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- Backgrounds -

Linear Algebra Graph Theory

Probability Theory

|: Spectral Graph Theory |I: Random Graph Theory
lll: Random Matrix Theory
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- Outline

m Combinatorial Laplacian

m Normalized Laplacian

m An application
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- Graphs and Matrices -

There are several ways to associate a matrix to a graph G.

m Adjacency matrix
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- Basic Graph Notation -

m G = (V,F): asimple connected graph on n vertices
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- Basic Graph Notation -

A(G): the adjacency matrix

eigenvalue 0.
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- Basic Graph Notation -

G = (V, E): a simple connected graph on n vertices
A(G): the adjacency matrix

D(G) = diag(dy, ds, ..., d,): the diagonal degree matrix
L =D — A: the combinatorial Laplacian

L is semi-definite and 1 is always an eigenvector for the
eigenvalue 0.

-1 1 0 O
o o L(S4) — —1 0 1 0
S, \ -1 0 0 1 /
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- Matrix-tree Theorem -

Kirchhoff’s Matrix-tree Theorem: The (7, j)-cofactor of
D — A equals (—1)"t(G), where t(G) is the number of
spanning trees in (.
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- Matrix-tree Theorem -

Kirchhoff’s Matrix-tree Theorem: The (7, j)-cofactor of
D — A equals (—1)"t(G), where t(G) is the number of
spanning trees in (.

Proof: Fix an orientation of (G, let B be the incidence
matrix of the orientation, i.e., b, = 1 if v is the head of the
arc e, by, = —1 if ¢ is the tail of e, and b,. = 0 otherwise.
Let L1; be the sub-matrix obtained from L by deleting the
first row and first column, and B; be the matrix obtained
from B by deleting the first row. Then Ly = B Bj.

det(Lll) = det(BlBi)
— Z det(Bg)* By Cauchy-Binet formula
g

= the number of Spanning Trees.

Laplacian and Random Walks on Graphs Linyuan Lu —7 / 59



- An application -

Corollary: If G is connected, and Ay, ..., \,_1 be the
non-zero eigenvalues of L. Then the number of spanning
tree Is

1
il U VR WY
T
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- An application -

Corollary: If G is connected, and Ay, ..., \,_1 be the
non-zero eigenvalues of L. Then the number of spanning
tree Is

1
il U VR WY
T

Chung-Yau [1999]: The number of spanning trees in any
d-regular graph on n vertices is at most

2logn (d— 1)1 \"
(Lt o) g d ((d2 - Zd)d/21) '

This is best possible within a constant factor.
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- Normalized Laplacian -

Normalized Laplacian: £ =1 — D YV2AD~1/2,
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Normalized Laplacian: £ =1 — D YV2AD~1/2,
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m 0O is always an eigenvalue of £ with eigenvector
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- Normalized Laplacian -

Normalized Laplacian: £ =1 — D YV2AD~1/2,

m L is always semi-definite.
m 0O is always an eigenvalue of £ with eigenvector

(Vdi, ..., Vdn)"

(L )
~L 1 0 0
LS)=| % o 1
V3
® ® \-% 0 0 1

(Normalized) Laplacian eigenvalues of Sj:
M=0,A=X=1 A\3=2
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- Facts

General properties:

m [ he multiplicity of 0 is the number of connected
components.
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- Facts

General properties:

m [ he multiplicity of 0 is the number of connected
components.

m Laplacian eigenvalues: Ay, ..., A\,_1

O=X <\ <--- <\ <2

m )\, ;= 2if and only if G is bipartite.
m )\ > 1if and only if G is the complete graph.
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- Rayleigh quotients '

The Laplacian eigenvalues can also be computed by Rayleigh
quotients: for 0 < <n —1,

L Y@ - S
: dim(M)Iin—i feM Zg; f(x)Qda: .
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- Rayleigh quotients '

The Laplacian eigenvalues can also be computed by Rayleigh
quotients: for 0 < <n —1,

2y (f(@) = f(Y)?
dim(M)=n—1 feM Zg; f(x)2da: |

In particular, A\; can be evaluated by

N S )
L fiDn >y J(2)%dy |
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- An important parameter -

A1 1s related to

m the mixing rate of random walks
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m diameter
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n

Cheeger constant
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m the mixing rate of random walks
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- An important parameter -

