Graphs with Small Spectral Radius

Linyuan Lu
University of South Carolina

Coauthors: Lingsheng Shi and Jingfen Lan

Selected Topics on Spectral Graph Theory (I)
Nankai University, Tianjin, May 16, 2014
Selected Topics on Spectral Graph Theory

1. Graphs with Small Spectral Radius
 Time: Friday (May 16) 4pm.-5:30p.m.

2. Laplacian and Random Walks on Graphs
 Time: Thursday (May 22) 4pm.-5:30p.m.

3. Spectra of Random Graphs
 Time: Thursday (May 29) 4pm.-5:30p.m.

4. Hypergraphs with Small Spectral Radius
 Time: Friday (June 6) 4pm.-5:30p.m.

5. Laplacian of Random Hypergraphs
 Time: Thursday (June 12) 4pm.-5:30p.m.
Backgrounds

I: Spectral Graph Theory II: Random Graph Theory
III: Random Matrix Theory
Given an $n \times n$ real matrix A, if $A\alpha = \lambda \alpha$, then α is an eigenvector of A corresponding to the eigenvalue λ.
Given an $n \times n$ real matrix A, if $A\alpha = \lambda \alpha$, then α is an eigenvector of A corresponding to the eigenvalue α.

If A is a real symmetric matrix, (i.e., $A' = A$), then A has n real eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. There exists an orthogonal matrix O such that

$$A = O^{-1} \Lambda O.$$

Here $\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$.
Given an $n \times n$ real matrix A, if $A\alpha = \lambda \alpha$, then α is an eigenvector of A corresponding to the eigenvalue λ.

If A is a real symmetric matrice, (i.e., $A' = A$), then A has n real eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. There exists an orthogonal matrix O such that

$$A = O^{-1} \Lambda O.$$

Here $\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$.

Spectral norm (or spectral radius)

$$\rho(A) = \left(\text{maximum eigenvalue of } A'A\right)^{1/2}.$$
Basic Linear Algebra

- Given an $n \times n$ real matrix A, if $A\alpha = \lambda \alpha$, then α is an eigenvector of A corresponding to the eigenvalue α.

- If A is a real symmetric matrix, (i.e., $A' = A$), then A has n real eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. There exists an orthogonal matrix O such that

$$A = O^{-1} \Lambda O.$$

Here $\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$.

- Spectral norm (or spectral radius) $\rho(A) = (\text{maximum eigenvalue of } A'A)^{1/2}$.

If A is real symmetric, then $\rho(A) = \max\{|\lambda_1|, |\lambda_n|\}$.
Perron-Frobenius theorem

- \(A = (a_{ij}) \) is **non-negative** if \(a_{ij} \geq 0 \).
- \(A \) is **irreducible** if there exists a \(m \) such that \(A^m \) is positive.
- \(A \) is **aperiodic** if the greatest common divisor of all natural numbers \(m \) such that \((A^m)_{ii} > 0\) is 1.
Perron-Frobenius theorem

- $A = (a_{ij})$ is **non-negative** if $a_{ij} \geq 0$.
- A is **irreducible** if there exists a m such that A^m is positive.
- A is **aperiodic** if the greatest common divisor of all natural numbers m such that $(A^m)_{ii} > 0$ is 1.

Perron-Frobenius theorem: If A is an aperiodic irreducible non-negative matrix with spectral radius r, then r is the largest eigenvalue in absolute value of A, and A has an eigenvector α with eigenvalue r whose components are all positive.
Basic Graph Notation

- $G = (V, E)$: a simple connected graph on n vertices
Basic Graph Notation

- $G = (V, E)$: a simple connected graph on n vertices
- $A(G)$: the adjacency matrix
Basic Graph Notation

- \(G = (V, E) \): a simple connected graph on \(n \) vertices
- \(A(G) \): the adjacency matrix
- \(\phi_G(\lambda) = \det(\lambda I - A(G)) \): the characteristic polynomial
Basic Graph Notation

- $G = (V, E)$: a simple connected graph on n vertices
- $A(G)$: the adjacency matrix
- $\phi_G(\lambda) = \det(\lambda I - A(G))$: the characteristic polynomial
- $\rho(G)$ (spectral radius): the largest root of $\phi_G(\lambda)$
Basic Graph Notation

- $G = (V, E)$: a simple connected graph on n vertices
- $A(G)$: the adjacency matrix
- $\phi_G(\lambda) = \text{det}(\lambda I - A(G))$: the characteristic polynomial
- $\rho(G)$ (spectral radius): the largest root of $\phi_G(\lambda)$

\[A(S_4) = \begin{pmatrix}
 0 & 1 & 1 & 1 \\
 1 & 0 & 0 & 0 \\
 1 & 0 & 0 & 0 \\
 1 & 0 & 0 & 0
\end{pmatrix} \]
Basic Graph Notation

- $G = (V, E)$: a simple connected graph on n vertices
- $A(G)$: the adjacency matrix
- $\phi_G(\lambda) = \det(\lambda I - A(G))$: the characteristic polynomial
- $\rho(G)$ (spectral radius): the largest root of $\phi_G(\lambda)$

\[
A(S_4) = \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}
\]

\[
\phi_{S_4} = \lambda^4 - 3\lambda^2 \quad \rho(S_4) = \sqrt{3}
\]
Let $\Delta(G)$ be the maximum degree, $d(G)$ be the average degree, and $\delta(G)$ be the minimum degree. Then

$$\delta(G) \leq d(G) \leq \rho(G) \leq \Delta(G).$$
Let $\Delta(G)$ be the maximum degree, $d(G)$ be the average degree, and $\delta(G)$ be the minimum degree. Then

$$\delta(G) \leq d(G) \leq \rho(G) \leq \Delta(G).$$

If G is d-regular (i.e., all degrees equal to d), then $\rho(G) = d$.
Easy facts

- Let $\Delta(G)$ be the maximum degree, $d(G)$ be the average degree, and $\delta(G)$ be the minimum degree. Then

$$\delta(G) \leq d(G) \leq \rho(G) \leq \Delta(G).$$

- If G is d-regular (i.e., all degrees equal to d), then $\rho(G) = d$.

