Laplacian and Random Walks on Graphs

Linyuan Lu
University of South Carolina

Selected Topics on Spectral Graph Theory (II) Nankai University, Tianjin, May 22, 2014

Five talks

Selected Topics on Spectral Graph Theory

1. Graphs with Small Spectral Radius Time: Friday (May 16) 4pm.-5:30p.m.
2. Laplacian and Random Walks on Graphs Time: Thursday (May 22) 4pm.-5:30p.m.
3. Spectra of Random Graphs Time: Thursday (May 29) 4pm.-5:30p.m.
4. Hypergraphs with Small Spectral Radius Time: Friday (June 6) 4pm.-5:30p.m.
5. Lapalacian of Random Hypergraphs Time: Thursday (June 12) 4pm.-5:30p.m.

Backgrounds

I: Spectral Graph Theory II: Random Graph Theory III: Random Matrix Theory

Outline

- Combinatorial Laplacian
- Normalized Laplacian

An application

Graphs and Matrices

There are several ways to associate a matrix to a graph G.

- Adjacency matrix

Graphs and Matrices

There are several ways to associate a matrix to a graph G.

- Adjacency matrix
- Combinatorial Laplacian

Graphs and Matrices

There are several ways to associate a matrix to a graph G.

- Adjacency matrix
- Combinatorial Laplacian
- Normalized Laplacian

Basic Graph Notation

$G=(V, E):$ a simple connected graph on n vertices $A(G)$: the adjacency matrix

Basic Graph Notation

$G=(V, E):$ a simple connected graph on n vertices $A(G)$: the adjacency matrix
$D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$: the diagonal degree matrix

Basic Graph Notation

$G=(V, E):$ a simple connected graph on n vertices $A(G)$: the adjacency matrix
$D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$: the diagonal degree matrix

- $L=D-A$: the combinatorial Laplacian

Basic Graph Notation

$G=(V, E):$ a simple connected graph on n vertices $A(G)$: the adjacency matrix
$D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$: the diagonal degree matrix $L=D-A$: the combinatorial Laplacian L is semi-definite and $\mathbf{1}$ is always an eigenvector for the eigenvalue 0 .

Basic Graph Notation

$G=(V, E):$ a simple connected graph on n vertices $A(G)$: the adjacency matrix
$D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$: the diagonal degree matrix

- $L=D-A$: the combinatorial Laplacian L is semi-definite and $\mathbf{1}$ is always an eigenvector for the eigenvalue 0 .

$$
L\left(S_{4}\right)=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right)
$$

Basic Graph Notation

$G=(V, E):$ a simple connected graph on n vertices $A(G)$: the adjacency matrix
$D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$: the diagonal degree matrix $L=D-A$: the combinatorial Laplacian L is semi-definite and $\mathbf{1}$ is always an eigenvector for the eigenvalue 0 .

$$
L\left(S_{4}\right)=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right)
$$

Combinatorial Laplacian eigenvalues of $S_{4}: 0,1,1,4$.

Matrix-tree Theorem

Kirchhoff's Matrix-tree Theorem: The (i, j)-cofactor of $D-A$ equals $(-1)^{i+j} t(G)$, where $t(G)$ is the number of spanning trees in G.

Matrix-tree Theorem

Kirchhoff's Matrix-tree Theorem: The (i, j)-cofactor of $D-A$ equals $(-1)^{i+j} t(G)$, where $t(G)$ is the number of spanning trees in G.
Proof: Fix an orientation of G, let B be the incidence matrix of the orientation, i.e., $b_{v e}=1$ if v is the head of the arc $e, b_{v e}=-1$ if i is the tail of e, and $b_{v e}=0$ otherwise. Let L_{11} be the sub-matrix obtained from L by deleting the first row and first column, and B_{1} be the matrix obtained from B by deleting the first row. Then $L_{11}=B_{1} B_{1}^{\prime}$.

$$
\operatorname{det}\left(L_{11}\right)=\operatorname{det}\left(B_{1} B_{1}^{\prime}\right)
$$

$=\sum_{S} \operatorname{det}\left(B_{S}\right)^{2} \quad$ By Cauchy-Binet formula
$=$ the number of Spanning Trees. \square

An application

Corollary: If G is connected, and $\lambda_{1}, \ldots, \lambda_{n-1}$ be the non-zero eigenvalues of L. Then the number of spanning tree is

$$
\frac{1}{n} \lambda_{1} \lambda_{2} \cdots \lambda_{n-1} .
$$

An application

Corollary: If G is connected, and $\lambda_{1}, \ldots, \lambda_{n-1}$ be the non-zero eigenvalues of L. Then the number of spanning tree is

$$
\frac{1}{n} \lambda_{1} \lambda_{2} \cdots \lambda_{n-1} .
$$

Chung-Yau [1999]: The number of spanning trees in any d-regular graph on n vertices is at most

$$
(1+o(1)) \frac{2 \log n}{d n \log d}\left(\frac{(d-1)^{d-1}}{\left(d^{2}-2 d\right)^{d / 2-1}}\right)^{n}
$$

This is best possible within a constant factor.

Normalized Laplacian

Normalized Laplacian: $\mathcal{L}=I-D^{-1 / 2} A D^{-1 / 2}$.

Normalized Laplacian

Normalized Laplacian: $\mathcal{L}=I-D^{-1 / 2} A D^{-1 / 2}$.

- \mathcal{L} is always semi-definite.
- 0 is always an eigenvalue of \mathcal{L} with eigenvector $\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{n}}\right)^{\prime}$.

