

Laplacian and Random Walks on Graphs

Linyuan Lu

University of South Carolina

Selected Topics on Spectral Graph Theory (II) Nankai University, Tianjin, May 22, 2014

Five talks

Selected Topics on Spectral Graph Theory

- 1. Graphs with Small Spectral Radius Time: Friday (May 16) 4pm.-5:30p.m.
- 2. Laplacian and Random Walks on Graphs Time: Thursday (May 22) 4pm.-5:30p.m.
- 3. Spectra of Random Graphs Time: Thursday (May 29) 4pm.-5:30p.m.
- 4. Hypergraphs with Small Spectral Radius Time: Friday (June 6) 4pm.-5:30p.m.
- 5. Lapalacian of Random Hypergraphs Time: Thursday (June 12) 4pm.-5:30p.m.

I: Spectral Graph Theory II: Random Graph Theory III: Random Matrix Theory

- Combinatorial Laplacian
- Normalized Laplacian
- An application

Graphs and Matrices

There are several ways to associate a matrix to a graph G.

Adjacency matrix

Graphs and Matrices

There are several ways to associate a matrix to a graph G.

- Adjacency matrix
- Combinatorial Laplacian

Graphs and Matrices

There are several ways to associate a matrix to a graph G.

- Adjacency matrix
- Combinatorial Laplacian
- Normalized Laplacian

• G = (V, E): a simple connected graph on n vertices

G = (V, E): a simple connected graph on n vertices
 A(G): the adjacency matrix

G = (V, E): a simple connected graph on n vertices
 A(G): the adjacency matrix
 D(G) = diag(d₁, d₂, ..., d_n): the diagonal degree matrix

G = (V, E): a simple connected graph on n vertices
 A(G): the adjacency matrix
 D(G) = diag(d₁, d₂, ..., d_n): the diagonal degree matrix
 L = D − A: the combinatorial Laplacian

- G = (V, E): a simple connected graph on n vertices
 A(G): the adjacency matrix
 - $D(G) = \operatorname{diag}(d_1, d_2, \dots, d_n)$: the diagonal degree matrix L = D A: the combinatorial Laplacian
 - L is semi-definite and $\mathbf{1}$ is always an eigenvector for the eigenvalue 0.

- G = (V, E): a simple connected graph on n vertices
 A(G): the adjacency matrix
 - $D(G) = \operatorname{diag}(d_1, d_2, \dots, d_n)$: the diagonal degree matrix L = D A: the combinatorial Laplacian
 - L is semi-definite and $\mathbf{1}$ is always an eigenvector for the eigenvalue 0.

$$L(S_4) = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

- G = (V, E): a simple connected graph on n vertices
 A(G): the adjacency matrix
 - $D(G) = \operatorname{diag}(d_1, d_2, \dots, d_n)$: the diagonal degree matrix L = D A: the combinatorial Laplacian
 - L is semi-definite and $\mathbf{1}$ is always an eigenvector for the eigenvalue 0.

Combinatorial Laplacian eigenvalues of S_4 : 0, 1, 1, 4.

Matrix-tree Theorem

Kirchhoff's Matrix-tree Theorem: The (i, j)-cofactor of D - A equals $(-1)^{i+j}t(G)$, where t(G) is the number of spanning trees in G.

Matrix-tree Theorem

Kirchhoff's Matrix-tree Theorem: The (i, j)-cofactor of D - A equals $(-1)^{i+j}t(G)$, where t(G) is the number of spanning trees in G.

Proof: Fix an orientation of G, let B be the incidence matrix of the orientation, i.e., $b_{ve} = 1$ if v is the head of the arc e, $b_{ve} = -1$ if i is the tail of e, and $b_{ve} = 0$ otherwise. Let L_{11} be the sub-matrix obtained from L by deleting the first row and first column, and B_1 be the matrix obtained from B by deleting the first row. Then $L_{11} = B_1B'_1$.

$$det(L_{11}) = det(B_1B'_1)$$

= $\sum_{S} det(B_S)^2$ By Cauchy-Binet formula
= the number of Spanning Trees.

An application

Corollary: If G is connected, and $\lambda_1, \ldots, \lambda_{n-1}$ be the non-zero eigenvalues of L. Then the number of spanning tree is

$$\frac{1}{n}\lambda_1\lambda_2\cdots\lambda_{n-1}.$$

An application

Corollary: If G is connected, and $\lambda_1, \ldots, \lambda_{n-1}$ be the non-zero eigenvalues of L. Then the number of spanning tree is

$$\frac{1}{n}\lambda_1\lambda_2\cdots\lambda_{n-1}.$$

Chung-Yau [1999]: The number of spanning trees in any d-regular graph on n vertices is at most

$$(1+o(1))\frac{2\log n}{dn\log d}\left(\frac{(d-1)^{d-1}}{(d^2-2d)^{d/2-1}}\right)^n$$

This is best possible within a constant factor.