A1 1s related to

the mixing rate of random walks
diameter

neighborhood /edge expansion
Cheeger constant

quasi-randomness

many other applications.
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- Random walks -

A walk on a graph is a sequence of vertices together a
sequence of edges:

Vo, U1, 02,03, -+« s Uk, U415 - - -

UpU1, V1U2, VU3, - - ., VU1, - - -
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- Random walks -

A walk on a graph is a sequence of vertices together a
sequence of edges:

Vo, U1, 02,03, -+« s Uk, U415 - - -
UoU1, V1U2, U2U3, . . ., UkUk+1, - - -
Random walks on a graph G- O )
~1
fi{?—i—l — ka A. 1 di
DA~DV2AD V2=
)\ determines the mixing rate of
° ) -

SH
S
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- Convergence -

m row vector f;: the vertex probability distribution at time
k.

fr = fo(D™TA)".
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Convergence -

m row vector f;: the vertex probability distribution at time
k.

fr = fo(DTA)".
m Stationary distribution m = vol;(G)(dl’ doy ..., dy).
m(D'A) = 7.
m Mixing:
|(fi =m)D~ V2| < N[ (fo — m) D2,

If & is bipartite, then the random walk does not mix. In
this case, we will use the a-lazy random walk with the

transition matrix ol + (1 — a)D 1 A.
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- Diameter -

Suppose that (G is not a complete graph. Then the diameter
of (G satisfies

diam(G) < log(vol(G)/5)

where 0 is the minimum degree of G.
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- Edge discrepancy -

Let VOI(X) = erX dx and 5\ — max{l — )\1, )\n—l — 1}
Then ||E(X,Y)| - Vol(j(()'l)(\g);(}f)‘ < 5\\/vol(X)vol(Y)vol(X)vol(Y)

vol(G)

XF
>/

E(X,Y)
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Proof

Let 1y and 1y be the indicated vector of X and Y
respectively. Let oy, aq, ..., a,_1 be orthogonal unit
eigenvectors of £. Write D21y = Z?:_ol x,; and

D1/21y = Z?:_Ol Y; ;. Then

E(X,Y)] =15xAly
= (DY?1x)(I — £)D"Y?1y
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- continue

vol(X) __wvol(Y)
vol(G) and yo = ot

Note zg =

. Hence,

|| By Y)vol(Y) |

vol(G)
N Z(l — Ai)Ziyi

Vol (X)vol(Y)vol(X)vol(Y)
vol(G) :
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- Cheeger Constant '

For a subset S C V, we define

B(5,5)
min(vol(S), vol(S))

ha(S) =

The Cheeger constant hg of a graph GG is defined to be
hg = ming ha(S).

Laplacian and Random Walks on Graphs Linyuan Lu — 19 / 59



- Cheeger Constant '

For a subset S C V, we define

B(5,5)
min(vol(S), vol(S))

ha(S) =

The Cheeger constant hg of a graph GG is defined to be
hg = ming ha(S).

Cheeger’s inequality:

h2
2hg > A\ 2> 7(;
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- d-regular graph -

If & is d-regular graph, then adjacency matrix, combinatorial
Laplacian, and normalize Laplacian are all equivalent.
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d-regular graph

If & is d-regular graph, then adjacency matrix, combinatorial
Laplacian, and normalize Laplacian are all equivalent.

Suppose A has eigenvalues uq, ..., it,. Then
m [ — A haseigenvalues d — uq,...,d — [y,
m [ — D 24D~1/2 has eigenvalues

1 —pr/d, ..., 1 — p,/d

The theories of three matrices apply to the d-regular graphs.
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- An application -

Constructing Small Folkman Graphs.
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Ramsey’'s theorem

For integers k£, [ > 2, there exists a least positive integer
R(k,1) such that no matter how the complete graph Kp;
is two-colored, it will contain a blue subgraph K. or a red

subgraph K.
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Ramsey’'s theorem

For integers k£, [ > 2, there exists a least positive integer
R(k,1) such that no matter how the complete graph Kp;
is two-colored, it will contain a blue subgraph K. or a red

subgraph Kj.
R(3,3) =6
R(4,4) =18
43 < R(5,5) < 49
102 < R(6,6) < 165

2 log(n—1 2 — 1
(1+0(1)Y2n2"? < R(n,n) < (n—1) Cti's ( . ! )>'
& T —

Spencer[1975] Colon [2009]
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- Ramsey number R(3,3) =6 -

m |f edges of K are 2-colored then there exists a
monochromatic triangle.
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- Ramsey number R(3,3) =6 -

m |f edges of K are 2-colored then there exists a
monochromatic triangle.

m [here exists a 2-coloring of edges of K5 with no
monochromatic triangle.