Normalized Laplacian

Normalized Laplacian: $\mathcal{L}=I-D^{-1 / 2} A D^{-1 / 2}$.

- \mathcal{L} is always semi-definite.

■ 0 is always an eigenvalue of \mathcal{L} with eigenvector $\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{n}}\right)^{\prime}$.

$$
\mathcal{L}\left(S_{4}\right)=\left(\begin{array}{cccc}
1 & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} & 1 & 0 & 0 \\
-\frac{1}{\sqrt{3}} & 0 & 1 & 0 \\
-\frac{1}{\sqrt{3}} & 0 & 0 & 1
\end{array}\right)
$$

(Normalized) Laplacian eigenvalues of S_{4} :
$\lambda_{0}=0, \lambda_{1}=\lambda_{2}=1, \lambda_{3}=2$.

Facts

General properties:

- The multiplicity of 0 is the number of connected components.

Facts

General properties:

- The multiplicity of 0 is the number of connected components.
- Laplacian eigenvalues: $\lambda_{0}, \ldots, \lambda_{n-1}$

$$
0=\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{n-1} \leq 2
$$

Facts

General properties:

- The multiplicity of 0 is the number of connected components.
- Laplacian eigenvalues: $\lambda_{0}, \ldots, \lambda_{n-1}$

$$
0=\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{n-1} \leq 2
$$

- $\lambda_{n-1}=2$ if and only if G is bipartite.

Facts

General properties:

- The multiplicity of 0 is the number of connected components.
- Laplacian eigenvalues: $\lambda_{0}, \ldots, \lambda_{n-1}$

$$
0=\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{n-1} \leq 2
$$

- $\lambda_{n-1}=2$ if and only if G is bipartite.
- $\lambda_{1}>1$ if and only if G is the complete graph.

Rayleigh quotients

The Laplacian eigenvalues can also be computed by Rayleigh quotients: for $0 \leq i \leq n-1$,

$$
\lambda_{i}=\sup _{\operatorname{dim}(M)=n-i} \inf _{f \in M} \frac{\sum_{x \sim y}(f(x)-f(y))^{2}}{\sum_{x} f(x)^{2} d_{x}} .
$$

Rayleigh quotients

The Laplacian eigenvalues can also be computed by Rayleigh quotients: for $0 \leq i \leq n-1$,

$$
\lambda_{i}=\sup _{\operatorname{dim}(M)=n-i} \inf _{f \in M} \frac{\sum_{x \sim y}(f(x)-f(y))^{2}}{\sum_{x} f(x)^{2} d_{x}} .
$$

In particular, λ_{1} can be evaluated by

$$
\lambda_{1}=\inf _{f \perp D 1} \frac{\sum_{x \sim y}(f(x)-f(y))^{2}}{\sum_{x} f(x)^{2} d_{x}} .
$$

Rayleigh quotients

The Laplacian eigenvalues can also be computed by Rayleigh quotients: for $0 \leq i \leq n-1$,

$$
\lambda_{i}=\sup _{\operatorname{dim}(M)=n-i} \inf _{f \in M} \frac{\sum_{x \sim y}(f(x)-f(y))^{2}}{\sum_{x} f(x)^{2} d_{x}} .
$$

In particular, λ_{1} can be evaluated by

$$
\lambda_{1}=\inf _{f \perp D 1} \frac{\sum_{x \sim y}(f(x)-f(y))^{2}}{\sum_{x} f(x)^{2} d_{x}} .
$$

An important parameter

λ_{1} is related to
the mixing rate of random walks

An important parameter

λ_{1} is related to

- the mixing rate of random walks diameter

An important parameter

λ_{1} is related to

- the mixing rate of random walks
- diameter
- neighborhood/edge expansion

An important parameter

λ_{1} is related to

- the mixing rate of random walks
- diameter
- neighborhood/edge expansion

■ Cheeger constant

An important parameter

λ_{1} is related to

- the mixing rate of random walks
- diameter
- neighborhood/edge expansion
- Cheeger constant
- quasi-randomness

An important parameter

λ_{1} is related to

- the mixing rate of random walks
- diameter
- neighborhood/edge expansion
- Cheeger constant

■ quasi-randomness

- many other applications.

Random walks

A walk on a graph is a sequence of vertices together a sequence of edges:

$$
\begin{gathered}
v_{0}, v_{1}, v_{2}, v_{3}, \ldots, v_{k}, v_{k+1}, \ldots \\
v_{0} v_{1}, v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{k} v_{k+1}, \ldots
\end{gathered}
$$

Random walks

A walk on a graph is a sequence of vertices together a sequence of edges:

$$
\begin{gathered}
v_{0}, v_{1}, v_{2}, v_{3}, \ldots, v_{k}, v_{k+1}, \ldots \\
v_{0} v_{1}, v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{k} v_{k+1}, \ldots
\end{gathered}
$$

Random walks on a graph G :

$$
\begin{gathered}
f_{k+1}=f_{k} D^{-1} A . \\
D^{-1} A \sim D^{-1 / 2} A D^{-1 / 2}=I-\mathcal{L} .
\end{gathered}
$$

$\bar{\lambda}$ determines the mixing rate of random walks.

