 ∈ E(T (w)) if it brings in a new vertex ij+1 when it
occurs first time.
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∑

w∈G(n,k,p)

∏

e∈E(w)

σ2
e =

∑

w̃∈G̃(k,p)

∑

(v1,...,vp)∈[n]p

∏

xy∈E(w̃)

σ2
vxvy

≤
∑

w̃∈G̃(k,p)

n
∑

v1=1

n
∑

v2=1

· · ·
n

∑

vp=1

∏

xy∈E(T )

σ2
vxvy

=
∑

w̃∈G̃(k,p)

n
∑

v1=1

n
∑

v2=1

· · ·
n

∑

vp−1=1

p−1
∏

y=2

σ2
vη(y)vy

n
∑

vp=1

σ2
vη(p)vp

≤ ∆
∑

w̃∈G̃(k,p)

n
∑

v1=1

n
∑

v2=1

· · ·
n

∑

vp−1=1

p−1
∏

y=2

σ2
vη(y)vy

≤ · · ·
≤ n∆p−1

∣

∣

∣
G̃(k, p)

∣

∣

∣
.
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Vu [2007] proved

|G̃(k, p)| ≤
(

k

2p− 2

)

22k−2p+3pk−2p+2(k − 2p+ 4)k−2p+2.
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Vu [2007] proved

|G̃(k, p)| ≤
(

k

2p− 2

)

22k−2p+3pk−2p+2(k − 2p+ 4)k−2p+2.

We get

∣

∣E
(

Trace(Bk)
)∣

∣ ≤
∑

w∈G(n,k)

∏

e∈E(w)

σ2
e ≤

k/2+1
∑

p=2

n∆p−1
∣

∣

∣
G̃(k, p)

∣

∣

∣

≤ n

k/2+1
∑

p=2

∆p−1

(

k

2p− 2

)

22k−2p+3pk−2p+2(k − 2p+ 4)k−2p+2

:= n

k/2+1
∑

p=2

S(n, k, p).
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One can show

S(n, k, p− 1) ≤ 16k4

∆
S(n, k, p).
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One can show

S(n, k, p− 1) ≤ 16k4

∆
S(n, k, p).

For any even integer k such that k4 ≤ ∆
32 , we get

∣

∣E
(

Trace(Bk)
)∣

∣ ≤
k/2+1
∑

p=2

S(n, k, p)

≤ S(n, k, k/2 + 1)

k/2+1
∑

p=2

(

1

2

)k/2+1−p

< 2S(n, k, k/2 + 1)

= n2k+2∆k/2.
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For even k, we have

Pr(‖B‖ ≥ 2
√
∆+ C∆1/4 lnn)

= Pr(‖B‖k ≥ (2
√
∆+ C∆1/4 lnn)k)

≤ Pr(Trace(Bk) ≥ (2
√
∆+ C∆1/4 lnn)k)

≤ E(Trace(Bk))

(2
√
∆+ C∆1/4 lnn))k

(Markov’s inequality)

≤ n2k+2∆k/2

(2
√
∆+ C∆1/4 lnn))k

= 4ne−(1+o(1))C2 k∆
−1/4 lnn.

Setting k =
(

∆
32

)1/4
, this probability is o(1) for sufficiently

large C. �



continue

Spectra of Random Graphs Linyuan Lu – 59 / 68

For even k, we have

Pr(‖B‖ ≥ 2
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= Pr(‖B‖k ≥ (2
√
∆+ C∆1/4 lnn)k)

≤ Pr(Trace(Bk) ≥ (2
√
∆+ C∆1/4 lnn)k)

≤ E(Trace(Bk))

(2
√
∆+ C∆1/4 lnn))k

(Markov’s inequality)

≤ n2k+2∆k/2

(2
√
∆+ C∆1/4 lnn))k

= 4ne−(1+o(1))C2 k∆
−1/4 lnn.

Setting k =
(

∆
32

)1/4
, this probability is o(1) for sufficiently

large C. �



Percolation threshold pc
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■ For p < pc, almost surely there is no giant component

■ For p > pc, almost surely there is a giant component.

pc



Motivations
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■ Graph theory: random graphs

■ Theoretical physics: crystals melting

■ Sociology: the spread of disease on contact networks



Percolation of Zd
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Kesten (1980): pc(Z
2) = 1

2 .
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Lorenz and Ziff (1997, simulation):
pc(Z

3) ≈ 0.2488126± 0.0000005 if it exists.
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Kesten (1980): pc(Z
2) = 1

2 .

Lorenz and Ziff (1997, simulation):
pc(Z

3) ≈ 0.2488126± 0.0000005 if it exists.

Kesten (1990): pc(Z
d) ∼ 1

2d as d → ∞.



d-regular graphs
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Alon, Benjamini, Stacey (2004): Suppose d ≥ 2 and let
(Gn) be a sequence of d-regular expanders with
girth(Gn) → ∞, then

pc =
1

d− 1
+ o(1).