Normalized Laplacian

Normalized Laplacian: $\mathcal{L} = I - D^{-1/2}AD^{-1/2}$.

Normalized Laplacian

Normalized Laplacian: $\mathcal{L} = I - D^{-1/2}AD^{-1/2}$.

- \mathcal{L} is always semi-definite.
 - 0 is always an eigenvalue of \mathcal{L} with eigenvector $(\sqrt{d_1}, \ldots, \sqrt{d_n})'$.

Normalized Laplacian

Normalized Laplacian: $\mathcal{L} = I - D^{-1/2}AD^{-1/2}$.

- \mathcal{L} is always semi-definite.
 - 0 is always an eigenvalue of \mathcal{L} with eigenvector $(\sqrt{d_1}, \ldots, \sqrt{d_n})'$.

General properties:

The multiplicity of 0 is the number of connected components.

General properties:

- The multiplicity of 0 is the number of connected components.
- Laplacian eigenvalues: $\lambda_0, \ldots, \lambda_{n-1}$

$$0 = \lambda_0 \le \lambda_1 \le \dots \le \lambda_{n-1} \le 2.$$

General properties:

- The multiplicity of 0 is the number of connected components.
- Laplacian eigenvalues: $\lambda_0, \ldots, \lambda_{n-1}$

$$0 = \lambda_0 \le \lambda_1 \le \cdots \le \lambda_{n-1} \le 2.$$

• $\lambda_{n-1} = 2$ if and only if G is bipartite.

- The multiplicity of 0 is the number of connected components.
- Laplacian eigenvalues: $\lambda_0, \ldots, \lambda_{n-1}$

$$0 = \lambda_0 \le \lambda_1 \le \dots \le \lambda_{n-1} \le 2.$$

λ_{n-1} = 2 if and only if G is bipartite.
 λ₁ > 1 if and only if G is the complete graph.

Rayleigh quotients

The Laplacian eigenvalues can also be computed by Rayleigh quotients: for $0 \le i \le n-1$,

$$\lambda_i = \sup_{\dim(M)=n-i} \inf_{f \in M} \frac{\sum_{x \sim y} (f(x) - f(y))^2}{\sum_x f(x)^2 d_x}$$

Rayleigh quotients

The Laplacian eigenvalues can also be computed by Rayleigh quotients: for $0 \le i \le n-1$,

$$\lambda_i = \sup_{\dim(M)=n-i} \inf_{f \in M} \frac{\sum_{x \sim y} (f(x) - f(y))^2}{\sum_x f(x)^2 d_x}$$

In particular, λ_1 can be evaluated by

$$\lambda_1 = \inf_{f \perp D\mathbf{1}} \frac{\sum_{x \sim y} (f(x) - f(y))^2}{\sum_x f(x)^2 d_x}.$$

Rayleigh quotients

The Laplacian eigenvalues can also be computed by Rayleigh quotients: for $0 \le i \le n-1$,

$$\lambda_i = \sup_{\dim(M)=n-i} \inf_{f \in M} \frac{\sum_{x \sim y} (f(x) - f(y))^2}{\sum_x f(x)^2 d_x}$$

In particular, λ_1 can be evaluated by

$$\lambda_1 = \inf_{f \perp D\mathbf{1}} \frac{\sum_{x \sim y} (f(x) - f(y))^2}{\sum_x f(x)^2 d_x}.$$

 λ_1 is related to

the mixing rate of random walks

λ_1 is related to

- the mixing rate of random walks
- diameter

- the mixing rate of random walks
- diameter
- neighborhood/edge expansion

- the mixing rate of random walks
- diameter
- neighborhood/edge expansion
- Cheeger constant

- the mixing rate of random walks
- diameter
- neighborhood/edge expansion
- Cheeger constant
- quasi-randomness

- the mixing rate of random walks
- diameter
- neighborhood/edge expansion
- Cheeger constant
- quasi-randomness
- many other applications.


```
v_0, v_1, v_2, v_3, \ldots, v_k, v_{k+1}, \ldots
```

 $v_0v_1, v_1v_2, v_2v_3, \ldots, v_kv_{k+1}, \ldots$

A walk on a graph is a sequence of vertices together a sequence of edges:

$$v_0, v_1, v_2, v_3, \ldots, v_k, v_{k+1}, \ldots$$

 $v_0v_1, v_1v_2, v_2v_3, \ldots, v_kv_{k+1}, \ldots$

Random walks on a graph G:

$$f_{k+1} = f_k D^{-1} A.$$

 $D^{-1} A \sim D^{-1/2} A D^{-1/2} = I - \mathcal{L}.$

 $\overline{\lambda}$ determines the mixing rate of random walks.