Convergence

row vector f_{k} : the vertex probability distribution at time k.

$$
f_{k}=f_{0}\left(D^{-1} A\right)^{k} .
$$

Convergence

- row vector f_{k} : the vertex probability distribution at time k.

$$
f_{k}=f_{0}\left(D^{-1} A\right)^{k} .
$$

- Stationary distribution $\pi=\frac{1}{\operatorname{vol}(G)}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.

$$
\pi\left(D^{-1} A\right)=\pi .
$$

Convergence

- row vector f_{k} : the vertex probability distribution at time k.

$$
f_{k}=f_{0}\left(D^{-1} A\right)^{k}
$$

- Stationary distribution $\pi=\frac{1}{\operatorname{vol}(G)}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.

$$
\pi\left(D^{-1} A\right)=\pi
$$

- Mixing:

$$
\left\|\left(f_{k}-\pi\right) D^{-1 / 2}\right\| \leq \bar{\lambda}^{k}\left\|\left(f_{0}-\pi\right) D^{-1 / 2}\right\|
$$

Convergence

■ row vector f_{k} : the vertex probability distribution at time k.

$$
f_{k}=f_{0}\left(D^{-1} A\right)^{k}
$$

■ Stationary distribution $\pi=\frac{1}{\operatorname{vol}(G)}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.

$$
\pi\left(D^{-1} A\right)=\pi
$$

- Mixing:

$$
\left\|\left(f_{k}-\pi\right) D^{-1 / 2}\right\| \leq \bar{\lambda}^{k}\left\|\left(f_{0}-\pi\right) D^{-1 / 2}\right\|
$$

If G is bipartite, then the random walk does not mix. In this case, we will use the α-lazy random walk with the transition matrix $\alpha I+(1-\alpha) D^{-1} A$.

Diameter

Suppose that G is not a complete graph. Then the diameter of G satisfies

$$
\operatorname{diam}(G) \leq\left\lceil\frac{\log (\operatorname{vol}(G) / \delta)}{\log \frac{\lambda_{n-1}+\lambda_{1}}{\lambda_{n-1}-\lambda_{1}}}\right\rceil
$$

where δ is the minimum degree of G.

Edge discrepancy

Let $\operatorname{vol}(X)=\sum_{x \in X} d_{x}$ and $\bar{\lambda}=\max \left\{1-\lambda_{1}, \lambda_{n-1}-1\right\}$.
Then $\left||E(X, Y)|-\frac{\operatorname{vol}(X) \operatorname{vol}(Y)}{\operatorname{vol}(G)}\right| \leq \bar{\lambda} \frac{\sqrt{\operatorname{vol}(X) \operatorname{vol}(Y) \operatorname{vol}(\bar{X}) \operatorname{vol}(\bar{Y})}}{\operatorname{vol}(G)}$.

Proof

Let $\mathbf{1}_{X}$ and $\mathbf{1}_{Y}$ be the indicated vector of X and Y respectively. Let $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}$ be orthogonal unit eigenvectors of \mathcal{L}. Write $D^{1 / 2} \mathbf{1}_{X}=\sum_{i=0}^{n-1} x_{i} \alpha_{i}$ and $D^{1 / 2} \mathbf{1}_{Y}=\sum_{i=0}^{n-1} y_{i} \alpha_{i}$. Then

$$
\begin{aligned}
|E(X, Y)| & =\mathbf{1}_{X}^{\prime} A \mathbf{1}_{Y} \\
& =\left(D^{1 / 2} \mathbf{1}_{X}\right)^{\prime}(I-\mathcal{L}) D^{1 / 2} \mathbf{1}_{Y} \\
& =\sum_{i=0}^{n-1}\left(1-\lambda_{i}\right) x_{i} y_{i} .
\end{aligned}
$$

continue

Note $x_{0}=\frac{\operatorname{vol}(X)}{\sqrt{\operatorname{vol}(G)}}$ and $y_{0}=\frac{\operatorname{vol}(Y)}{\sqrt{\operatorname{vol}(G)}}$. Hence,

$$
\begin{aligned}
& \left||E(X, Y)|-\frac{\operatorname{vol}(X) \operatorname{vol}(Y)}{\operatorname{vol}(G)}\right| \\
& \quad=\sum_{i=1}^{n}\left(1-\lambda_{i}\right) x_{i} y_{i} \\
& \quad \leq \bar{\lambda} \sqrt{\sum_{i=1}^{n-1} x_{i}^{2}} \sqrt{\sum_{i=1}^{n-1} y_{i}^{2}} \\
& \quad=\bar{\lambda} \frac{\sqrt{\operatorname{vol}(X) \operatorname{vol}(Y) \operatorname{vol}(\bar{X}) \operatorname{vol}(\bar{Y})}}{\operatorname{vol}(G)} .
\end{aligned}
$$

\square

Cheeger Constant

For a subset $S \subset V$, we define

$$
h_{G}(S)=\frac{|E(S, \bar{S})|}{\min (\operatorname{vol}(S), \operatorname{vol}(\bar{S}))} .
$$

The Cheeger constant h_{G} of a graph G is defined to be $h_{G}=\min _{S} h_{G}(S)$.

Cheeger Constant

For a subset $S \subset V$, we define

$$
h_{G}(S)=\frac{|E(S, \bar{S})|}{\min (\operatorname{vol}(S), \operatorname{vol}(\bar{S}))} .
$$

The Cheeger constant h_{G} of a graph G is defined to be $h_{G}=\min _{S} h_{G}(S)$.
Cheeger's inequality:

$$
2 h_{G} \geq \lambda_{1} \geq \frac{h_{G}^{2}}{2}
$$

d-regular graph

If G is d-regular graph, then adjacency matrix, combinatorial Laplacian, and normalize Laplacian are all equivalent.

d-regular graph

If G is d-regular graph, then adjacency matrix, combinatorial Laplacian, and normalize Laplacian are all equivalent.
Suppose A has eigenvalues μ_{1}, \ldots, μ_{n}. Then
■ $D-A$ has eigenvalues $d-\mu_{1}, \ldots, d-\mu_{n}$.