A
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- Rado’s arrow notation '

G — (H): if the edges of GG are 2-colored then there exists a
monochromatic subgraph of G isomorphic to H.

K6 N (KS) K5 7é (KS)
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- Rado’s arrow notation '

G — (H): if the edges of GG are 2-colored then there exists a
monochromatic subgraph of G isomorphic to H.

K6 N (KS) K5 7é (KS)

Fact: If K4 C G, then G — (K3).
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- An Erdos-Hajnal Question -

s there a K¢-free graph G with G — (K3)?
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- An Erdos-Hajnal Question -

s there a K¢-free graph G with G — (K3)?
Graham (1968): Yes!

N
5o
ré
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- Graham’s graph K3\ (5 -

Suppose G has no monochromatic triangle.
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- Graham’s graph K3\ (5 -

b, r)
(r, b)
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- Graham’s graph K3\ (5

b, r)

Label the vertices of C5 by either (r,b) or (b, 7).
A red triangle is unavoidable since x(C5) = 3.
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Year

1969
1971
1973
1979
1981

K5-free G with &G — (Kg)

Authors G|
Schauble 42
Graham, Spencer 23
lrving 18

Hadziivanov, Nenov 16
Nenov 15
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- K5-free G with G — (Kg) '

Year Authors G|
1969 Schauble 42
1971 Graham, Spencer 23
1973 lrving 18
1979 Hadziivanov, Nenov 16
1981 Nenov 15

In 1998, Piwakowski, Radziszowski and Urbanski used a
computer-aided exhaustive search to rule out all possible
graphs on less than 15 vertices.
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- General results -

Folkman’s theorem (1970): For any ky > k1 > 3, there
exists a Ky,-free graph G with G — (K, ).
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- General results -

Folkman’s theorem (1970): For any ky > k1 > 3, there
exists a Ky,-free graph G with G — (K, ).

These graphs are called Folkman Graphs.

Nesetfil-Rodl’s theorem (1976): For p > 2 and any
ko > k1 > 3, there exists a Ky,-free graph G with
G — (Kkl)p-

Here G — (H),: if the edges of GG are p-colored then there
exists a monochromatic subgraph of G isomorphic to H.
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- f(pa k17k2> -

Let f(p, k1, ko) denote the smallest integer n such that there
exists a Kj,-free graph G on n vertices with G — (K, ),

m Graham
f(2,3,6) =8.
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f(p7 kl) kQ)

Let f(p, k1, ko) denote the smallest integer n such that there
exists a Kj,-free graph G on n vertices with G — (K, ),

m Graham
f(2,3,6) =8.

B Nenov, Piwakowski, Radziszowski and Urbanski

£(2,3,5) = 15.
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- f(pa kka) -

Let f(p, k1, ko) denote the smallest integer n such that there
exists a Kj,-free graph G on n vertices with G — (K, ),

m Graham
f(2,3,6) =8.

B Nenov, Piwakowski, Radziszowski and Urbanski

£(2,3,5) = 15.

m What about f(2,3,4)7
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- Upper bound of f(2,3,4) '

m Folkman, NeSetfil-Rodl 's upper bound is huge.
m Frankl and Rodl (1986)

£(2,3,4) <7 x 10",
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- Most wanted Folkman Graph -

Erdds
“onGraphs

His Legacy

of Unsolved

Problems

Fan Chung
‘Ron Graham
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- Most wanted Folkman Graph

Erdds
on Graphs

His Legacy
of Unsolved

Problems

Fan Chung
Ron Graham

Problem on triangle-free subgraphs in graphs containing no Ky $100
(proposed by Erdés)®

Let f(p, ki, k) denote the smallest integer n such that there is a graph ¢ with
n vertices satisfying the properties:

(1) any edge coloring in p colors contains a monochromatic Ky, ;

(2) & contains no Ky,.
Prove or disprove:
i

f(2.3.4) < 10°.
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- Difficulty '

m [hereis no efficient algorithm to test whether
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Difficulty '

m [hereis no efficient algorithm to test whether

m For moderate n, Folkman graphs are very rare among all
K ,-free graphs on n vertices.

