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Selected Topics on Spectral Graph Theory

1. Graphs with Small Spectral Radius
Time: Friday (May 16) 4pm.-5:30p.m.

2. Laplacian and Random Walks on Graphs
Time: Thursday (May 22) 4pm.-5:30p.m.
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5. Lapalacian of Random Hypergraphs
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■ Combinatorial Laplacian
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■ G = (V,E): a simple connected graph on n vertices
■ A(G): the adjacency matrix
■ D(G) = diag(d1, d2, . . . , dn): the diagonal degree matrix
■ L = D − A: the combinatorial Laplacian
■ L is semi-definite and 1 is always an eigenvector for the

eigenvalue 0.

① ① ①

①

S4

L(S4) =









3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1









Combinatorial Laplacian eigenvalues of S4: 0, 1, 1, 4.
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Kirchhoff’s Matrix-tree Theorem: The (i, j)-cofactor of
D − A equals (−1)i+jt(G), where t(G) is the number of
spanning trees in G.

Proof: Fix an orientation of G, let B be the incidence
matrix of the orientation, i.e., bve = 1 if v is the head of the
arc e, bve = −1 if i is the tail of e, and bve = 0 otherwise.
Let L11 be the sub-matrix obtained from L by deleting the
first row and first column, and B1 be the matrix obtained
from B by deleting the first row. Then L11 = B1B

′
1.

det(L11) = det(B1B
′
1)

=
∑

S

det(BS)
2 By Cauchy-Binet formula

= the number of Spanning Trees. �
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non-zero eigenvalues of L. Then the number of spanning
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n
λ1λ2 · · ·λn−1.
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Corollary: If G is connected, and λ1, . . . , λn−1 be the
non-zero eigenvalues of L. Then the number of spanning
tree is

1

n
λ1λ2 · · ·λn−1.

Chung-Yau [1999]: The number of spanning trees in any
d-regular graph on n vertices is at most

(1 + o(1))
2 log n

dn log d

(

(d− 1)d−1

(d2 − 2d)d/2−1

)n

.

This is best possible within a constant factor.
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Normalized Laplacian: L = I −D−1/2AD−1/2.

■ L is always semi-definite.
■ 0 is always an eigenvalue of L with eigenvector

(
√
d1, . . . ,

√
dn)

′.

① ① ①

①

L(S4) =











1 − 1
√

3
− 1

√

3
− 1

√

3

− 1
√

3
1 0 0

− 1
√

3
0 1 0

− 1
√

3
0 0 1











(Normalized) Laplacian eigenvalues of S4:
λ0 = 0, λ1 = λ2 = 1, λ3 = 2.
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General properties:

■ The multiplicity of 0 is the number of connected
components.

■ Laplacian eigenvalues: λ0, . . . , λn−1

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2.

■ λn−1 = 2 if and only if G is bipartite.

■ λ1 > 1 if and only if G is the complete graph.
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The Laplacian eigenvalues can also be computed by Rayleigh
quotients: for 0 ≤ i ≤ n− 1,

λi = sup
dim(M)=n−i

inf
f∈M

∑

x∼y(f(x)− f(y))2
∑

x f(x)
2dx

.



Rayleigh quotients

Laplacian and Random Walks on Graphs Linyuan Lu – 11 / 59

The Laplacian eigenvalues can also be computed by Rayleigh
quotients: for 0 ≤ i ≤ n− 1,

λi = sup
dim(M)=n−i

inf
f∈M

∑

x∼y(f(x)− f(y))2
∑

x f(x)
2dx

.

In particular, λ1 can be evaluated by

λ1 = inf
f⊥D1

∑

x∼y(f(x)− f(y))2
∑

x f(x)
2dx

.



Rayleigh quotients

Laplacian and Random Walks on Graphs Linyuan Lu – 11 / 59

The Laplacian eigenvalues can also be computed by Rayleigh
quotients: for 0 ≤ i ≤ n− 1,

λi = sup
dim(M)=n−i

inf
f∈M

∑

x∼y(f(x)− f(y))2
∑

x f(x)
2dx

.