- $I-D^{-1 / 2} A D^{-1 / 2}$ has eigenvalues

$$
1-\mu_{1} / d, \ldots, 1-\mu_{n} / d
$$

d-regular graph

If G is d-regular graph, then adjacency matrix, combinatorial Laplacian, and normalize Laplacian are all equivalent.
Suppose A has eigenvalues μ_{1}, \ldots, μ_{n}. Then
■ $D-A$ has eigenvalues $d-\mu_{1}, \ldots, d-\mu_{n}$.

- $I-D^{-1 / 2} A D^{-1 / 2}$ has eigenvalues

$$
1-\mu_{1} / d, \ldots, 1-\mu_{n} / d
$$

The theories of three matrices apply to the d-regular graphs.

An application

Constructing Small Folkman Graphs.

Ramsey's theorem

For integers $k, l \geq 2$, there exists a least positive integer $R(k, l)$ such that no matter how the complete graph $K_{R(k, l)}$ is two-colored, it will contain a blue subgraph K_{k} or a red subgraph K_{l}.

Ramsey's theorem

For integers $k, l \geq 2$, there exists a least positive integer $R(k, l)$ such that no matter how the complete graph $K_{R(k, l)}$ is two-colored, it will contain a blue subgraph K_{k} or a red subgraph K_{l}.

$$
\begin{gathered}
R(3,3)=6 \\
R(4,4)=18 \\
43 \leq R(5,5) \leq 49 \\
102 \leq R(6,6) \leq 165 \\
\vdots \\
(1+o(1)) \frac{\sqrt{2}}{e} n 2^{n / 2} \leq R(n, n) \leq(n-1)^{-C \frac{\log (n-1)}{\log \log (n-1)}\binom{2(n-1)}{n-1} .} \text { Colon [2009]} \\
\text { Spencer[1975] }
\end{gathered}
$$

Ramsey number $R(3,3)=6$

If edges of K_{6} are 2-colored then there exists a monochromatic triangle.

Ramsey number $R(3,3)=6$

- If edges of K_{6} are 2-colored then there exists a monochromatic triangle.

There exists a 2-coloring of edges of K_{5} with no monochromatic triangle.

Rado's arrow notation

$G \rightarrow(H)$: if the edges of G are 2-colored then there exists a monochromatic subgraph of G isomorphic to H.

$$
K_{6} \rightarrow\left(K_{3}\right)
$$

$K_{5} \nrightarrow\left(K_{3}\right)$

Rado's arrow notation

$G \rightarrow(H)$: if the edges of G are 2-colored then there exists a monochromatic subgraph of G isomorphic to H.

$$
K_{6} \rightarrow\left(K_{3}\right)
$$

$K_{5} \nrightarrow\left(K_{3}\right)$

Fact: If $K_{6} \subset G$, then $G \rightarrow\left(K_{3}\right)$.

An Erdős-Hajnal Question

Is there a K_{6}-free graph G with $G \rightarrow\left(K_{3}\right)$?

An Erdős-Hajnal Question

Is there a K_{6}-free graph G with $G \rightarrow\left(K_{3}\right)$?
Graham (1968): Yes!

Graham's graph $K_{8} \backslash C_{5}$

Suppose G has no monochromatic triangle.

Graham's graph $K_{8} \backslash C_{5}$

Label the vertices of C_{5} by either (r, b) or (b, r).

Graham's graph $K_{8} \backslash C_{5}$

Label the vertices of C_{5} by either (r, b) or (b, r). A red triangle is unavoidable since $\chi\left(C_{5}\right)=3$.

K_{5}-free G with $G \rightarrow\left(K_{3}\right)$

Year Authors
1969 Schảuble
1971 Graham, Spencer 23
1973 Irving 18
1979 Hadziivanov, Nenov 16
1981 Nenov 15

K_{5}-free G with $G \rightarrow\left(K_{3}\right)$

Year Authors $\quad|G|$
1969 Scha̋uble 42
1971 Graham, Spencer 23
1973 Irving 18
1979 Hadziivanov, Nenov 16
1981 Nenov 15

In 1998, Piwakowski, Radziszowski and Urbański used a computer-aided exhaustive search to rule out all possible graphs on less than 15 vertices.

General results

Folkman's theorem (1970): For any $k_{2}>k_{1} \geq 3$, there exists a $K_{k_{2}}$-free graph G with $G \rightarrow\left(K_{k_{1}}\right)$.

General results

Folkman's theorem (1970): For any $k_{2}>k_{1} \geq 3$, there exists a $K_{k_{2}}$-free graph G with $G \rightarrow\left(K_{k_{1}}\right)$.
These graphs are called Folkman Graphs.

General results

Folkman's theorem (1970): For any $k_{2}>k_{1} \geq 3$, there exists a $K_{k_{2}}$-free graph G with $G \rightarrow\left(K_{k_{1}}\right)$.
These graphs are called Folkman Graphs.

Nešetřil-Rödl's theorem (1976): For $p \geq 2$ and any $k_{2}>k_{1} \geq 3$, there exists a $K_{k_{2}}$-free graph G with $G \rightarrow\left(K_{k_{1}}\right)_{p}$.
Here $G \rightarrow(H)_{p}$: if the edges of G are p-colored then there exists a monochromatic subgraph of G isomorphic to H.