m Probabilistic methods are generally good choices for
asymptotic results. However, it is not good for moderate
size n.
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- Our approach '

m Find a simple and sufficient condition for G — (K3), and
an efficient algorithm to verity this condition.
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an efficient algorithm to verity this condition.

m Search a special class of graphs so that we have a better
chance of finding a Folkman graph.
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Our approach

m Find a simple and sufficient condition for G — (K3), and
an efficient algorithm to verity this condition.

m Search a special class of graphs so that we have a better
chance of finding a Folkman graph.

m Use spectral analysis instead of probabilistic methods.
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Our approach '

m Find a simple and sufficient condition for G — (K3), and
an efficient algorithm to verity this condition.

m Search a special class of graphs so that we have a better
chance of finding a Folkman graph.

m Use spectral analysis instead of probabilistic methods.

m localization and d-fairness.
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Our approach '

m Find a simple and sufficient condition for G — (K3), and
an efficient algorithm to verity this condition.

m Search a special class of graphs so that we have a better
chance of finding a Folkman graph.

m Use spectral analysis instead of probabilistic methods.
m Llocalization and o-fairness.

m Circulant graphs and L(m, s).
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- My result

| received $100-award by proving
Theorem [Lu, 2007]: f(2,3,4) < 9697.

RONALD GRAHAM

FAN GRAHAM
DATE _&L?/ 27 et

pympn D Lo s [00%

i - Q’BLM + #ro0 — R A
Bankof America )
Lt G Prsinlex Bk

La Jolla CA
BSH 452 BA0O
N 2{*}-\« Lu) <reof . /é% ’a«é— ww

L2 000BEMIZPE L™ 2 LB 2wDLA 3L I"
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- My result

| received $100-award by proving
Theorem [Lu, 2007]: f(2,3,4) < 9697.

RONALD GRAHAM
FAN GRAHAM
Iwﬂ:_.ﬂzA%’_Z 27 et
PaxomE % A $ /o0%
§ 4 .
e tiee 4+ oo —  pouans f S
°  BankofAmerica
: > Premier Bankin
L g J

La Jolla CA v
BS5H 452 00
sy <ot i /éq W ) N

L2 000BEMIZPE L™ 2 LB 2wDLA 3L I"

Shortly Dudek and Rodl improved it to f(2,3,4) < 941.
They also received a $50-award.

it LA ] tm

Pl- et
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- My result

| received $100-award by proving
Theorem [Lu, 2007]: f(2,3,4) < 9697.

RONALD GRAHAM
FAN GRAHAM
Iwﬂ:_.ﬂzA%’_Z 27 et

PaxomE %A $| foO™
i QM_M = #00 —  portams fi ESST
*  BankofAmerica -

La Jolla Villags Square "I? Premier Banking
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Shortly Dudek and Rodl improved it to f(2,3,4) < 941.
They also received a $50-award.

Lange-Radziszowski-Xu [20124]: f(2,3,4) < 786.
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- Spencer’s Lemma '

Notations:

- (G,: the induced graph on the the neighborhood of v.
- b(H): the maximum size of edge-cuts for H.
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- Localization '

For 0 <90 < % a graph H is o-fair if

b(H) < (5 + )| E(H)|.
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- Gyis %—fair.
- G, is Ks-free.
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- Localization

For 0 <90 < % a graph H is o-fair if

b(H) < (5 + )| E(H)|.

(G is a Folkman graph if for each v

- Gyis %—fair.
- G, is Ks-free.

For vertex transitive graph G, all G,'s are isomorphic.
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Spectral lemma

- H: a graph on n vertices
- A: the adjacency matrix of H
- d = (dy,ds,...,d,): degrees of H

- Vol(S) = > ,cqdy: the volume of S
d — Vol(H)

. the average degree
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Spectral lemma

- H: a graph on n vertices
- A: the adjacency matrix of H
- d = (dy,ds,...,d,): degrees of H

- Vol(S) = > ,cqdy: the volume of S
d — Vol(H)

. the average degree

Lemma (Lu) /f the smallest eigenvalue of

M=A-— \,O%(H)d .d’ is greater than —24d, then H is &-fair.
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Spectral lemma -

- H: a graph on n vertices
- A: the adjacency matrix of H
- d = (dy,ds,...,d,): degrees of H

- Vol(S) = > ,cqdy: the volume of S
d — Vol(H)

. the average degree

Lemma (Lu) /f the smallest eigenvalue of

M=A-— \,O%(H)d .d’ is greater than —24d, then H is &-fair.