row vector f_k : the vertex probability distribution at time k.

$$f_k = f_0 (D^{-1}A)^k.$$

row vector f_k : the vertex probability distribution at time k.

$$f_k = f_0 (D^{-1}A)^k.$$

Stationary distribution $\pi = \frac{1}{\operatorname{vol}(G)}(d_1, d_2, \dots, d_n).$

$$\pi(D^{-1}A) = \pi.$$

row vector f_k : the vertex probability distribution at time k.

$$f_k = f_0 (D^{-1}A)^k.$$

Stationary distribution $\pi = \frac{1}{\operatorname{vol}(G)}(d_1, d_2, \dots, d_n).$

$$\pi(D^{-1}A) = \pi.$$

Mixing:

$$\|(f_k - \pi)D^{-1/2}\| \le \bar{\lambda}^k \|(f_0 - \pi)D^{-1/2}\|.$$

row vector f_k : the vertex probability distribution at time k.

$$f_k = f_0 (D^{-1}A)^k.$$

Stationary distribution $\pi = \frac{1}{\operatorname{vol}(G)}(d_1, d_2, \dots, d_n).$

$$\pi(D^{-1}A) = \pi.$$

Mixing:

$$\|(f_k - \pi)D^{-1/2}\| \le \bar{\lambda}^k \|(f_0 - \pi)D^{-1/2}\|.$$

If G is bipartite, then the random walk does not mix. In this case, we will use the α -lazy random walk with the transition matrix $\alpha I + (1 - \alpha)D^{-1}A$.

Diameter

Suppose that G is not a complete graph. Then the diameter of G satisfies

$$\operatorname{diam}(G) \leq \left\lceil \frac{\log(\operatorname{vol}(G)/\delta)}{\log \frac{\lambda_{n-1} + \lambda_1}{\lambda_{n-1} - \lambda_1}} \right\rceil,$$

where δ is the minimum degree of G.

Edge discrepancy

Proof

Let $\mathbf{1}_X$ and $\mathbf{1}_Y$ be the indicated vector of X and Yrespectively. Let $\alpha_0, \alpha_1, \ldots, \alpha_{n-1}$ be orthogonal unit eigenvectors of \mathcal{L} . Write $D^{1/2}\mathbf{1}_X = \sum_{i=0}^{n-1} x_i\alpha_i$ and $D^{1/2}\mathbf{1}_Y = \sum_{i=0}^{n-1} y_i\alpha_i$. Then

$$|E(X,Y)| = \mathbf{1}'_X A \mathbf{1}_Y = (D^{1/2} \mathbf{1}_X)' (I - \mathcal{L}) D^{1/2} \mathbf{1}_Y = \sum_{i=0}^{n-1} (1 - \lambda_i) x_i y_i.$$

continue

Cheeger Constant

For a subset $S \subset V$, we define

$$h_G(S) = \frac{|E(S, \overline{S})|}{\min(\operatorname{vol}(S), \operatorname{vol}(\overline{S}))}.$$

The Cheeger constant h_G of a graph G is defined to be $h_G = \min_S h_G(S)$.

Cheeger Constant

For a subset $S \subset V$, we define

$$h_G(S) = \frac{|E(S, \overline{S})|}{\min(\operatorname{vol}(S), \operatorname{vol}(\overline{S}))}.$$

The Cheeger constant h_G of a graph G is defined to be $h_G = \min_S h_G(S)$.

Cheeger's inequality:

$$2h_G \ge \lambda_1 \ge \frac{h_G^2}{2}.$$

d-regular graph

If G is d-regular graph, then adjacency matrix, combinatorial Laplacian, and normalize Laplacian are all equivalent.

d-regular graph

If G is d-regular graph, then adjacency matrix, combinatorial Laplacian, and normalize Laplacian are all equivalent.

Suppose A has eigenvalues μ_1, \ldots, μ_n . Then

- $\square D A \text{ has eigenvalues } d \mu_1, \ldots, d \mu_n.$
- $I D^{-1/2}AD^{-1/2}$ has eigenvalues $1 \mu_1/d, \dots, 1 \mu_n/d.$

d-regular graph

If G is d-regular graph, then adjacency matrix, combinatorial Laplacian, and normalize Laplacian are all equivalent.

Suppose A has eigenvalues μ_1, \ldots, μ_n . Then

• D - A has eigenvalues $d - \mu_1, \ldots, d - \mu_n$.

•
$$I - D^{-1/2}AD^{-1/2}$$
 has eigenvalues $1 - \mu_1/d, \dots, 1 - \mu_n/d.$

The theories of three matrices apply to the d-regular graphs.

An application

Constructing Small Folkman Graphs.

Ramsey's theorem

For integers $k, l \ge 2$, there exists a least positive integer R(k, l) such that no matter how the complete graph $K_{R(k,l)}$ is two-colored, it will contain a blue subgraph K_k or a red subgraph K_l .