- If G is connected and H is a subgraph of G, then $\rho(G) > \rho(H)$.
Easy facts

- Let $\Delta(G)$ be the maximum degree, $d(G)$ be the average degree, and $\delta(G)$ be the minimum degree. Then

$$\delta(G) \leq d(G) \leq \rho(G) \leq \Delta(G).$$

- If G is d-regular (i.e., all degrees equal to d), then $\rho(G) = d$.

- If G is connected and H is a subgraph of G, then $\rho(G) > \rho(H)$.

- For the complete bipartite graph $K_{s,t}$, $\rho(K_{s,t}) = \sqrt{st}$.

Graphs with small spectral radius
Easy facts

- Let $\Delta(G)$ be the maximum degree, $d(G)$ be the average degree, and $\delta(G)$ be the minimum degree. Then

\[\delta(G) \leq d(G) \leq \rho(G) \leq \Delta(G). \]

- If G is d-regular (i.e., all degrees equal to d), then $\rho(G) = d$.

- If G is connected and H is a subgraph of G, then $\rho(G) > \rho(H)$.

- For the complete bipartite graph $K_{s,t}$, $\rho(K_{s,t}) = \sqrt{st}$.

- In particular, $\rho(G) \geq \sqrt{\Delta(G)}$.
An application

The chromatic number $\chi(G)$ of a graph G is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color.
An application

The chromatic number $\chi(G)$ of a graph G is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color.

Wilf’s Theorem [1967]: $\chi(G) \leq 1 + \rho(G)$.
The chromatic number $\chi(G)$ of a graph G is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color.

Wilf’s Theorem [1967]: $\chi(G) \leq 1 + \rho(G)$.

Proof: Let $k = \max_{H \subseteq G} \delta(H)$, where $\delta(H)$ is the minimum degree of H. Order the vertices v_1, v_2, \ldots, v_n so that each vertex v_i has at most k neighbors in v_1, \ldots, v_{i-1}. The greedy algorithm shows that G is $(k + 1)$-colorable. Hence

$$\chi(G) \leq 1 + \max_{H \subseteq G} \delta(H)$$

$$\leq 1 + \max_{H \subseteq G} \rho(H)$$

$$\leq 1 + \rho(G). \quad \Box$$
Graphs with $\rho(G) < 2$

Smith [1970]: $\rho(G) < 2$ if and only if G is a simply-laced Dynkin diagram.

- A_n
- D_n
- E_6
- E_7
- E_8
In the theory of Lie groups and Lie algebras, the simple Lie algebras are classified by Dynkin diagrams of their root systems.
In the theory of Lie groups and Lie algebras, the simple Lie algebras are classified by Dynkin diagrams of their root systems.

There are four infinite families \((A_n, B_n, C_n, \text{ and } D_n)\), and five exceptional cases \((E_6, E_7, E_8, F_4, \text{ and } G_2)\).
In the theory of Lie groups and Lie algebras, the simple Lie algebras are classified by Dynkin diagrams of their root systems.

There are four infinite families \((A_n, B_n, C_n, \text{ and } D_n)\), and five exceptional cases \((E_6, E_7, E_8, F_4, \text{ and } G_2)\).

If all roots have the same length, then the root system is said to be simply laced; this occurs in the cases \(A, D\) and \(E\).
In the theory of Lie groups and Lie algebras, the simple Lie algebras are classified by Dynkin diagrams of their root systems.

There are four infinite families (A_n, B_n, C_n, and D_n), and five exceptional cases (E_6, E_7, E_8, F_4, and G_2).

If all roots have the same length, then the root system is said to be simply laced; this occurs in the cases A, D and E.

Smith’s theorem gives an equivalent graph-theory definition for the simply-laced Dynkin diagrams.
Connection

$\rho(A) < 2$
\[\rho(A) < 2 \iff I - \frac{1}{2}A \text{ is positive definite.} \]
Connection

\[\rho(A) < 2 \iff I - \frac{1}{2}A \text{ is positive definite.} \iff \]

Write \[I - \frac{1}{2}A = BB'. \]
\[\rho(A) < 2 \iff I - \frac{1}{2}A \text{ is positive definite.} \iff \\
\text{Write } I - \frac{1}{2}A = BB'. \iff \\
\text{Let } \alpha_1, \ldots, \alpha_n \text{ be the column vector of } B. \text{ Then } \alpha_1, \ldots, \alpha_n \text{ forms a base of a root system.} \]
\[\rho(A) < 2 \iff \]

\[I - \frac{1}{2}A \text{ is positive definite.} \iff \]

Write \[I - \frac{1}{2}A = BB'. \iff \]

Let \(\alpha_1, \ldots, \alpha_n \) be the column vector of \(B \).
Then \(\alpha_1, \ldots, \alpha_n \) forms a base of a root system.

Classifying irreducible simple-laced root systems is equivalent to classifying the connected graphs with \(\rho(G) < 2 \).
Graphs with $\rho(G) = 2$

Smith [1970]: $\rho(G) = 2$ if and only if G is a simply-laced extended Dynkin diagram.