Similar results hold for A and L. However, they are weaker
than using M In experiments.
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- Corollary -

Corollary Suppose H is a d-regular graph and the smallest
eigenvalue of its adjacency matrix A is greater than —20od.

Then H is o-fair.
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- Corollary -

Corollary Suppose H is a d-regular graph and the smallest
eigenvalue of its adjacency matrix A is greater than —20od.
Then H is o-fair.

Proof: We can replace M by A in the previous lemma.

- 1 is an eigenvector of A with respect to d.
- M is the projection of A to the hyperspace 1+.
- M and A have the same smallest eigenvalues.
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- The proof of the Lemma -

m V(H)=XUY: a partition of the vertex-set.
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m 1y, 1y: indicated functions of X and Y.

1y +1y = 1.
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- The proof of the Lemma -

m V(H)=XUY: a partition of the vertex-set.
m 1y, 1y: indicated functions of X and Y.

1y +1y = 1.

m \We observe M1 = 0.
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The proof of the Lemma '

m V(H)=XUY: apartition of the vertex-set.
m 1y, 1y: indicated functions of X and Y.

1y +1y = 1.

m \We observe M1 = 0.
m Foreacht e (0,1), let a(t) = (1 —1)1x —tly. We have

a(t) - M- at) = —e(X,Y)

Vol(H} Vol(X)Vol(Y).
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- The proof of the Lemma -

Let p be the smallest eigenvalue of M. We have

VOUXOVOIY) ey M - a(t) < —plleu

(XY - o S
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- The proof of the Lemma -

Let p be the smallest eigenvalue of M. We have

Vol(X)Vol(Y) , )
X,Y) — < —aft) - M- -at) < — .
Choose t = —‘f' so that ||a(t)]|* reaches its minimum |X7!Y|.
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- The proof of the Lemma -

Let p be the smallest eigenvalue of M. We have

(X, Y) = VOI@X;;(Y) < —a(t) - M- a(t) < —plloy]|
X|IY]

Choose t = % so that ||a(t)]|* reaches its minimum
We have

Vol(X)Vol(Y) | | XY

X.Y) < | :
ef(XY) < Vol(H) S
Vol(H) n
< — P
4 4

1 _
< (5 + 0)|E(H)|, since p > —20d.
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- Circulant graphs -

- Dy =170
- S: a subset of Z,, satisfying —S =S and 0 & S.

We define a circulant graph H by

- FH)={zy|xz—ye S}

Example: A circulant graph
withn =8and S = {::1, ::3}.
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- Spectrum of circulant graphs '

Lemma: The eigenvalues of the adjacency matrix for the
circulant graph generated by S C Z,, are

2718
E COS
n

sesS

forir=20,...,n—1.

Laplacian and Random Walks on Graphs Linyuan Lu — 49 / 59



- Spectrum of circulant graphs '

Lemma: The eigenvalues of the adjacency matrix for the
circulant graph generated by S C Z,, are

2718
E COS
n

seS
forir=20,...,n—1.
(O 1 0 - 0 O\
PrOOf: NOte A — O O 1 L. O O
g(]), Where 0040 --- 0 0
J=1 . . .

S
~—
=
~—
]
&
.CIJ
-
-
-
-
—_
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- Proof continues... -

-
Let ® = e~ » denote the primitive n-th unit root.
J has eigenvalues

17 ¢7 ¢27 ) ¢n_1'
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Proof continues... -

-
Let ® = e~ » denote the primitive n-th unit root.
J has eigenvalues

17 ¢7 ¢27 ) ¢n_1'

Thus, the eigenvalues of A = g(J) are
g9(1),9(¢), ..., g(e" ).

For:=0,1,2,....,n— 1, we have

(6) = R(g(6) = 3 cos T

sesS

d Random Walks on Graphs Linyuan Lu — 50 / 59
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- Graph L(m, s) -

Suppose s and m are relatively prime to each other. Let n
be the least positive integer satisfying

s"=1 mod m.
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Suppose s and m are relatively prime to each other. Let n
be the least positive integer satisfying

s"=1 mod m.