Ramsey's theorem

For integers $k, l \ge 2$, there exists a least positive integer R(k, l) such that no matter how the complete graph $K_{R(k,l)}$ is two-colored, it will contain a blue subgraph K_k or a red subgraph K_l .

$$R(3,3) = 6$$

 $R(4,4) = 18$
 $43 \le R(5,5) \le 49$
 $02 \le R(6,6) \le 165$

$$(1+o(1))\frac{\sqrt{2}}{e}n2^{n/2} \le R(n,n) \le (n-1)^{-C\frac{\log(n-1)}{\log\log(n-1)}} \binom{2(n-1)}{n-1}.$$

Laplacian and Random Walks on Graphs

Spencer[1975]

Colon [2009]

Ramsey number R(3,3) = 6

If edges of K_6 are 2-colored then there exists a monochromatic triangle.

Ramsey number R(3,3) = 6

- If edges of K_6 are 2-colored then there exists a monochromatic triangle.

There exists a 2-coloring of edges of K_5 with no monochromatic triangle.

Rado's arrow notation

 $G \rightarrow (H)$: if the edges of G are 2-colored then there exists a monochromatic subgraph of G isomorphic to H.

Rado's arrow notation

 $G \rightarrow (H)$: if the edges of G are 2-colored then there exists a monochromatic subgraph of G isomorphic to H.

Fact: If $K_6 \subset G$, then $G \to (K_3)$.

An Erdős-Hajnal Question

Is there a K_6 -free graph G with $G \to (K_3)$?

An Erdős-Hajnal Question

Is there a K_6 -free graph G with $G \rightarrow (K_3)$? Graham (1968): Yes!

Suppose G has no monochromatic triangle.

Label the vertices of C_5 by either (r, b) or (b, r).

Label the vertices of C_5 by either (r, b) or (b, r). A red triangle is unavoidable since $\chi(C_5) = 3$.

K_5 -free G with $G \to (K_3)$

Year	Authors	G
1969	Schäuble	42
1971	Graham, Spencer	23

- 1973 Irving 18
- 1979 Hadziivanov, Nenov 16
- 1981 Nenov 15

K_5 -free G with $G \to (K_3)$

Year	Authors	G
1969	Schäuble	42
1971	Graham, Spencer	23
1973	Irving	18
1979	Hadziivanov, Nenov	16
1981	Nenov	15

In 1998, Piwakowski, Radziszowski and Urbański used a computer-aided exhaustive search to rule out all possible graphs on less than 15 vertices.

General results

Folkman's theorem (1970): For any $k_2 > k_1 \ge 3$, there exists a K_{k_2} -free graph G with $G \rightarrow (K_{k_1})$.

General results

Folkman's theorem (1970): For any $k_2 > k_1 \ge 3$, there exists a K_{k_2} -free graph G with $G \rightarrow (K_{k_1})$.

These graphs are called Folkman Graphs.

General results

Folkman's theorem (1970): For any $k_2 > k_1 \ge 3$, there exists a K_{k_2} -free graph G with $G \rightarrow (K_{k_1})$.

These graphs are called Folkman Graphs.

Nešetřil-Rödl's theorem (1976): For $p \ge 2$ and any $k_2 > k_1 \ge 3$, there exists a K_{k_2} -free graph G with $G \to (K_{k_1})_p$.

Here $G \to (H)_p$: if the edges of G are p-colored then there exists a monochromatic subgraph of G isomorphic to H.

Let $f(p, k_1, k_2)$ denote the smallest integer n such that there exists a K_{k_2} -free graph G on n vertices with $G \to (K_{k_1})_p$.

Graham

f(2,3,6) = 8.

Let $f(p, k_1, k_2)$ denote the smallest integer n such that there exists a K_{k_2} -free graph G on n vertices with $G \to (K_{k_1})_p$.

Graham

$$f(2,3,6) = 8.$$

Nenov, Piwakowski, Radziszowski and Urbański

f(2,3,5) = 15.

Let $f(p, k_1, k_2)$ denote the smallest integer n such that there exists a K_{k_2} -free graph G on n vertices with $G \to (K_{k_1})_p$.

Graham

$$f(2,3,6) = 8.$$

Nenov, Piwakowski, Radziszowski and Urbański

f(2,3,5) = 15.

What about f(2,3,4)?