- \tilde{A}_n
- \tilde{D}_n
- \tilde{E}_6
- \tilde{E}_7
- \tilde{E}_8
Graphs: \[2 \leq \rho(G) < \sqrt{2 + \sqrt{5}} \]

Cvetkovic-Doob-Gutman [1982], completed by Brouwer-Neumaier [1989]:

\(T(1, b, c), \ b \geq 2, \ c \geq 6: \)

\[\bullet \ -- \bullet \ -- \bullet \ -- \bullet \]

\(T(2, 2, c), \ c \geq 3: \)

\[\bullet \ -- \bullet \ -- \bullet \]

\(Q(a, b, c), \ a \geq 3, \ c \geq 2, \ b > a + c: \)

\[\bullet \ -- \bullet \ -- \bullet \]

\[\bullet \ -- \bullet \ -- \bullet \ -- \bullet \]

\[\bullet \ -- \bullet \ -- \bullet \]

\[\bullet \ -- \bullet \ -- \bullet \]

\[\bullet \ -- \bullet \ -- \bullet \]
Shearer [1989]: For every number $\lambda \geq \sqrt{2 + \sqrt{5}} = 2.058171027...$, there exists a sequence of graphs $\{G_n\}$ such that $\lambda = \lim_{n \to \infty} \rho(G_n)$.
Shearer [1989]: For every number $\lambda \geq \sqrt{2 + \sqrt{5}} = 2.058171027...$, there exists a sequence of graphs $\{G_n\}$ such that $\lambda = \lim_{n \to \infty} \rho(G_n)$.

$$\lim_{b,c \to \infty} \rho(T(1, b, c)) = \sqrt{2 + \sqrt{5}}.$$
$$\lim_{c \to \infty} \rho(T(2, 2, c)) = \sqrt{2 + \sqrt{5}}.$$
$$\lim_{n \to \infty} \rho(Q(n, 2n + 1, n)) = \sqrt{2 + \sqrt{5}}.$$
If G_2 is a proper subgraph of G_1, then $\rho(G_1) > \rho(G_2)$.
Properties

- If G_2 is a proper subgraph of G_1, then $\rho(G_1) > \rho(G_2)$.
- Let G' be a graph obtained from G by subdividing an edge uv of G. Then
 1. $\rho(G') > \rho(G)$ if uv is not on an internal path and $G \neq C_n$.
 2. $\rho(G') < \rho(G)$ if uv is on an internal path and $G \neq \tilde{D}_n$.
If G_2 is a proper subgraph of G_1, then $\rho(G_1) > \rho(G_2)$.

Let G' be a graph obtained from G by subdividing a edge uv of G. Then

1. $\rho(G') > \rho(G)$ if uv is not on an internal path and $G \neq C_n$.
2. $\rho(G') < \rho(G)$ if uv is on an internal path and $G \neq \tilde{D}_n$.

An internal path
Notation of an open quipus:

\[P^{m_1,m_2,\ldots,m_t}_{n_1,n_2,\ldots,n_t,p}. \]

\[P_{n_1} \quad \ldots \quad P_{n_t} \]

0 1 \quad m_1 \quad m_t \quad p - 1
In 2007, van Dam and Kooij posed the following question: Which connected graph on n vertices and a given diameter D has minimal spectral radius?
In 2007, van Dam and Kooij posed the following question: *Which connected graph on \(n \) vertices and a given diameter \(D \) has minimal spectral radius?*

They solved this problem for
\[D \in \{1, 2, \lfloor n/2 \rfloor, n - 3, n - 2, n - 1\} \] and for almost all graphs on at most 20 vertices by a computer search.
In 2007, van Dam and Kooij posed the following question: *Which connected graph on \(n \) vertices and a given diameter \(D \) has minimal spectral radius?*

They solved this problem for \(D \in \{1, 2, \lfloor n/2 \rfloor, n - 3, n - 2, n - 1\} \) and for almost all graphs on at most 20 vertices by a computer search.

Among all connected graphs on \(n \) vertices and a given diameter \(D \), let \(\mathcal{G}^{\text{min}}_{n,D} \) be a minimum graph having the smallest spectral radius.
Van Dam - Kooij [2007]:

- For $D = 2$ and $n \geq 3$, $G_{n,2}^{\min}$ is either a star S_n or a Moore graph.
Van Dam - Kooij [2007]:

- For $D = 2$ and $n \geq 3$, $G_{n,2}^{\text{min}}$ is either a star S_n or a Moore graph.
- For $D = \lfloor n/2 \rfloor$ and $n \geq 7$, $G_{n,\lfloor n/2 \rfloor}^{\text{min}} = C_n$.
Van Dam - Kooij [2007]:

- For $D = 2$ and $n \geq 3$, $G_{n,2}^{\text{min}}$ is either a star S_n or a Moore graph.
- For $D = \lfloor n/2 \rfloor$ and $n \geq 7$, $G_{n,\lfloor n/2 \rfloor}^{\text{min}} = C_n$.
- For $D = n - 2$, $G_{n,n-2}^{\text{min}} = D_n$.

![Graph diagram]
Van Dam - Kooij [2007]:

- For $D = 2$ and $n \geq 3$, $G_{n,2}^{\min}$ is either a star S_n or a Moore graph.
- For $D = \lfloor n/2 \rfloor$ and $n \geq 7$, $G_{n,\lfloor n/2 \rfloor}^{\min} = C_n$.
- For $D = n - 2$, $G_{n,n-2}^{\min} = D_n$.
- For $D = n - 3$, $G_{n,n-3}^{\min} = \tilde{D}_n$.
Van Dam and Kooij [2007] conjectured that for any $e \geq 2$ and n large enough, $G_{\min}^{n,n-e} = P_{\left\lceil \frac{e-1}{2} \right\rceil, n-e-\left\lfloor \frac{e-1}{2} \right\rfloor \left\lceil \frac{e-1}{2} \right\rceil, \left\lfloor \frac{e-1}{2} \right\rfloor, n-e+1}$.

What about $D = n - e$?
Yuan-Shao-Liu [2008] proved this conjecture holds for $D = n - 4$. Namely, $G^{\min}_{n,n-4} = P_{2,1,n-3}^{2,n-5}$.
The cases $D = n - 5$

Cioabă-van Dam-Koolen-Lee [2010] proved this conjecture holds for $D = n - 5$. Namely, $G_{n,n-4}^{\text{min}} = P_{2,2,n-4}^{2,n-e-2}$.
The cases $D = n - 5$

Cioabă-van Dam-Koolen-Lee [2010] proved this conjecture holds for $D = n - 5$. Namely, $G_{n,n-4}^{\text{min}} = P_{2,2,n-4}^{2,n-e-2}$.