Percolation of dense graphs
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Bollobás, Borgs, Chayes, and Riordan (2008): Suppose
that G is a dense graph (i.e., average degree d = Θ(n)). Let
µ be the largest eigenvalue of the adjacency matrix of G.
Then

pc ≈
1

µ
.
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Bollobás, Borgs, Chayes, and Riordan (2008): Suppose
that G is a dense graph (i.e., average degree d = Θ(n)). Let
µ be the largest eigenvalue of the adjacency matrix of G.
Then

pc ≈
1

µ
.

Remark: The requirement of “dense graph” is essential.
Their methods can not be extended to sparse graphs.
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Chung, Lu, Horn [2008]:

■ If p < 1
µ , then Gp has no giant component.
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Chung, Lu, Horn [2008]:

■ If p < 1
µ , then Gp has no giant component.

■ The condition p > 1
µ in general does not imply that Gp

has a giant component.

■ If p > 1
µ , ∆ = O(d), and σ = o( 1

log n), then Gp has a
giant component.
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Bhamidi-van der Hofstad-van Leeuwaarden [2012]:
Consider G(w), where w = (w1, . . . , wn) follows the power
law of exponent β. If E(

∑n
i=1w

2
i ) converges and is bounded,

then the percolation threshed is (1 + o(1))1
d̃
.

■ For β > 4, E(
∑n

i=1w
3
i ) converges. The largest

component has the size Θ(n2/3) at the critical window.
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Bhamidi-van der Hofstad-van Leeuwaarden [2012]:
Consider G(w), where w = (w1, . . . , wn) follows the power
law of exponent β. If E(

∑n
i=1w

2
i ) converges and is bounded,

then the percolation threshed is (1 + o(1))1
d̃
.

■ For β > 4, E(
∑n

i=1w
3
i ) converges. The largest

component has the size Θ(n2/3) at the critical window.

■ For 2 < β < 3, E(
∑n

i=1w
3
i ) diverges. The largest

component has the size Θ(n
β−2
β−1 ) at the critical window.



References

Spectra of Random Graphs Linyuan Lu – 68 / 68

1. Fan Chung, Linyuan Lu, and Van Vu, Eigenvalues of random power
law graphs, Annals of Combinatorics, 7 (2003), 21–33.

2. Fan Chung, Linyuan Lu and Van Vu, The spectra of random graphs
with given expected degrees, Proceedings of National Academy of

Sciences, 100, No. 11, (2003), 6313-6318.
3. Fan Chung, Linyuan Lu, and Van Vu, Eigenvalues of random power

law graphs, Internet Mathematics, 1 No. 3, (2004), 257–275.
4. Fan Chung and Linyuan Lu, The volume of the giant component for

a random graph with given expected degrees, SIAM J. Discrete

Math., 20 (2006), No. 2, 395–411.
5. Linyuan Lu and Xing Peng, Spectra of edge-independent random

graphs, Electronic Journal of Combinatorics, 20 (4), (2013) P27.

Homepage: http://www.math.sc.edu/∼ lu/

Thank You


	Five talks
	Backgrounds
	Outline
	Preliminary
	Random graphs
	Erdos-Rényi model G(n,p)
	Evolution of G(n,p)
	Diameter of G(n,p)
	Wigner's semicircle law
	Spectra of G(n,p)
	Challenge
	Examples of complex graphs
	A subgraph of the Collaboration Graph
	Collaboration Graph at USC
	An IP Graph (by Bill Cheswick)
	BGP Graph
	Large BGP subgraph
	Hollywood Graph
	Protein-interaction network
	A subgraph of the Collaboration Graph
	Folklore of Erdos numbers
	Collaboration Graph
	Characteristics
	The power law
	Power law distribution
	Power law graphs
	Robustness of Power Law
	Basic questions
	Model G(w1, w2,…, wn) 
	An example: G(w1,w2,w3, w4)
	Chung-Lu model
	Connected components
	Volume of Giant Component
	A real application
	G(n,p) versus G(w1,…, wn)
	Diameter of G(w1,…,wn)
	Non-admissible graph  versus admissible graph
	Power law graphs with (2,3)
	Experimental results
	Eigenvalues of G(w1,…, wn)
	Random power law graphs
	Laplacian spectrum
	Laplacian Spectral Radius
	General random graphs
	Notation
	Known results
	Our results
	Random symmetric matrices
	Our result
	Graph percolation
	Spectrum of Gp
	Method
	Sketch proof
	Continue
	continue
	Continue
	Continue
	continue
	Percolation threshold pc
	Motivations
	Percolation of Zd
	Percolation of Zd
	d-regular graphs
	Percolation of dense graphs
	Percolation of sparse graphs
	Percolation of G(w)
	References