In particular, λ1 can be evaluated by

λ1 = inf
f⊥D1

∑

x∼y(f(x)− f(y))2
∑

x f(x)
2dx

.
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λ1 is related to

■ the mixing rate of random walks

■ diameter

■ neighborhood/edge expansion

■ Cheeger constant

■ quasi-randomness

■ many other applications.
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A walk on a graph is a sequence of vertices together a
sequence of edges:

v0, v1, v2, v3, . . . , vk, vk+1, . . .

v0v1, v1v2, v2v3, . . . , vkvk+1, . . .

Random walks on a graph G:

fk+1 = fkD
−1A.

D−1A ∼ D−1/2AD−1/2 = I−L.
λ̄ determines the mixing rate of
random walks. ✍✌

✎☞
v ✍✌

✎☞

✍✌
✎☞

✍✌
✎☞

✲
�
�
�
�
�
�
��✒✻

1
dv

1
dv1

dv
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■ row vector fk: the vertex probability distribution at time
k.

fk = f0(D
−1A)k.

■ Stationary distribution π = 1
vol(G)(d1, d2, . . . , dn).

π(D−1A) = π.

■ Mixing:

‖(fk − π)D−1/2‖ ≤ λ̄k‖(f0 − π)D−1/2‖.

If G is bipartite, then the random walk does not mix. In
this case, we will use the α-lazy random walk with the
transition matrix αI + (1− α)D−1A.



Diameter
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Suppose that G is not a complete graph. Then the diameter
of G satisfies

diam(G) ≤
⌈

log(vol(G)/δ)

log λn−1+λ1

λn−1−λ1

⌉

,

where δ is the minimum degree of G.
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Let vol(X) =
∑

x∈X dx and λ̄ = max{1− λ1, λn−1 − 1}.
Then

∣

∣

∣
|E(X, Y )| − vol(X)vol(Y )

vol(G)

∣

∣

∣
≤ λ̄

√
vol(X)vol(Y )vol(X̄)vol(Ȳ )

vol(G) .

X Y

E(X,Y)
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Let 1X and 1Y be the indicated vector of X and Y
respectively. Let α0, α1, . . . , αn−1 be orthogonal unit
eigenvectors of L. Write D1/2

1X =
∑n−1

i=0 xiαi and

D1/2
1Y =

∑n−1
i=0 yiαi. Then

|E(X, Y )| = 1
′
XA1Y

= (D1/2
1X)

′(I − L)D1/2
1Y

=
n−1
∑

i=0

(1− λi)xiyi.



continue
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Note x0 =
vol(X)√
vol(G)

and y0 =
vol(Y )√
vol(G)

. Hence,

∣

∣

∣

∣

|E(X, Y )| − vol(X)vol(Y )

vol(G)

∣

∣

∣

∣

=
n

∑

i=1

(1− λi)xiyi

≤ λ̄

√

√

√

√

n−1
∑

i=1

x2i

√

√

√

√

n−1
∑

i=1

y2i

= λ̄

√

vol(X)vol(Y )vol(X̄)vol(Ȳ )

vol(G)
. �
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For a subset S ⊂ V , we define

hG(S) =
|E(S, S̄)|

min(vol(S), vol(S̄))
.

The Cheeger constant hG of a graph G is defined to be
hG = minS hG(S).
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For a subset S ⊂ V , we define

hG(S) =
|E(S, S̄)|

min(vol(S), vol(S̄))
.

The Cheeger constant hG of a graph G is defined to be
hG = minS hG(S).

Cheeger’s inequality:

2hG ≥ λ1 ≥
h2
G

2
.
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If G is d-regular graph, then adjacency matrix, combinatorial
Laplacian, and normalize Laplacian are all equivalent.

Suppose A has eigenvalues µ1, . . . , µn. Then

■ D − A has eigenvalues d− µ1, . . . , d− µn.

■ I −D−1/2AD−1/2 has eigenvalues
1− µ1/d, . . . , 1− µn/d.