Folkman, Nešetřil-Rödl 's upper bound is huge.
Frankl and Rödl (1986)

 $f(2,3,4) \le 7 \times 10^{11}.$

Folkman, Nešetřil-Rödl 's upper bound is huge.
Frankl and Rödl (1986)

$$f(2,3,4) \le 7 \times 10^{11}.$$

• **Erdős** set a prize of \$100 for the challenge

$$f(2,3,4) \le 10^{10.5}$$

Folkman, Nešetřil-Rödl 's upper bound is huge.
Frankl and Rödl (1986)

$$f(2,3,4) \le 7 \times 10^{11}.$$

Erdős set a prize of \$100 for the challenge

 $f(2,3,4) \le 10^{10.}$

• **Spencer** (1988) claimed the prize.

$$f(2,3,4) \le 3 \times 10^9.$$

Folkman, Nešetřil-Rödl 's upper bound is huge.
Frankl and Rödl (1986)

$$f(2,3,4) \le 7 \times 10^{11}.$$

Erdős set a prize of \$100 for the challenge

 $f(2,3,4) \le 10^{10.}$

• **Spencer** (1988) claimed the prize.

$$f(2,3,4) \le 3 \times 10^9.$$

Most wanted Folkman Graph

Most wanted Folkman Graph

Problem on triangle-free subgraphs in graphs containing no K_4 \$100 (proposed by Erdős)⁴⁸ Let $f(p, k_1, k_2)$ denote the smallest integer n such that there is a graph G with n vertices satisfying the properties: (1) any edge coloring in p colors contains a monochromatic K_{k_1} ; (2) G contains no K_{k_2} . Prove or disprove: $f(2,3,4) < 10^6$.

Difficulty

There is no efficient algorithm to test whether $G \rightarrow (K_3)$.

Difficulty

- There is no efficient algorithm to test whether $G \rightarrow (K_3)$.
 - For moderate n, Folkman graphs are very rare among all K_4 -free graphs on n vertices.

Difficulty

- There is no efficient algorithm to test whether $G \rightarrow (K_3)$.
- For moderate n, Folkman graphs are very rare among all K_4 -free graphs on n vertices.
- Probabilistic methods are generally good choices for asymptotic results. However, it is not good for moderate size n.

Find a simple and sufficient condition for $G \rightarrow (K_3)$, and an efficient algorithm to verify this condition.

- Find a simple and sufficient condition for $G \rightarrow (K_3)$, and an efficient algorithm to verify this condition.
- Search a special class of graphs so that we have a better chance of finding a Folkman graph.

- Find a simple and sufficient condition for $G \rightarrow (K_3)$, and an efficient algorithm to verify this condition.
- Search a special class of graphs so that we have a better chance of finding a Folkman graph.
- Use spectral analysis instead of probabilistic methods.

- Find a simple and sufficient condition for $G \rightarrow (K_3)$, and an efficient algorithm to verify this condition.
- Search a special class of graphs so that we have a better chance of finding a Folkman graph.
- Use spectral analysis instead of probabilistic methods.
- Localization and δ -fairness.

- Find a simple and sufficient condition for $G \rightarrow (K_3)$, and an efficient algorithm to verify this condition.
- Search a special class of graphs so that we have a better chance of finding a Folkman graph.
- Use spectral analysis instead of probabilistic methods.
- Localization and δ -fairness.
- Circulant graphs and L(m, s).

I received \$100-award by proving **Theorem [Lu, 2007]:** $f(2, 3, 4) \le 9697$.

RONALD GRAHAM FAN GRAHAM	DATE 12/8/07 16-66/12
Parto THE Lengus One hunde	m Luc \$ 10000 ct + #1100 pollars @
Bank of America La Jolla Village Square 8813 Villa La Jolla Dr	Premier Banking
$l(2, 3, 4) < 10^6$	Rough Sealing .

I received \$100-award by proving **Theorem [Lu, 2007]:** $f(2, 3, 4) \le 9697$.

RONALD GRAHAM	DATE 12/8/07 16-66/1220
FAN GRAHAM	2198
Parto THE Linguan	Lu \$ 10000
One hundred	+ #/100 DOLLARS @
Bank of America La Jolla Village Square 8813 Villa La Jolla Dr La Jolla CA 858: 452 8400	Premier Banking

Shortly Dudek and Rödl improved it to $f(2,3,4) \le 941$. They also received a \$50-award.

I received \$100-award by proving **Theorem [Lu, 2007]:** $f(2, 3, 4) \le 9697$.

RONALD GRAHAM	DATE 12/8/07 16-66/1220
FAN GRAHAM	2196
Pay to THE Lenguan	Lu \$ 10000
One hundred	+ #/100 DOLLARS @ MARCH
Bank of America La Jolla Village Square Still Villa La Jolla Dr La Jolla CA SS 452 5400	Premier Banking

Shortly Dudek and Rödl improved it to $f(2,3,4) \le 941$. They also received a \$50-award.

Lange-Radziszowski-Xu [2012+]: $f(2, 3, 4) \le 786$.

Spencer's Lemma

Notations:

- G_v : the induced graph on the the neighborhood of v.
- b(H): the maximum size of edge-cuts for H.