$f\left(p, k_{1}, k_{2}\right)$

Let $f\left(p, k_{1}, k_{2}\right)$ denote the smallest integer n such that there exists a $K_{k_{2}}$-free graph G on n vertices with $G \rightarrow\left(K_{k_{1}}\right)_{p}$.

Graham

$$
f(2,3,6)=8 .
$$

$f\left(p, k_{1}, k_{2}\right)$

Let $f\left(p, k_{1}, k_{2}\right)$ denote the smallest integer n such that there exists a $K_{k_{2}}$-free graph G on n vertices with $G \rightarrow\left(K_{k_{1}}\right)_{p}$.

- Graham

$$
f(2,3,6)=8
$$

■ Nenov, Piwakowski, Radziszowski and Urbański

$$
f(2,3,5)=15
$$

$f\left(p, k_{1}, k_{2}\right)$

Let $f\left(p, k_{1}, k_{2}\right)$ denote the smallest integer n such that there exists a $K_{k_{2}}$-free graph G on n vertices with $G \rightarrow\left(K_{k_{1}}\right)_{p}$.

- Graham

$$
f(2,3,6)=8
$$

■ Nenov, Piwakowski, Radziszowski and Urbański

$$
f(2,3,5)=15
$$

- What about $f(2,3,4)$?

Upper bound of $f(2,3,4)$

Folkman, Nešetřil-Rödl 's upper bound is huge. Frankl and Rödl (1986)

$$
f(2,3,4) \leq 7 \times 10^{11}
$$

Upper bound of $f(2,3,4)$

Folkman, Nešetřil-Rödl 's upper bound is huge. Frankl and Rödl (1986)

$$
f(2,3,4) \leq 7 \times 10^{11}
$$

Erdős set a prize of $\$ 100$ for the challenge

$$
f(2,3,4) \leq 10^{10}
$$

Upper bound of $f(2,3,4)$

Folkman, Nešetřil-Rödl 's upper bound is huge. Frankl and Rödl (1986)

$$
f(2,3,4) \leq 7 \times 10^{11} .
$$

- Erdős set a prize of $\$ 100$ for the challenge

$$
f(2,3,4) \leq 10^{10 .}
$$

- Spencer (1988) claimed the prize.

$$
f(2,3,4) \leq 3 \times 10^{9} .
$$

Upper bound of $f(2,3,4)$

Folkman, Nešetřil-Rödl 's upper bound is huge. Frankl and Rödl (1986)

$$
f(2,3,4) \leq 7 \times 10^{11} .
$$

- Erdős set a prize of $\$ 100$ for the challenge

$$
f(2,3,4) \leq 10^{10 .}
$$

- Spencer (1988) claimed the prize.

$$
f(2,3,4) \leq 3 \times 10^{9} .
$$

Most wanted Folkman Graph

Most wanted Folkman Graph


```
Problem on triangle-free subgraphs in graphs containing no K}\mp@subsup{K}{4}{
    $100
(proposed by Erdös)}\mp@subsup{}{}{48
Let f(p,\mp@subsup{k}{1}{},\mp@subsup{k}{2}{})\mathrm{ denote the smallest integer }n\mathrm{ such that there is a graph }G\mathrm{ with}
n}\mathrm{ vertices satisfying the properties:
(1) any edge coloring in \(p\) colors contains a monochromatic \(K_{k_{1}}\);
(2) \(G\) contains no \(K_{k_{2}}\).
Prove or disprove:
\[
f(2,3,4)<10^{6} .
\]
```


Difficulty

There is no efficient algorithm to test whether $G \rightarrow\left(K_{3}\right)$.

Difficulty

- There is no efficient algorithm to test whether $G \rightarrow\left(K_{3}\right)$.
- For moderate n, Folkman graphs are very rare among all K_{4}-free graphs on n vertices.

Difficulty

- There is no efficient algorithm to test whether $G \rightarrow\left(K_{3}\right)$.
- For moderate n, Folkman graphs are very rare among all K_{4}-free graphs on n vertices.
- Probabilistic methods are generally good choices for asymptotic results. However, it is not good for moderate size n.

Our approach

Find a simple and sufficient condition for $G \rightarrow\left(K_{3}\right)$, and an efficient algorithm to verify this condition.

Our approach

- Find a simple and sufficient condition for $G \rightarrow\left(K_{3}\right)$, and an efficient algorithm to verify this condition.
- Search a special class of graphs so that we have a better chance of finding a Folkman graph.

Our approach

- Find a simple and sufficient condition for $G \rightarrow\left(K_{3}\right)$, and an efficient algorithm to verify this condition.
- Search a special class of graphs so that we have a better chance of finding a Folkman graph.
- Use spectral analysis instead of probabilistic methods.

Our approach

- Find a simple and sufficient condition for $G \rightarrow\left(K_{3}\right)$, and an efficient algorithm to verify this condition.
- Search a special class of graphs so that we have a better chance of finding a Folkman graph.
- Use spectral analysis instead of probabilistic methods.
- Localization and δ-fairness.

Our approach

- Find a simple and sufficient condition for $G \rightarrow\left(K_{3}\right)$, and an efficient algorithm to verify this condition.
- Search a special class of graphs so that we have a better chance of finding a Folkman graph.
- Use spectral analysis instead of probabilistic methods.
- Localization and δ-fairness.
- Circulant graphs and $L(m, s)$.