The theories of three matrices apply to the d-regular graphs.
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Constructing Small Folkman Graphs.
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For integers k, l ≥ 2, there exists a least positive integer
R(k, l) such that no matter how the complete graph KR(k,l)

is two-colored, it will contain a blue subgraph Kk or a red
subgraph Kl.

R(3, 3) = 6

R(4, 4) = 18

43 ≤ R(5, 5) ≤ 49

102 ≤ R(6, 6) ≤ 165

...

(1+o(1))

√
2

e
n2n/2 ≤ R(n, n) ≤ (n−1)−C log(n−1)

log log(n−1)

(

2(n− 1)

n− 1

)

.

Spencer[1975] Colon [2009]
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■ If edges of K6 are 2-colored then there exists a
monochromatic triangle.

■ There exists a 2-coloring of edges of K5 with no
monochromatic triangle.
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G → (H): if the edges of G are 2-colored then there exists a
monochromatic subgraph of G isomorphic to H.

K6 → (K3)
K5 6→ (K3)

Fact: If K6 ⊂ G, then G → (K3).
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Is there a K6-free graph G with G → (K3)?

Graham (1968): Yes!

K8 \ C5



Graham’s graph K8 \ C5
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Suppose G has no monochromatic triangle.
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(r, b)

Label the vertices of C5 by either (r, b) or (b, r).
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(b, r)

(b, r)

Label the vertices of C5 by either (r, b) or (b, r).
A red triangle is unavoidable since χ(C5) = 3.
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1979 Hadziivanov, Nenov 16
1981 Nenov 15
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Year Authors |G|
1969 Scha̋uble 42
1971 Graham, Spencer 23
1973 Irving 18
1979 Hadziivanov, Nenov 16
1981 Nenov 15

In 1998, Piwakowski, Radziszowski and Urbański used a
computer-aided exhaustive search to rule out all possible
graphs on less than 15 vertices.
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Folkman’s theorem (1970): For any k2 > k1 ≥ 3, there
exists a Kk2-free graph G with G → (Kk1).

These graphs are called Folkman Graphs.

Nešeťril-Rödl’s theorem (1976): For p ≥ 2 and any

k2 > k1 ≥ 3, there exists a Kk2-free graph G with

G → (Kk1)p.

Here G → (H)p: if the edges of G are p-colored then there
exists a monochromatic subgraph of G isomorphic to H.



f (p, k1, k2)

Laplacian and Random Walks on Graphs Linyuan Lu – 35 / 59

Let f(p, k1, k2) denote the smallest integer n such that there
exists a Kk2-free graph G on n vertices with G → (Kk1)p.

■ Graham
f(2, 3, 6) = 8.



f (p, k1, k2)

Laplacian and Random Walks on Graphs Linyuan Lu – 35 / 59

Let f(p, k1, k2) denote the smallest integer n such that there
exists a Kk2-free graph G on n vertices with G → (Kk1)p.

■ Graham
f(2, 3, 6) = 8.

■ Nenov, Piwakowski, Radziszowski and Urbański
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Let f(p, k1, k2) denote the smallest integer n such that there
exists a Kk2-free graph G on n vertices with G → (Kk1)p.

■ Graham
f(2, 3, 6) = 8.

■ Nenov, Piwakowski, Radziszowski and Urbański

f(2, 3, 5) = 15.

■ What about f(2, 3, 4)?
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■ Folkman, Nešeťril-Rödl ’s upper bound is huge.
■ Frankl and Rödl (1986)
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■ Erdős set a prize of $100 for the challenge
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f(2, 3, 4) ≤ 3× 109.
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■ There is no efficient algorithm to test whether
G → (K3).

■ For moderate n, Folkman graphs are very rare among all
K4-free graphs on n vertices.

■ Probabilistic methods are generally good choices for
asymptotic results. However, it is not good for moderate
size n.
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■ Find a simple and sufficient condition for G → (K3), and
an efficient algorithm to verify this condition.