Spencer's Lemma

Notations:

- G_v : the induced graph on the the neighborhood of v.
- b(H): the maximum size of edge-cuts for H.

Lemma (Spencer) If $\sum_{v} b(G_v) < \frac{2}{3} \sum_{v} |E(G_v)|$, then $G \to (K_3)$.

Spencer's Lemma

Notations:

- G_v : the induced graph on the the neighborhood of v.
- b(H): the maximum size of edge-cuts for H.

Lemma (Spencer) If $\sum_{v} b(G_v) < \frac{2}{3} \sum_{v} |E(G_v)|$, then $G \to (K_3)$.

Localization

For $0 < \delta < \frac{1}{2}$, a graph H is δ -fair if

$$b(H) < \left(\frac{1}{2} + \delta\right)|E(H)|.$$

Localization

For $0 < \delta < \frac{1}{2}$, a graph H is δ -fair if

$$b(H) < \left(\frac{1}{2} + \delta\right)|E(H)|.$$

 ${\cal G}$ is a Folkman graph if for each v

- G_v is $\frac{1}{6}$ -fair.
- G_v is K_3 -free.

Localization

For $0 < \delta < \frac{1}{2}$, a graph H is δ -fair if

$$b(H) < \left(\frac{1}{2} + \delta\right)|E(H)|.$$

 ${\cal G}$ is a Folkman graph if for each v

- G_v is $\frac{1}{6}$ -fair.
- G_v is K_3 -free.

For vertex transitive graph G, all G_v 's are isomorphic.

Spectral lemma

- A: the adjacency matrix of H
- $\mathbf{d} = (d_1, d_2, \dots, d_n)$: degrees of H
- $\operatorname{Vol}(S) = \sum_{v \in S} d_v$: the volume of S
- $\overline{d} = \frac{\operatorname{Vol}(H)}{n}$: the average degree

Spectral lemma

- H: a graph on n vertices
- A: the adjacency matrix of H
- $\mathbf{d} = (d_1, d_2, \dots, d_n)$: degrees of H
- $\operatorname{Vol}(S) = \sum_{v \in S} d_v$: the volume of S
- $\bar{d} = \frac{\operatorname{Vol}(H)}{n}$: the average degree

Lemma (Lu) If the smallest eigenvalue of $M = A - \frac{1}{\operatorname{Vol}(H)} \mathbf{d} \cdot \mathbf{d}'$ is greater than $-2\delta \overline{d}$, then H is δ -fair.

Spectral lemma

- H: a graph on n vertices
- A: the adjacency matrix of H
- $\mathbf{d} = (d_1, d_2, \dots, d_n)$: degrees of H
- $\operatorname{Vol}(S) = \sum_{v \in S} d_v$: the volume of S
- $\overline{d} = \frac{\operatorname{Vol}(H)}{n}$: the average degree

Lemma (Lu) If the smallest eigenvalue of $M = A - \frac{1}{\operatorname{Vol}(H)} \mathbf{d} \cdot \mathbf{d}'$ is greater than $-2\delta \overline{d}$, then H is δ -fair. Similar results hold for A and L. However, they are weaker than using M in experiments.

Corollary

Corollary Suppose *H* is a *d*-regular graph and the smallest eigenvalue of its adjacency matrix *A* is greater than $-2\delta d$. Then *H* is δ -fair.

Corollary

Corollary Suppose H is a d-regular graph and the smallest eigenvalue of its adjacency matrix A is greater than $-2\delta d$. Then H is δ -fair.

Proof: We can replace M by A in the previous lemma.

- 1 is an eigenvector of A with respect to d.
- M is the projection of A to the hyperspace $\mathbf{1}^{\perp}$.
- M and A have the same smallest eigenvalues.

• $V(H) = X \cup Y$: a partition of the vertex-set.

 $V(H) = X \cup Y$: a partition of the vertex-set.

 $\mathbf{1}_X$, $\mathbf{1}_Y$: indicated functions of X and Y.

 $\mathbf{1}_X + \mathbf{1}_Y = \mathbf{1}.$

- $V(H) = X \cup Y$: a partition of the vertex-set.
 - $\mathbf{1}_X$, $\mathbf{1}_Y$: indicated functions of X and Y.

$$\mathbf{1}_X + \mathbf{1}_Y = \mathbf{1}.$$

• We observe $M\mathbf{1} = 0$.

- $V(H) = X \cup Y$: a partition of the vertex-set.
 - $\mathbf{1}_X$, $\mathbf{1}_Y$: indicated functions of X and Y.

$$\mathbf{1}_X + \mathbf{1}_Y = \mathbf{1}.$$

We observe $M\mathbf{1} = 0$. For each $t \in (0, 1)$, let $\alpha(t) = (1 - t)\mathbf{1}_X - t\mathbf{1}_Y$. We have $\alpha(t)' \cdot M \cdot \alpha(t) = -e(X, Y) + \frac{1}{\operatorname{Vol}(H)} \operatorname{Vol}(X) \operatorname{Vol}(Y)$.