They also disproved this conjecture for all $e \geq 6$ and n large enough.
Theorem [Cioabă-van Dam-Koolen-Lee 2010] For fixed integer $e \geq 6$, $\rho(G_{n,n-e}^{\min}) \to \sqrt{2 + \sqrt{5}}$ as $n \to \infty$. Moreover, $G_{n,n-e}^{\min}$ must be contained in one of the three families for n large enough.

\[
\mathcal{P}_{n,e} = \{ P_{2,1,\ldots,1,2,n-e+1}^{2,m_2,\ldots,m_{e-4},n-e-2} \mid 2<m_2<\ldots<m_{e-4}<n-e-2 \} \\
\mathcal{P}'_{n,e} = \{ P_{2,1,\ldots,1,1,n-e+1}^{2,m_2,\ldots,m_{e-3},n-e-1} \mid 2<m_2<\ldots<m_{e-4}<n-e-1 \} \\
\mathcal{P}''_{n,e} = \{ P_{1,1,\ldots,1,1,n-e+1}^{1,m_2,\ldots,m_{e-2},n-e-1} \mid 1<m_2<\ldots<m_{e-4}<n-e-1 \}.
\]
Three families

\[T(k_1, k_2, \ldots, k_r) \]

\[T'(k_1, k_2, \ldots, k_r) \]

\[T''(k_1, k_2, \ldots, k_r) \]
Three conjectures

Cioabă-van Dam-Koolen-Lee [2010] made the following three conjectures.

- **Conjecture 1**: $G_{n,n-e}^{\text{min}}$ is in $\mathcal{P}_{n,e}$.
Three conjectures

Cioabă-van Dam-Koolen-Lee [2010] made the following three conjectures.

- **Conjecture 1:** $G_{n,n-e}^{\min}$ is in $\mathcal{P}_{n,e}$.

- **Conjecture 2:** For $D = n - 6$ and n large enough,

 $$G_{n,n-6}^{\min} = P_{2,\left\lceil \frac{D-1}{2} \right\rceil, D-2}^{2,1,2,n-5}.$$
Cioabă-van Dam-Koolen-Lee [2010] made the following three conjectures.

- **Conjecture 1:** $G_{n,n-e}^{\min}$ is in $\mathcal{P}_{n,e}$.
- **Conjecture 2:** For $D = n - 6$ and n large enough,
 $G_{n,n-6}^{\min} = P_{2,1,2,n-5}^2,\left\lfloor \frac{D-1}{2} \right\rfloor, D-2$.
- **Conjecture 3:** For $D = n - 7$ and n large enough,
 $G_{n,n-7}^{\min} = P_{2,1,1,2,n-6}^2,\left\lfloor \frac{D-2}{3} \right\rfloor, D-\left\lfloor \frac{D-2}{3} \right\rfloor, D-2$.

Graphs with small spectral radius
Three conjectures

Cioabă-van Dam-Koolen-Lee [2010] made the following three conjectures.

- **Conjecture 1**: $G_{n,n-e}^{\text{min}}$ is in $\mathcal{P}_{n,e}$.

- **Conjecture 2**: For $D = n - 6$ and n large enough,

 $G_{n,n-6}^{\text{min}} = P_{2,1,2,n-5}^{2,\left\lceil \frac{D-1}{2} \right\rceil,D-2}$.

- **Conjecture 3**: For $D = n - 7$ and n large enough,

 $G_{n,n-7}^{\text{min}} = P_{2,1,1,2,n-6}^{2,\left\lfloor \frac{D+2}{3} \right\rfloor,D-\left\lceil \frac{D+2}{3} \right\rceil,D-2}$.

Three conjectures

Cioabă-van Dam-Koolen-Lee [2010] made the following three conjectures.

- **Conjecture 1:** $G_{n,n-e}^{\text{min}}$ is in $\mathcal{P}_{n,e}$.

- **Conjecture 2:** For $D = n - 6$ and n large enough,
 \[G_{n,n-6}^{\text{min}} = P_2,\left\lceil \frac{D-1}{2} \right\rceil, D-2 \]

- **Conjecture 3:** For $D = n - 7$ and n large enough,
 \[G_{n,n-7}^{\text{min}} = P_2,\left\lfloor \frac{D+2}{3} \right\rfloor, D-\left\lfloor \frac{D+2}{3} \right\rfloor, D-2 \]

We settled all three conjectures positively.
Theorem 1 [Lan-Lu-Shi 2012] Given $e \geq 6$, if $n \geq 4e^2 - 24e + 38$, then $G_{n,n-e}^{\min} = T(k_1,\ldots,k_r) \in \mathcal{P}_{n,e}$.

\[
\begin{array}{cccccccc}
& \cdots & & \cdots & & \cdots & & \\
& \therefore & & \therefore & & \therefore & & \\
& k_1 & & k_2 & & \ldots & & k_r \\
\end{array}
\]
Our results

Theorem 1 [Lan-Lu-Shi 2012] Given $e \geq 6$, if $n \geq 4e^2 - 24e + 38$, then $G_{n,n-e}^{\min} = T(k_1,\ldots,k_r) \in \mathcal{P}_{n,e}$.

Moreover, let $r = e - 4$ and $s = \frac{\sum_{i=1}^{r} k_i}{r} + \frac{2}{r}$. We have

1. $\lfloor s \rfloor \leq k_i \leq \lceil s \rceil + 1$ for $i = 2, \ldots, r - 1$ and $\lfloor s \rfloor - 1 \leq k_i \leq \lceil s \rceil$ for $i = 1, r$.

Graphs with small spectral radius
Our results

Theorem 1 [Lan-Lu-Shi 2012] Given $e \geq 6$, if $n \geq 4e^2 - 24e + 38$, then $G_{n,n-e}^{\min} = T(k_1,\ldots,k_r) \in \mathcal{P}_{n,e}$.

Moreover, let $r = e - 4$ and $s = \frac{\sum_{i=1}^{r} k_i}{r} + \frac{2}{r}$. We have

1. $\lfloor s \rfloor \leq k_i \leq \lceil s \rceil + 1$ for $i = 2,\ldots,r - 1$ and $\lfloor s \rfloor - 1 \leq k_i \leq \lceil s \rceil$ for $i = 1, r$.