My result

I received $\$ 100$-award by proving Theorem [Lu, 2007]: $f(2,3,4) \leq 9697$.

My result

I received $\$ 100$-award by proving
 Theorem [Lu, 2007]: $f(2,3,4) \leq 9697$.

Shortly Dudek and Rödl improved it to $f(2,3,4) \leq 941$. They also received a \$50-award.

My result

I received $\$ 100$-award by proving
 Theorem [Lu, 2007]: $f(2,3,4) \leq 9697$.

Shortly Dudek and Rödl improved it to $f(2,3,4) \leq 941$. They also received a \$50-award.

Lange-Radziszowski-Xu [2012+]: $f(2,3,4) \leq 786$.

Spencer's Lemma

Notations:

- G_{v} : the induced graph on the the neighborhood of v.
- $\quad b(H)$: the maximum size of edge-cuts for H.

Spencer's Lemma

Notations:

- G_{v} : the induced graph on the the neighborhood of v.
- $\quad b(H)$: the maximum size of edge-cuts for H.

Lemma (Spencer) If $\sum_{v} b\left(G_{v}\right)<\frac{2}{3} \sum_{v}\left|E\left(G_{v}\right)\right|$, then $G \rightarrow\left(K_{3}\right)$.

Spencer's Lemma

Notations:

- G_{v} : the induced graph on the the neighborhood of v.
- $\quad b(H)$: the maximum size of edge-cuts for H.

Lemma (Spencer) If $\sum_{v} b\left(G_{v}\right)<\frac{2}{3} \sum_{v}\left|E\left(G_{v}\right)\right|$, then $G \rightarrow\left(K_{3}\right)$.

Localization

For $0<\delta<\frac{1}{2}$, a graph H is δ-fair if

$$
b(H)<\left(\frac{1}{2}+\delta\right)|E(H)| .
$$

Localization

For $0<\delta<\frac{1}{2}$, a graph H is δ-fair if

$$
b(H)<\left(\frac{1}{2}+\delta\right)|E(H)| .
$$

G is a Folkman graph if for each v

- G_{v} is $\frac{1}{6}$-fair.
- G_{v} is K_{3}-free.

Localization

For $0<\delta<\frac{1}{2}$, a graph H is δ-fair if

$$
b(H)<\left(\frac{1}{2}+\delta\right)|E(H)| .
$$

G is a Folkman graph if for each v

- G_{v} is $\frac{1}{6}$-fair.
- G_{v} is K_{3}-free.

For vertex transitive graph G, all G_{v} 's are isomorphic.

Spectral lemma

- $\quad H:$ a graph on n vertices
- A : the adjacency matrix of H
- $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$: degrees of H
- $\operatorname{Vol}(S)=\sum_{v \in S} d_{v}$: the volume of S
- $\bar{d}=\frac{\operatorname{Vol}(H)}{n}$: the average degree

Spectral lemma

- $\quad H$: a graph on n vertices
- A : the adjacency matrix of H
- $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$: degrees of H
- $\operatorname{Vol}(S)=\sum_{v \in S} d_{v}:$ the volume of S
- $\bar{d}=\frac{\operatorname{Vol}(H)}{n}$: the average degree

Lemma (Lu) If the smallest eigenvalue of $M=A-\frac{1}{\operatorname{Vol}(H)} \mathbf{d} \cdot \mathbf{d}^{\prime}$ is greater than $-2 \delta \bar{d}$, then H is δ-fair.

Spectral lemma

- $\quad H$: a graph on n vertices
- A : the adjacency matrix of H
- $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$: degrees of H
- $\operatorname{Vol}(S)=\sum_{v \in S} d_{v}$: the volume of S
- $\bar{d}=\frac{\operatorname{Vol}(H)}{n}$: the average degree

Lemma (Lu) If the smallest eigenvalue of $M=A-\frac{1}{\operatorname{Vol}(H)} \mathbf{d} \cdot \mathbf{d}^{\prime}$ is greater than $-2 \delta \bar{d}$, then H is δ-fair.
Similar results hold for A and L. However, they are weaker than using M in experiments.

Corollary

Corollary Suppose H is a d-regular graph and the smallest eigenvalue of its adjacency matrix A is greater than $-2 \delta d$. Then H is δ-fair.

Corollary

Corollary Suppose H is a d-regular graph and the smallest eigenvalue of its adjacency matrix A is greater than $-2 \delta d$. Then H is δ-fair.

Proof: We can replace M by A in the previous lemma.

- $\mathbf{1}$ is an eigenvector of A with respect to d.
- M is the projection of A to the hyperspace 1^{\perp}.
- $\quad M$ and A have the same smallest eigenvalues.

The proof of the Lemma

$V(H)=X \cup Y$: a partition of the vertex-set.

The proof of the Lemma

- $V(H)=X \cup Y$: a partition of the vertex-set.
$\mathbf{1}_{X}, \mathbf{1}_{Y}$: indicated functions of X and Y.

$$
\mathbf{1}_{X}+\mathbf{1}_{Y}=\mathbf{1} .
$$

The proof of the Lemma

- $V(H)=X \cup Y$: a partition of the vertex-set.
- $\mathbf{1}_{X}, \mathbf{1}_{Y}$: indicated functions of X and Y.

$$
\mathbf{1}_{X}+\mathbf{1}_{Y}=\mathbf{1} .
$$

- We observe $M 1=0$.