Let ρ be the smallest eigenvalue of M. We have

$$e(X,Y) - \frac{\operatorname{Vol}(X)\operatorname{Vol}(Y)}{\operatorname{Vol}(H)} \le -\alpha(t)' \cdot M \cdot \alpha(t) \le -\rho \|\alpha_t\|^2.$$

Let ρ be the smallest eigenvalue of M. We have

$$e(X,Y) - \frac{\operatorname{Vol}(X)\operatorname{Vol}(Y)}{\operatorname{Vol}(H)} \le -\alpha(t)' \cdot M \cdot \alpha(t) \le -\rho \|\alpha_t\|^2.$$

Choose $t = \frac{|X|}{n}$ so that $\|\alpha(t)\|^2$ reaches its minimum $\frac{|X||Y|}{n}$.

Let ρ be the smallest eigenvalue of M. We have

$$e(X,Y) - \frac{\operatorname{Vol}(X)\operatorname{Vol}(Y)}{\operatorname{Vol}(H)} \le -\alpha(t)' \cdot M \cdot \alpha(t) \le -\rho \|\alpha_t\|^2.$$

Choose $t = \frac{|X|}{n}$ so that $\|\alpha(t)\|^2$ reaches its minimum $\frac{|X||Y|}{n}$. We have

$$\begin{split} e(X,Y) &\leq \frac{\operatorname{Vol}(X)\operatorname{Vol}(Y)}{\operatorname{Vol}(H)} + \rho \frac{|X||Y|}{n}.\\ &\leq \frac{\operatorname{Vol}(H)}{4} - \rho \frac{n}{4}\\ &< (\frac{1}{2} + \delta)|E(H)|, \text{ since } \rho > -2\delta \overline{d}. \end{split}$$

Circulant graphs

- $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$
- S: a subset of \mathbb{Z}_n satisfying -S = S and $0 \notin S$.

We define a circulant graph ${\cal H}$ by

-
$$V(H) = \mathbb{Z}_n$$

-
$$E(H) = \{xy \mid x - y \in S\}.$$

Example: A circulant graph with
$$n = 8$$
 and $S = \{\pm 1, \pm 3\}$.

Spectrum of circulant graphs

Lemma: The eigenvalues of the adjacency matrix for the circulant graph generated by $S \subset \mathbb{Z}_n$ are

for
$$i = 0, ..., n - 1$$
.

Spectrum of circulant graphs

Lemma: The eigenvalues of the adjacency matrix for the circulant graph generated by $S \subset \mathbb{Z}_n$ are

$$\sum_{s \in S} \cos \frac{2\pi i s}{n}$$

for
$$i = 0, ..., n - 1$$
.
Proof: Note $A = g(J)$, where

 $g(x) = \sum x^s.$

 $s \in S$

$$J = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

Proof continues...

Let $\phi = e^{\frac{2\pi\sqrt{-1}}{n}}$ denote the primitive *n*-th unit root. *J* has eigenvalues

$$1, \phi, \phi^2, \dots, \phi^{n-1}$$

Proof continues...

Let $\phi = e^{\frac{2\pi\sqrt{-1}}{n}}$ denote the primitive n-th unit root. J has eigenvalues

$$1, \phi, \phi^2, \dots, \phi^{n-1}$$

Thus, the eigenvalues of ${\cal A}=g(J)$ are

$$g(1), g(\phi), \ldots, g(\phi^{n-1}).$$

For i = 0, 1, 2, ..., n - 1, we have

$$g(\phi^i) = \Re(g(\phi^i)) = \sum_{s \in S} \cos \frac{2\pi i s}{n}.$$

${\bf Graph}\ L(m,s)$

Suppose s and m are relatively prime to each other. Let n be the least positive integer satisfying

$$s^n \equiv 1 \mod m.$$

${\bf Graph} \ L(m,s)$

Suppose s and m are relatively prime to each other. Let n be the least positive integer satisfying

$$s^n \equiv 1 \mod m.$$

We define the graph ${\cal L}(m,s)$ to be a circulant graph on m vertices with

$$S = \{s^i \mod m \mid i = 0, 1, 2, \dots, n-1\}.$$

${\bf Graph} \ L(m,s)$

Suppose s and m are relatively prime to each other. Let n be the least positive integer satisfying

$$s^n \equiv 1 \mod m.$$

We define the graph ${\cal L}(m,s)$ to be a circulant graph on m vertices with

$$S = \{s^i \mod m \mid i = 0, 1, 2, \dots, n-1\}.$$

Proposition: The local graph G_v of L(m, s) is also a circulant graph.