2. $|k_i - k_j| \leq 1$ for $2 \leq i, j \leq r - 1$.
Our results

Theorem 1 [Lan-Lu-Shi 2012] Given $e \geq 6$, if
\[n \geq 4e^2 - 24e + 38, \]
then
\[G_{n,n-e}^{\text{min}} = T(k_1,\ldots,k_r) \in \mathcal{P}_{n,e}. \]

Moreover, let $r = e - 4$ and $s = \frac{\sum_{i=1}^{r} k_i}{r} + \frac{2}{r}$. We have

1. $\lfloor s \rfloor \leq k_i \leq \lfloor s \rfloor + 1$ for $i = 2, \ldots, r - 1$ and $\lfloor s \rfloor - 1 \leq k_i \leq \lfloor s \rfloor$ for $i = 1, r$.
2. $|k_i - k_j| \leq 1$ for $2 \leq i, j \leq r - 1$.
3. $0 \leq k_i - k_j \leq 2$ for $2 \leq i \leq r - 1$ and $j = 1, r$.
A special case

Theorem 2 [Lan-Lu-Shi 2012] For fixed \(e \geq 7 \),
\[n = (e - 4)k - 2 + 2e, \text{ and } k \text{ large enough}, \]
\[G_{n,n-e}^{\text{min}} = T(k-1,k,...,k,k-1). \]
A special case

Theorem 2 [Lan-Lu-Shi 2012] For fixed $e \geq 7$,

$n = (e - 4)k - 2 + 2e$, and k large enough,

$$G_{n,n-e}^{\min} = T(k-1,k,...,k,k-1).$$

\[\rho(T(k-1,k,...,k,k-1)) \text{ only depends on } k, \text{ not on } r. \]
Let $x_1, x_2 \ (x_1 \leq x_2)$ be two roots of $x^2 - \lambda x + 1 = 0$. Let $d_2 = x_2^3 - \lambda$. Then

$\lambda = \sqrt{2 + \sqrt{5}}$ is the largest root of $d_2 = 0$.
Let $x_1, x_2 \ (x_1 \leq x_2)$ be two roots of $x^2 - \lambda x + 1 = 0$. Let $d_2 = x_2^3 - \lambda$. Then

- $\lambda = \sqrt{2 + \sqrt{5}}$ is the largest root of $d_2 = 0$.
- $d_2(\lambda)$ is increasing on $[\sqrt{2 + \sqrt{5}}, \infty)$.
Let $x_1, x_2 \ (x_1 \leq x_2)$ be two roots of $x^2 - \lambda x + 1 = 0$. Let $d_2 = x_2^3 - \lambda$. Then

- $\lambda = \sqrt{2 + \sqrt{5}}$ is the largest root of $d_2 = 0$.
- $d_2(\lambda)$ is increasing on $[\sqrt{2 + \sqrt{5}}, \infty)$.
- $\rho(T_{(k-1,k,...,k,k-1)})$ is the largest root of the equation

\[
d_2 = \frac{2x_1^k}{1 - x_1^k}.
\]
Our results

Theorem 3 [Lan-Lu-Shi 2012] For fixed $e \geq 7$ and n large enough, let $s = \frac{n-2e+2}{e-4}$. We have

$$\frac{2x_1^s}{1 - x_1^s} \leq d_2(\rho(G_{n,n-e}^{\min})) \leq \frac{2x_1^{|s|}}{1 - x_1^{|s|}}.$$
Theorem 3 [Lan-Lu-Shi 2012] For fixed $e \geq 7$ and n large enough, let $s = \frac{n-2e+2}{e-4}$. We have

$$\frac{2x_1^s}{1 - x_1^s} \leq d_2(\rho(G_{n,n-e}^{\min})) \leq \frac{2x_1^{\lfloor s \rfloor}}{1 - x_1^{\lfloor s \rfloor}}.$$

The equality holds if s is an integer. In this case,

$$G_{n,n-e}^{\min} = T(k-1,k,...,k,k-1).$$
Theorem 3 [Lan-Lu-Shi 2012] For fixed $e \geq 7$ and n large enough, let $s = \frac{n-2e+2}{e-4}$. We have

$$\frac{2x_1^s}{1 - x_1^s} \leq d_2(\rho(G_{n,n-e}^{\min})) \leq \frac{2x_1^{\lfloor s \rfloor}}{1 - x_1^{\lfloor s \rfloor}}.$$

The equality holds if s is an integer. In this case, $G_{n,n-e}^{\min} = T(k-1,k,...,k,k-1)$.

Corollary: $\rho(G_{n,n-e}^{\min}) = \sqrt{2 + \sqrt{5}} + O(\tau^{-s/2})$. Here $\tau = \frac{\sqrt{5}+1}{2} = 1.618...$ is the golden ratio.
Our results for $D = n - 6$

Theorem 4 [Lan-Lu-Shi 2012] For $D = n - 6$ and n large enough, $G_{n,n-6}^{\text{min}}$ is unique up to a graph isomorphism.

![Diagram of graphs κ_1 and κ_2]
Our results for $D = n - 6$

Theorem 4 [Lan-Lu-Shi 2012] For $D = n - 6$ and n large enough, $G^\text{min}_{n,n-6}$ is unique up to a graph isomorphism.

- If $n = 2k + 12$, then $G^\text{min}_{n,n-6} = T_{k,k}$.
Our results for $D = n - 6$

Theorem 4 [Lan-Lu-Shi 2012] For $D = n - 6$ and n large enough, $G_{n,n-6}^{\min}$ is unique up to a graph isomorphism.

- If $n = 2k + 12$, then $G_{n,n-6}^{\min} = T_{k,k}$.
- If $n = 2k + 13$, then $G_{n,n-6}^{\min} = T_{k,k+1}$.
Our results for $D = n - 7$

Theorem 5 [Lan-Lu-Shi 2012] For $D = n - 7$ and n large enough, $G_{n,e}^{\text{min}}$ is unique up to a graph isomorphism.
Our results for $D = n - 7$

Theorem 5 [Lan-Lu-Shi 2012] For $D = n - 7$ and n large enough, $G^\min_{n,e}$ is unique up to a graph isomorphism.