The proof of the Lemma

- $V(H)=X \cup Y$: a partition of the vertex-set.
- $\mathbf{1}_{X}, \mathbf{1}_{Y}$: indicated functions of X and Y.

$$
\mathbf{1}_{X}+\mathbf{1}_{Y}=\mathbf{1}
$$

- We observe $M 1=0$.

■ For each $t \in(0,1)$, let $\alpha(t)=(1-t) \mathbf{1}_{X}-t \mathbf{1}_{Y}$. We have

$$
\alpha(t)^{\prime} \cdot M \cdot \alpha(t)=-e(X, Y)+\frac{1}{\operatorname{Vol}(H)} \operatorname{Vol}(X) \operatorname{Vol}(Y)
$$

The proof of the Lemma

Let ρ be the smallest eigenvalue of M. We have

$$
e(X, Y)-\frac{\operatorname{Vol}(X) \operatorname{Vol}(Y)}{\operatorname{Vol}(H)} \leq-\alpha(t)^{\prime} \cdot M \cdot \alpha(t) \leq-\rho\left\|\alpha_{t}\right\|^{2}
$$

The proof of the Lemma

Let ρ be the smallest eigenvalue of M. We have

$$
e(X, Y)-\frac{\operatorname{Vol}(X) \operatorname{Vol}(Y)}{\operatorname{Vol}(H)} \leq-\alpha(t)^{\prime} \cdot M \cdot \alpha(t) \leq-\rho\left\|\alpha_{t}\right\|^{2}
$$

Choose $t=\frac{|X|}{n}$ so that $\|\alpha(t)\|^{2}$ reaches its minimum $\frac{|X \| Y|}{n}$.

The proof of the Lemma

Let ρ be the smallest eigenvalue of M. We have

$$
e(X, Y)-\frac{\operatorname{Vol}(X) \operatorname{Vol}(Y)}{\operatorname{Vol}(H)} \leq-\alpha(t)^{\prime} \cdot M \cdot \alpha(t) \leq-\rho\left\|\alpha_{t}\right\|^{2}
$$

Choose $t=\frac{|X|}{n}$ so that $\|\alpha(t)\|^{2}$ reaches its minimum $\frac{|X||Y|}{n}$. We have

$$
\begin{aligned}
e(X, Y) & \leq \frac{\operatorname{Vol}(X) \operatorname{Vol}(Y)}{\operatorname{Vol}(H)}+\rho \frac{|X||Y|}{n} . \\
& \leq \frac{\operatorname{Vol}(H)}{4}-\rho \frac{n}{4} \\
& <\left(\frac{1}{2}+\delta\right)|E(H)|, \text { since } \rho>-2 \delta \bar{d} .
\end{aligned}
$$

\square

Circulant graphs

- $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$
- S : a subset of \mathbb{Z}_{n} satisfying $-S=S$ and $0 \notin S$.

We define a circulant graph H by

- $\quad V(H)=\mathbb{Z}_{n}$
- $E(H)=\{x y \mid x-y \in S\}$.

Example: A circulant graph with $n=8$ and $S=\{ \pm 1, \pm 3\}$.

Spectrum of circulant graphs

Lemma: The eigenvalues of the adjacency matrix for the circulant graph generated by $S \subset \mathbb{Z}_{n}$ are

for $i=0, \ldots, n-1$.

Spectrum of circulant graphs

Lemma: The eigenvalues of the adjacency matrix for the circulant graph generated by $S \subset \mathbb{Z}_{n}$ are

$$
\sum_{s \in S} \cos \frac{2 \pi i s}{n}
$$

for $i=0, \ldots, n-1$.
Proof: Note $A=$ $g(J)$, where

$$
g(x)=\sum_{s \in S} x^{s}
$$

$$
J=\left(\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

Proof continues...

Let $\phi=e^{\frac{2 \pi \sqrt{-1}}{n}}$ denote the primitive n-th unit root.
J has eigenvalues

$$
1, \phi, \phi^{2}, \ldots, \phi^{n-1}
$$

Proof continues...

Let $\phi=e^{\frac{2 \pi \sqrt{ }-1}{n}}$ denote the primitive n-th unit root.
J has eigenvalues

$$
1, \phi, \phi^{2}, \ldots, \phi^{n-1}
$$

Thus, the eigenvalues of $A=g(J)$ are

$$
g(1), g(\phi), \ldots, g\left(\phi^{n-1}\right)
$$

For $i=0,1,2, \ldots, n-1$, we have

$$
g\left(\phi^{i}\right)=\Re\left(g\left(\phi^{i}\right)\right)=\sum_{s \in S} \cos \frac{2 \pi i s}{n} .
$$

\square

Graph $L(m, s)$

Suppose s and m are relatively prime to each other. Let n be the least positive integer satisfying

$$
s^{n} \equiv 1 \quad \bmod m .
$$

Graph $L(m, s)$

Suppose s and m are relatively prime to each other. Let n be the least positive integer satisfying

$$
s^{n} \equiv 1 \quad \bmod m .
$$

We define the graph $L(m, s)$ to be a circulant graph on m vertices with

$$
S=\left\{s^{i} \quad \bmod m \mid i=0,1,2, \ldots, n-1\right\} .
$$

Graph $L(m, s)$

Suppose s and m are relatively prime to each other. Let n be the least positive integer satisfying

$$
s^{n} \equiv 1 \quad \bmod m .
$$

We define the graph $L(m, s)$ to be a circulant graph on m vertices with

$$
S=\left\{s^{i} \quad \bmod m \mid i=0,1,2, \ldots, n-1\right\} .
$$

Proposition: The local graph G_{v} of $L(m, s)$ is also a circulant graph.