- For each L(m,s), compute the local graph G_v .
- If G_v is not triangle-free, reject it and try a new graph L(m, s).
- If the ratio the smallest eigenvalue verse the largest eigenvalue of G_v is less than $-\frac{1}{3}$, reject it and try a new graph L(m, s).
- Output a Folkman graph L(m, s).

Computational results

L(m,s)	σ
L(127,5)	$-0.6363\cdots$
L(761, 3)	$-0.5613\cdots$
L(785, 53)	$-0.5404\cdots$
L(941, 12)	$-0.5376\cdots$
L(1777, 53)	$-0.5216\cdots$
L(1801, 125)	$-0.4912\cdots$
L(2641, 2)	$-0.4275\cdots$
L(9697, 4)	$-0.3307\cdots$
L(30193, 53)	$-0.3094\cdots$
L(33121, 2)	$-0.2665\cdots$
L(57401,7)	$-0.3289\cdots$

- σ is the ratio
 of the smallest
 eigenvalue to the
 largest eigenvalue
 in the local graph.
- All graphs on the left are K_4 -free.
- Graphs in red are Folkman graphs.
- Graphs in black are good candidates.

Improvements

Our method has inspired two improvements.

Dudek-Rodl [2008]: $f(2,3,4) \le 941$.

Improvements

Our method has inspired two improvements.

- **Dudek-Rodl [2008]:** $f(2,3,4) \le 941$.
- Lange-Radziszowski-Xu [2012+]: $f(2,3,4) \le 786$.

Given a graph G, a triangle graph H_G is defined as

- $\bullet V(H_G) = E(G)$
- $e_1 \sim e_2$ in H_G if e_1 and e_2 belong to the same triangle of G.

Given a graph G, a triangle graph H_G is defined as

- $\bullet V(H_G) = E(G)$
- $e_1 \sim e_2$ in H_G if e_1 and e_2 belong to the same triangle of G.

Dudek, Rodl, 2008

If $b(H_G) < \frac{2}{3} |E(H_G)|$, then $G \to (K_3)$. If H_G is $\frac{1}{6}$ -fair, then $G \to (K_3)$.

Theorem [Dudek, Rodl, 2008]

 $f(2,3,4) \le 941.$

Theorem [Dudek, Rodl, 2008]

 $f(2,3,4) \le 941.$

Proof: Let G = L(941, 12). Then G is 188 regular. The triangle graph H has 941 * 188/2 = 88454 vertices and 2122896 edges.

Theorem [Dudek, Rodl, 2008]

 $f(2,3,4) \le 941.$

Proof: Let G = L(941, 12). Then G is 188 regular. The triangle graph H has 941 * 188/2 = 88454 vertices and 2122896 edges.

Using Matlab, they calculate the least eigenvalue

$$\mu_n \ge -15.196 > -(\frac{1}{2} + \frac{1}{6})24.$$

So *H* is $\frac{1}{6}$ -fair. Done.

Lange-Radziszowski-Xu

Instead of spectral methods, they use semi-definite program (SDP) to approximate the MAX-CUT problem.

First they try the graph G_1 obtained from L(941, 12) by deleting 81 vertices. They showed

 $3b(H_{G_1}) < 1084985 < 1085028 = 2|E(H_{G_1})|.$

This implies $f(2, 3, 4) \leq 860$.

Lange-Radziszowski-Xu

Instead of spectral methods, they use semi-definite program (SDP) to approximate the MAX-CUT problem.

First they try the graph G_1 obtained from L(941, 12) by deleting 81 vertices. They showed

 $3b(H_{G_1}) < 1084985 < 1085028 = 2|E(H_{G_1})|.$

This implies $f(2,3,4) \leq 860$.

Second they try the graph G_2 obtained from L(785, 53) by one vertex and some 60 edges. They showed

 $3b(H_{G_2}) < 857750 < 857762 = 2|E(H_{G_2})|.$

This implies $f(2, 3, 4) \le 786$.

Open questions

- Exoo conjectured L(127, 5) is a Folkman graph.
- In 2012 SIAMDM, Ronald Graham announced a \$100 award for determining if f(2,3,4) < 100.
- A open problem on 3-colors: prove or disprove

$$f(3,3,4) \le 3^{3^4}.$$

References

- Linyuan Lu, Explicit Construction of Small Folkman Graphs. SIAM Journal on Discrete Mathematics, 21(4):1053-1060, January 2008.
- 2. Andrzej Dudek and Vojtech Rödl. On the Folkman Number f(2,3,4), Experimental Mathematics, 17(1):63-67, 2008.
- 3. A. Lange, S. Radziszowski, and X. Xu, Use of MAX-CUT for Ramsey Arrowing of Triangles, http://arxiv.org/pdf/1207.3750.pdf.

Homepage: http://www.math.sc.edu/ \sim lu/

Thank You