- If $n = 3k + 14$, then $G^\min_{n,e} = T(k,k,k)$.

![Graph Diagram]
Our results for $D = n - 7$

Theorem 5 [Lan-Lu-Shi 2012] For $D = n - 7$ and n large enough, $G_{n,e}^{\min}$ is unique up to a graph isomorphism.

- If $n = 3k + 14$, then $G_{n,e}^{\min} = T(k,k,k)$.
- If $n = 3k + 15$, then $G_{n,e}^{\min} = T(k,k+1,k)$.
Our results for $D = n - 7$

Theorem 5 [Lan-Lu-Shi 2012] For $D = n - 7$ and n large enough, $G_{n,e}^{\text{min}}$ is unique up to a graph isomorphism.

- If $n = 3k + 14$, then $G_{n,e}^{\text{min}} = T(k,k,k)$.
- If $n = 3k + 15$, then $G_{n,e}^{\text{min}} = T(k,k+1,k)$.
- If $n = 3k + 16$, then $G_{n,e}^{\text{min}} = T(k,k+2,k)$.
Our results for $D = n - 8$

Theorem 6 [Lan-Lu-Shi 2012] For $D = n - 8$ and n large enough, $G_{n,e}^{\text{min}}$ is determined up to a graph isomorphism as follows.

```
   V
  / \  / \  / \  / \\
n  |   |   |   |   |
  \  \  \  \  \  \
O---O---O---O---O
     \   \   \   \\
      k_1 k_2 k_3 k_4
```
Our results for $D = n - 8$

Theorem 6 [Lan-Lu-Shi 2012] For $D = n - 8$ and n large enough, $G_{n,e}^{\min}$ is determined up to a graph isomorphism as follows.

If $n = 4k + 16$, then $G_{n,e}^{\min}$ is one of three graphs $T(k,k,k,k)$, $T(k,k,k+1,k-1)$, and $T(k-1,k+1,k+1,k-1)$.
Our results for $D = n - 8$

Theorem 6 [Lan-Lu-Shi 2012] For $D = n - 8$ and n large enough, $G_{n,e}^{\text{min}}$ is determined up to a graph isomorphism as follows.

- If $n = 4k + 16$, then $G_{n,e}^{\text{min}}$ is one of three graphs $T(k,k,k,k)$, $T(k,k,k+1,k-1)$, and $T(k-1,k+1,k+1,k-1)$.
- If $n = 4k + 17$, then $G_{n,e}^{\text{min}} = T(k,k+1,k,k)$.

[Diagram of the graphs $T(k,k,k,k)$, $T(k,k,k+1,k-1)$, and $T(k-1,k+1,k+1,k-1)$ with labels k_1, k_2, k_3, and k_4.]
Our results for $D = n - 8$

Theorem 6 [Lan-Lu-Shi 2012] For $D = n - 8$ and n large enough, $G_{n,e}^{\text{min}}$ is determined up to a graph isomorphism as follows.

If $n = 4k + 16$, then $G_{n,e}^{\text{min}}$ is one of three graphs $T(k,k,k,k)$, $T(k,k,k+1,k-1)$, and $T(k-1,k+1,k+1,k-1)$.

If $n = 4k + 17$, then $G_{n,e}^{\text{min}} = T(k,k+1,k)$.

If $n = 4k + 18$, then $G_{n,e}^{\text{min}} = T(k,k+1,k+1,k)$.
Our results for $D = n - 8$

Theorem 6 [Lan-Lu-Shi 2012] For $D = n - 8$ and n large enough, $G_{n,e}^{\min}$ is determined up to a graph isomorphism as follows.

If $n = 4k + 16$, then $G_{n,e}^{\min}$ is one of three graphs $T(k,k,k,k)$, $T(k,k,k+1,k-1)$, and $T(k-1,k+1,k+1,k-1)$.

If $n = 4k + 17$, then $G_{n,e}^{\min} = T(k,k+1,k,k)$.

If $n = 4k + 18$, then $G_{n,e}^{\min} = T(k,k+1,k+1,k)$.

If $n = 4k + 19$, then $G_{n,e}^{\min} = T(k,k+1,k+2,k)$.

Graphs with small spectral radius
Consider three basic operations to extend a rooted graph

\[\psi_i : (H, v') \rightarrow (G, v) \]

for \(i = 1, 2, 3 \).
Any tree in three families $\mathcal{P}_{n,e}$, $\mathcal{P}_{n,e}$, and $\mathcal{P}_{n,e}$ can be built from a single vertex graph using above operations recursively.
Any tree in three families $\mathcal{P}_{n,e}$, $\mathcal{P}_{n,e}$, and $\mathcal{P}_{n,e}$ can be built from a single vertex graph using above operations recursively.

ϕ_G, ϕ_{G-v} can be computed from $\phi_H, \phi_{H-v'}$.

\[
\begin{pmatrix}
\phi_G \\
\phi_{G-v}
\end{pmatrix} = M_i \begin{pmatrix}
\phi_H \\
\phi_{H-v'}
\end{pmatrix}
\]

M_i are 2×2-matrices with entries in $\mathbb{Z}[\lambda]$.
Let \(x_1 \leq x_2 \) be two root of \(x^2 - \lambda x + 1 = 0 \). Let

\[
\begin{pmatrix}
P(G,v) \\ Q(G,v)
\end{pmatrix} = \begin{pmatrix} 1 & 1 \\ x_2 & x_1 \end{pmatrix}^{-1} \begin{pmatrix} \phi_G \\ \phi_{G-v} \end{pmatrix}.
\]
Let \(x_1 \leq x_2 \) be two root of \(x^2 - \lambda x + 1 = 0 \). Let

\[
\begin{pmatrix}
\mathcal{P}(G,v) \\
\mathcal{Q}(G,v)
\end{pmatrix} = \begin{pmatrix} 1 & 1 \\ x_2 & x_1 \end{pmatrix}^{-1} \begin{pmatrix} \phi_G \\ \phi_{G-v} \end{pmatrix}.
\]