■ Search a special class of graphs so that we have a better
chance of finding a Folkman graph.

■ Use spectral analysis instead of probabilistic methods.

■ Localization and δ-fairness.

■ Circulant graphs and L(m, s).
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I received $100-award by proving
Theorem [Lu, 2007]: f(2, 3, 4) ≤ 9697.

Shortly Dudek and Rödl improved it to f(2, 3, 4) ≤ 941.
They also received a $50-award.

Lange-Radziszowski-Xu [2012+]: f(2, 3, 4) ≤ 786.
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For 0 < δ < 1
2 , a graph H is δ-fair if

b(H) < (
1

2
+ δ)|E(H)|.

G is a Folkman graph if for each v

- Gv is 1
6-fair.

- Gv is K3-free.

For vertex transitive graph G, all Gv’s are isomorphic.
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- d̄ = Vol(H)
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- H: a graph on n vertices
- A: the adjacency matrix of H
- d = (d1, d2, . . . , dn): degrees of H
- Vol(S) =

∑

v∈S dv: the volume of S

- d̄ = Vol(H)
n : the average degree

Lemma (Lu) If the smallest eigenvalue of

M = A− 1
Vol(H)d ·d′ is greater than −2δd̄, then H is δ-fair.

Similar results hold for A and L. However, they are weaker
than using M in experiments.
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Corollary Suppose H is a d-regular graph and the smallest

eigenvalue of its adjacency matrix A is greater than −2δd.
Then H is δ-fair.



Corollary

Laplacian and Random Walks on Graphs Linyuan Lu – 45 / 59

Corollary Suppose H is a d-regular graph and the smallest

eigenvalue of its adjacency matrix A is greater than −2δd.
Then H is δ-fair.

Proof: We can replace M by A in the previous lemma.

- 1 is an eigenvector of A with respect to d.
- M is the projection of A to the hyperspace 1

⊥.
- M and A have the same smallest eigenvalues.
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■ V (H) = X ∪ Y : a partition of the vertex-set.

■ 1X , 1Y : indicated functions of X and Y .

1X + 1Y = 1.

■ We observe M1 = 0.

■ For each t ∈ (0, 1), let α(t) = (1− t)1X − t1Y . We have

α(t)′ ·M · α(t) = −e(X, Y ) +
1

Vol(H)
Vol(X)Vol(Y ).
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Let ρ be the smallest eigenvalue of M . We have

e(X, Y )− Vol(X)Vol(Y )

Vol(H)
≤ −α(t)′ ·M · α(t) ≤ −ρ‖αt‖2.
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Let ρ be the smallest eigenvalue of M . We have

e(X, Y )− Vol(X)Vol(Y )

Vol(H)
≤ −α(t)′ ·M · α(t) ≤ −ρ‖αt‖2.

Choose t = |X|
n so that ‖α(t)‖2 reaches its minimum |X||Y |

n .
We have

e(X, Y ) ≤ Vol(X)Vol(Y )

Vol(H)
+ ρ

|X||Y |
n

.

≤ Vol(H)

4
− ρ

n

4

< (
1

2
+ δ)|E(H)|, since ρ > −2δd̄. �
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- Zn = Z/nZ
- S: a subset of Zn satisfying −S = S and 0 6∈ S.

We define a circulant graph H by

- V (H) = Zn

- E(H) = {xy | x− y ∈ S}.

Example: A circulant graph
with n = 8 and S = {±1,±3}.
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Lemma: The eigenvalues of the adjacency matrix for the

circulant graph generated by S ⊂ Zn are

∑

s∈S
cos

2πis

n

for i = 0, . . . , n− 1.
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Lemma: The eigenvalues of the adjacency matrix for the

circulant graph generated by S ⊂ Zn are

∑

s∈S
cos

2πis

n

for i = 0, . . . , n− 1.

Proof: Note A =
g(J), where

g(x) =
∑

s∈S
xs.

J =

















0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
... . . . . . . ...