We define the graph L(m, s) to be a circulant graph on m
vertices with

S={s" modm|i=0,1,2,...,n—1}.
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- Graph L(m, s) '

Suppose s and m are relatively prime to each other. Let n
be the least positive integer satisfying

s"=1 mod m.

We define the graph L(m, s) to be a circulant graph on m
vertices with

S={s" modm|i=0,1,2,...,n—1}.

Proposition: The local graph G, of L(m,s) is also a
circulant graph.
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Algorithm b

m For each L(m,s), compute the local graph G,.

m |f G, is not triangle-free, reject it and try a new graph
L(m,s).

m |f the ratio the smallest eigenvalue verse the largest

eigenvalue of (G, is less than —%, reject it and try a new

graph L(m,s).
m Output a Folkman graph L(m, s).

Linyuan Lu — 52 / 59
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- Computational results -

L(m,s) o m o is the ratio
L(127,5) | —0.6363- - of the smallest
L(761,3) | —0.5613--- eigenvalue to the
L(785,53) | —0.5404 - - largest eigenvalue
L(941,12) | —0.5376--- in the local graph.

L(1777,53) | —0.5216- - -

L(1801,125) | —0.4912... | = All graphs on the
L(2641,2) | —0.4275--- left are K 4-free.
L(9697,4) | —0.3307--- | ™ Graphs in red are

L(30193,53) | —0.3094 - - - Folkman graphs.
L(33121,2) | —0.2665--- | ™ Graphs in blac.k
L(57401,7) | —0.3289 - -- are  good  candi-

dates.
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- Improvements -

Our method has inspired two improvements.

m Dudek-Rodl [2008]: f(2,3,4) < 941.
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- Improvements -

Our method has inspired two improvements.

m Dudek-Rodl [2008]: f(2,3,4) < 941.
m Lange-Radziszowski-Xu [2012+]: f(2,3,4) < 786.
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- Dudek and Rodl -

Given a graph G, a triangle graph H¢ is defined as

H V(Hg) = E(G)
B e ~ecyin Hp if e; and ey belong to the same triangle of

G.
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- Dudek and Rodl -

Given a graph G, a triangle graph H¢ is defined as

H V(Hg) = E(G)
B e ~ecyin Hp if e; and ey belong to the same triangle of

G.

Dudek, Rodl, 2008

m If b(He) < 3|E(Hg)|, then G — (K3).
m If Hgis %—fair, then G — (K3).
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- Dudek and Rodl -

Theorem [Dudek, Rodl, 2008]

£(2,3,4) < 941.
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- Dudek and Rodl -

Theorem [Dudek, Rodl, 2008]

£(2,3,4) < 941.

Proof: Let G = L(941,12). Then G is 188 regular. The
triangle graph H has 941 % 188/2 = 88454 vertices and
2122896 edges.
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- Dudek and Rodl -

Theorem [Dudek, Rodl, 2008]

£(2,3,4) < 941.

Proof: Let G = L(941,12). Then G is 188 regular. The
triangle graph H has 941 % 188/2 = 88454 vertices and
2122896 edges.

Using Matlab, they calculate the least eigenvalue
1 1
L, > —15.196 > —(5 + 5)24'

So H is %—fair. Done.
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- Lange-Radziszowski-Xu '

Instead of spectral methods, they use semi-definite program
(SDP) to approximate the MAX-CUT problem.

m First they try the graph GG obtained from L(941,12) by
deleting 81 vertices. They showed

3b(He, ) < 1084985 < 1085028 = 2| E(Hg, ).

This implies f(2,3,4) < 860.
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- Lange-Radziszowski-Xu '

Instead of spectral methods, they use semi-definite program
(SDP) to approximate the MAX-CUT problem.

m First they try the graph GG obtained from L(941,12) by
deleting 81 vertices. They showed

3b(He, ) < 1084985 < 1085028 = 2| E(Hg, ).

This implies f(2,3,4) < 860.

m Second they try the graph G5 obtained from L(785,53)
by one vertex and some 60 edges. They showed

3b(He,) < 857750 < 857762 = 2|E(Hg,)|.

This implies f(2,3,4) < 786.
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Open questions

m Exoo conjectured L(127,5) is a Folkman graph.

m In 2012 SIAMDM, Ronald Graham announced a $100
award for determining if f(2,3,4) < 100.

m A open problem on 3-colors: prove or disprove

£(3,3,4) < 3%
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Homepage: http://www.math.sc.edu/~ lu/

Thank You
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