For any \(G \) in the three families \(\mathcal{P}_{n,e}, \mathcal{P}'_{n,e}, \mathcal{P}''_{n,e} \), we can write \(\phi_G \) as the product of some matrices.
The first operation

\begin{align*}
\begin{pmatrix}
 p(G,v) \\
 q(G,v)
\end{pmatrix}
&= \begin{pmatrix}
x_1 & 0 \\
0 & x_2
\end{pmatrix}
\begin{pmatrix}
p(H,v') \\
q(H,v')
\end{pmatrix}
\end{align*}
The second operation

\[
\begin{pmatrix}
 p(G,v) \\
 q(G,v)
\end{pmatrix}
= \frac{1}{x_2 - x_1} \begin{pmatrix}
 \lambda - x_1^3 & x_1 \\
 -x_2 & x_2^3 - \lambda
\end{pmatrix}
\begin{pmatrix}
 p(H,v') \\
 q(H,v')
\end{pmatrix}
\]
The second operation

Let \(d_1 = \lambda - x_1^3 \) and \(d_2 = x_2^3 - \lambda \).
The third operation

\[
\begin{pmatrix}
p(G,v) \\ q(G,v)
\end{pmatrix} = \frac{1}{x_2 - x_1} \begin{pmatrix}
x_1^4 + \lambda^2 - 1 & \lambda x_1 \\ -\lambda x_2 & x_2^4 - \lambda^2 + 1
\end{pmatrix} \begin{pmatrix}
p(H,v') \\ q(H,v')
\end{pmatrix}
\]
Lemma 1: Let $\rho''_{k_0} = \lim_{i,j \to \infty} \rho(T''_{(i,k_0,j)})$. Then ρ''_{k_0} is the largest root of

$$d_2 = x_1^{k_0}.$$
Lemma 2 Let $\rho'_{k_0} = \lim_{j \to \infty} \rho(T'_{(k_0,j)})$. Then ρ'_{k_0} is the largest root of

$$d_2 = d_1^{\frac{1}{2}} x_1^{k_0 + \frac{1}{2}}.$$
Otherwise, $G_{n,e}^{\min}$ has at least one internal length $k_i \ll k = \left\lfloor \frac{n-2e+2}{e-4} \right\rfloor$.
Otherwise, \(G_{n,e}^{\min} \) has at least one internal length \(k_i \ll k = \left\lceil \frac{n-2e+2}{e-4} \right\rceil \).

Case 1: \(k_i \) is not at the end.

\[\rho(G_{n,e}^{\min}) \geq \rho(T''_{(\infty,k_i,\infty)}) \geq \rho(T_{k-1,k,\ldots,k,k-1}). \]

Contradiction.
Otherwise, $G_{n,e}^{\text{min}}$ has at least one internal length
\[k_i \ll k = \left\lfloor \frac{n-2e+2}{e-4} \right\rfloor. \]

Case 1: k_i is not at the end.

\[\rho(G_{n,e}^{\text{min}}) \geq \rho(T''_{(\infty,k_i,\infty)}) \geq \rho(T_{k-1,k,...,k,k-1}). \]

Contradiction.

Case 2: k_i is at the end.

\[\rho(G_{n,e}^{\text{min}}) \geq \rho(T'_{(\infty,k_i)}) \geq \rho(T_{k-1,k,...,k,k-1}). \]

Contradiction.
The number $\frac{3}{2}\sqrt{2}$ is the limit of the spectral radius of the following graphs:
\(\frac{3}{2} \sqrt{2} \) as a spectral limit

The number \(\frac{3}{2} \sqrt{2} \) is the limit of the spectral radius of the following graphs:
The number $\frac{3}{2} \sqrt{2}$ is the limit of the spectral radius of the following graphs:
Woo-Neumaier [2007]: If $\rho(G) \leq \frac{3}{2}\sqrt{2}$, then G is one of the following graphs:

- A Dagger:
Woo-Neumaier [2007]: If $\rho(G) \leq \frac{3}{2}\sqrt{2}$, then G is one of the following graphs:

- A **dagger**:

```
      n-4
```

- An **open quipu**:

```
\begin{array}{ccccccc}
  k_0 & m_0 & k_1 & m_1 & \ldots & m_{i-1} & k_i & m_i & \ldots & m_{r-1} & k_r & m_r & k_{r+1}
\end{array}
```

Graphs: $\rho(G) \leq \frac{3}{2}\sqrt{2}$
Graphs: \(\rho(G) \leq \frac{3}{2} \sqrt{2} \)

Woo-Neumaier [2007]: If \(\rho(G) \leq \frac{3}{2} \sqrt{2} \), then \(G \) is one of the following graphs:

- **A dagger**:

- **An open quipu**:

- **A closed quipu**:
If G has a vertex of degree 4 and $\rho(G) \leq \frac{3}{2}\sqrt{2}$, then G is a dagger.
If G has a vertex of degree 4 and $\rho(G) \leq \frac{3}{2} \sqrt{2}$, then G is a dagger.

All daggers have spectral radius less than $\frac{3}{2} \sqrt{2}$.
If G has a vertex of degree 4 and $\rho(G) \leq \frac{3}{2}\sqrt{2}$, then G is a dagger.

All daggers have spectral radius less than $\frac{3}{2}\sqrt{2}$.

The dagger on n vertices has diameter $n - 3$.
If G is a tree with degrees at most 3 and $\rho(G) \leq \frac{3}{2} \sqrt{2}$, then G is an open quipu.
If G is a tree with degrees at most 3 and $\rho(G) \leq \frac{3}{2}\sqrt{2}$, then G is an open quipu.

Not all open quipus satisfy $\rho(G) \leq \frac{3}{2}\sqrt{2}$.
If G contains a cycle and $\rho(G) \leq \frac{3}{2} \sqrt{2}$, then G is a closed quipu.
Closed quipus

If G contains a cycle and $\rho(G) \leq \frac{3}{2} \sqrt{2}$, then G is a closed quipu.