0 0 0 · · · 0 1
1 0 0 · · · 0 0
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Let φ = e
2π

√

−1
n denote the primitive n-th unit root.

J has eigenvalues

1, φ, φ2, . . . , φn−1.
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Let φ = e
2π

√

−1
n denote the primitive n-th unit root.

J has eigenvalues

1, φ, φ2, . . . , φn−1.

Thus, the eigenvalues of A = g(J) are

g(1), g(φ), . . . , g(φn−1).

For i = 0, 1, 2, . . . , n− 1, we have

g(φi) = ℜ(g(φi)) =
∑

s∈S
cos

2πis

n
. �
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Suppose s and m are relatively prime to each other. Let n
be the least positive integer satisfying

sn ≡ 1 mod m.

We define the graph L(m, s) to be a circulant graph on m
vertices with

S = {si mod m | i = 0, 1, 2, . . . , n− 1}.

Proposition: The local graph Gv of L(m, s) is also a
circulant graph.
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■ For each L(m, s), compute the local graph Gv.
■ If Gv is not triangle-free, reject it and try a new graph

L(m, s).
■ If the ratio the smallest eigenvalue verse the largest

eigenvalue of Gv is less than −1
3 , reject it and try a new

graph L(m, s).
■ Output a Folkman graph L(m, s).
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L(m, s) σ
L(127, 5) −0.6363 · · ·
L(761, 3) −0.5613 · · ·
L(785, 53) −0.5404 · · ·
L(941, 12) −0.5376 · · ·
L(1777, 53) −0.5216 · · ·
L(1801, 125) −0.4912 · · ·
L(2641, 2) −0.4275 · · ·
L(9697, 4) −0.3307 · · ·
L(30193, 53) −0.3094 · · ·
L(33121, 2) −0.2665 · · ·
L(57401, 7) −0.3289 · · ·

■ σ is the ratio
of the smallest
eigenvalue to the
largest eigenvalue
in the local graph.

■ All graphs on the
left are K4-free.

■ Graphs in red are
Folkman graphs.

■ Graphs in black
are good candi-
dates.
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Given a graph G, a triangle graph HG is defined as

■ V (HG) = E(G)
■ e1 ∼ e2 in HG if e1 and e2 belong to the same triangle of

G.

Dudek, Rodl, 2008

■ If b(HG) <
2
3 |E(HG)|, then G → (K3).

■ If HG is 1
6-fair, then G → (K3).
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Theorem [Dudek, Rodl, 2008]

f(2, 3, 4) ≤ 941.

Proof: Let G = L(941, 12). Then G is 188 regular. The
triangle graph H has 941 ∗ 188/2 = 88454 vertices and
2122896 edges.

Using Matlab, they calculate the least eigenvalue

µn ≥ −15.196 > −(
1

2
+

1

6
)24.

So H is 1
6-fair. Done.
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Instead of spectral methods, they use semi-definite program
(SDP) to approximate the MAX-CUT problem.

■ First they try the graph G1 obtained from L(941, 12) by
deleting 81 vertices. They showed

3b(HG1
) < 1084985 < 1085028 = 2|E(HG1

)|.

This implies f(2, 3, 4) ≤ 860.
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Instead of spectral methods, they use semi-definite program
(SDP) to approximate the MAX-CUT problem.

■ First they try the graph G1 obtained from L(941, 12) by
deleting 81 vertices. They showed

3b(HG1
) < 1084985 < 1085028 = 2|E(HG1

)|.

This implies f(2, 3, 4) ≤ 860.

■ Second they try the graph G2 obtained from L(785, 53)
by one vertex and some 60 edges. They showed

3b(HG2
) < 857750 < 857762 = 2|E(HG2

)|.

This implies f(2, 3, 4) ≤ 786.
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■ Exoo conjectured L(127, 5) is a Folkman graph.

■ In 2012 SIAMDM, Ronald Graham announced a $100
award for determining if f(2, 3, 4) < 100.

■ A open problem on 3-colors: prove or disprove

f(3, 3, 4) ≤ 33
4

.
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