Algorithm

- For each $L(m, s)$, compute the local graph G_{v}.
- If G_{v} is not triangle-free, reject it and try a new graph $L(m, s)$.
- If the ratio the smallest eigenvalue verse the largest eigenvalue of G_{v} is less than $-\frac{1}{3}$, reject it and try a new graph $L(m, s)$.
■ Output a Folkman graph $L(m, s)$.

Computational results

$L(m, s)$	σ
$L(127,5)$	$-0.6363 \cdots$
$L(761,3)$	$-0.5613 \cdots$
$L(785,53)$	$-0.5404 \cdots$
$L(941,12)$	$-0.5376 \cdots$
$L(1777,53)$	$-0.5216 \cdots$
$L(1801,125)$	$-0.4912 \cdots$
$L(2641,2)$	$-0.4275 \cdots$
$L(9697,4)$	$-0.3307 \cdots$
$L(30193,53)$	$-0.3094 \cdots$
$L(33121,2)$	$-0.2665 \cdots$
$L(57401,7)$	$-0.3289 \cdots$

- σ is the ratio of the smallest eigenvalue to the largest eigenvalue in the local graph.
- All graphs on the left are K_{4}-free.
- Graphs in red are Folkman graphs.
- Graphs in black are good candidates.

Improvements

Our method has inspired two improvements.
Dudek-Rodl [2008]: $f(2,3,4) \leq 941$.

Improvements

Our method has inspired two improvements.
■ Dudek-Rodl [2008]: $f(2,3,4) \leq 941$.
■ Lange-Radziszowski-Xu [2012+]: $f(2,3,4) \leq 786$.

Dudek and Rodl

Given a graph G, a triangle graph H_{G} is defined as

- $V\left(H_{G}\right)=E(G)$

■ $e_{1} \sim e_{2}$ in H_{G} if e_{1} and e_{2} belong to the same triangle of G.

Dudek and Rodl

Given a graph G, a triangle graph H_{G} is defined as

- $V\left(H_{G}\right)=E(G)$
- $e_{1} \sim e_{2}$ in H_{G} if e_{1} and e_{2} belong to the same triangle of G.

Dudek, Rodl, 2008
■ If $b\left(H_{G}\right)<\frac{2}{3}\left|E\left(H_{G}\right)\right|$, then $G \rightarrow\left(K_{3}\right)$.

- If H_{G} is $\frac{1}{6}$-fair, then $G \rightarrow\left(K_{3}\right)$.

Dudek and Rodl

Theorem [Dudek, Rodl, 2008]

$$
f(2,3,4) \leq 941 .
$$

Dudek and Rodl

Theorem [Dudek, Rodl, 2008]

$$
f(2,3,4) \leq 941 .
$$

Proof: Let $G=L(941,12)$. Then G is 188 regular. The triangle graph H has $941 * 188 / 2=88454$ vertices and 2122896 edges.

Dudek and Rodl

Theorem [Dudek, Rodl, 2008]

$$
f(2,3,4) \leq 941
$$

Proof: Let $G=L(941,12)$. Then G is 188 regular. The triangle graph H has $941 * 188 / 2=88454$ vertices and 2122896 edges.

Using Matlab, they calculate the least eigenvalue

$$
\mu_{n} \geq-15.196>-\left(\frac{1}{2}+\frac{1}{6}\right) 24
$$

So H is $\frac{1}{6}$-fair. Done.

Lange-Radziszowski-Xu

Instead of spectral methods, they use semi-definite program (SDP) to approximate the MAX-CUT problem.

- First they try the graph G_{1} obtained from $L(941,12)$ by deleting 81 vertices. They showed

$$
3 b\left(H_{G_{1}}\right)<1084985<1085028=2\left|E\left(H_{G_{1}}\right)\right| .
$$

This implies $f(2,3,4) \leq 860$.

Lange-Radziszowski-Xu

Instead of spectral methods, they use semi-definite program (SDP) to approximate the MAX-CUT problem.

- First they try the graph G_{1} obtained from $L(941,12)$ by deleting 81 vertices. They showed

$$
3 b\left(H_{G_{1}}\right)<1084985<1085028=2\left|E\left(H_{G_{1}}\right)\right| .
$$

This implies $f(2,3,4) \leq 860$.

- Second they try the graph G_{2} obtained from $L(785,53)$ by one vertex and some 60 edges. They showed

$$
3 b\left(H_{G_{2}}\right)<857750<857762=2\left|E\left(H_{G_{2}}\right)\right| .
$$

This implies $f(2,3,4) \leq 786$.

Open questions

- Exoo conjectured $L(127,5)$ is a Folkman graph.
- In 2012 SIAMDM, Ronald Graham announced a $\$ 100$ award for determining if $f(2,3,4)<100$.
- A open problem on 3-colors: prove or disprove

$$
f(3,3,4) \leq 3^{3^{4}} .
$$

References

1. Linyuan Lu, Explicit Construction of Small Folkman Graphs. SIAM Journal on Discrete Mathematics, 21(4):1053-1060, January 2008.
2. Andrzej Dudek and Vojtech Rödl. On the Folkman Number $f(2,3,4)$, Experimental Mathematics, 17(1):63-67, 2008.
3. A. Lange, S. Radziszowski, and $\mathrm{X} . \mathrm{Xu}$, Use of MAX-CUT for Ramsey Arrowing of Triangles, http://arxiv.org/pdf/1207.3750.pdf.

Homepage: http://www.math.sc.edu/~ lu/

Thank You