Not all closed quipus satisfy $\rho(G) \leq \frac{3}{2} \sqrt{2}$.
A question

Can one describe those open (or closed) quipus with $\rho(G) \leq \frac{3}{2}\sqrt{2}$?
A question

Can one describe those open (or closed) quipus with $\rho(G) \leq \frac{3}{2}\sqrt{2}$?

We could not answer this question exactly, but we can derive information of the diameters.
Theorem 1 [Lan-Lu 2013] Suppose that T is an open quipu on n vertices ($n \geq 6$) with $\rho(T) < \frac{3}{2} \sqrt{2}$. Then the diameter of T satisfies $D(T) \geq \frac{2n-4}{3}$.
Our result

Theorem 1 [Lan-Lu 2013] Suppose that T is an open quipu on n vertices ($n \geq 6$) with $\rho(T) < \frac{3}{2} \sqrt{2}$. Then the diameter of T satisfies $D(T) \geq \frac{2n-4}{3}$.

The equality holds if and only if $T = P_{(1,m-2,m)}^{(1,m)}$ (for $m \geq 2$).
Theorem 1 [Lan-Lu 2013] Suppose that L is a closed quipu on n vertices ($n \geq 13$) with $\rho(L) < \frac{3}{2} \sqrt{2}$. Then the diameter of L satisfies $\frac{n}{3} < D(L) \leq \frac{2n-2}{3}$.
Theorem 1 [Lan-Lu 2013] Suppose that L is a closed quipu on n vertices ($n \geq 13$) with $\rho(L) < \frac{3}{2}\sqrt{2}$. Then the diameter of L satisfies $\frac{n}{3} < D(L) \leq \frac{2n-2}{3}$.

Moreover, if L is neither $C^{(m)}_{(2m+3)}$ nor $C^{(m)}_{(2m+5)}$, then $D(L) \leq \frac{2n-4}{3}$.
Diameter v.s. spectral radius

\[\Theta \]

Closed quipus

Open quipus

Graphs with small spectral radius

2

\[\sqrt{2 + \sqrt{5}} \]

\[\frac{3}{2} \sqrt{2} \]

\[2 \]

\[\rho \]

C_n

\[\frac{n}{3} \]

\[\frac{n}{2} \]

\[\frac{2n-4}{3} \]

n-1

D

\[Q(a, b, c) \]

\[T(2, 2, c) \]

\[T(1, b, c) \]

\[\tilde{D}_n \]

\[D_n \]

\[P_n \]
Case $D \approx \frac{n}{2}$

Theorem [Cioabă-van Dam-Koolen-Lee, 2010]: For $e = 1, 2, 3, 4$ and sufficiently large n with $n + e$ even, $C^{(\lfloor \frac{e}{2} \rfloor, \lceil \frac{e}{2} \rceil)}(\frac{n-e-2}{2}, \frac{n-e-2}{2})$ is the unique minimizer graph $G_{min}^{n, \frac{n+e}{2}}$.
Case $D \approx \frac{n}{2}$

Theorem [Cioabă-van Dam-Koolen-Lee, 2010]: For $e = 1, 2, 3, 4$ and sufficiently large n with $n + e$ even, $C(\lfloor \frac{e}{2} \rfloor, \lceil \frac{e}{2} \rceil)$ is the unique minimizer graph $G_{n, \frac{n+e}{2}}^{\text{min}}$. They **Conjectured** that the statement above holds for any constant $e \geq 1$.
Our result

Theorem I [Lu-Lan 2013]: For $n \geq 13$ and
\[
\frac{n}{2} \leq D \leq \frac{2n-7}{3}, \quad C^{(D-\lfloor \frac{n}{2} \rfloor, D-\lceil \frac{n}{2} \rceil)}_{(n-D-1, n-D-1)}
\] is the unique minimizer graph $G_{n,D}^{\text{min}}$.

Cioabă-van Dam-Koolen-Lee’s conjecture is settled in a stronger way.
The upper bound $\frac{2n-7}{3}$ can not replaced by $\frac{2n-3}{3}$.

The minimizer graph $G_{n,D}^{\min}$ is determined for the following range of D.

$1 \leq \frac{n}{2} \leq \frac{2n}{3} \leq n - 1$

- **Van Dam-Kooij** [2007]
- **Yuan-Shao-Liu** [2008]
- **Cioabă-van Dam-Koolen-Lee** [2010]
- **Lan-Lu-Shi** [2012]
- **Lan-Lu** [2013]
For $m \geq 0$, consider the basic operations to extend a rooted graph

$$\psi_m : (H, v') \rightarrow (G, v).$$

- Any tree open quipu can be built from a single vertex graph using above operations recursively.
- The characteristic polynomials (ϕ_G, ϕ_{G-v}) can be computed from $(\phi_H, \phi_{H-v'})$.
Let $x_1 \leq x_2$ be two roots of $x^2 - \lambda x + 1 = 0$. Let

$$
\begin{pmatrix}
P(G,v) \\ Q(G,v)
\end{pmatrix}
= \begin{pmatrix} 1 & 1 \\ x_2 & x_1 \end{pmatrix}^{-1}
\begin{pmatrix}
\phi_G \\ \phi_{G-v}
\end{pmatrix}.
$$
Let $x_1 \leq x_2$ be two roots of $x^2 - \lambda x + 1 = 0$. Let

$$
\begin{pmatrix}
 p(G,v) \\
 q(G,v)
\end{pmatrix}
=
\begin{pmatrix}
 1 & 1 \\
 x_2 & x_1
\end{pmatrix}^{-1}
\begin{pmatrix}
 \phi_G \\
 \phi_{G-v}
\end{pmatrix}.
$$

Then

$$
\begin{pmatrix}
 p(G_m,v) \\
 q(G_m,v)
\end{pmatrix}
= \frac{1}{x_2 - x_1}
\begin{pmatrix}
 d^{(1)}_m & x_1 \phi_{P_{m-1}} \\
 -x_2 \phi_{P_{m-1}} & d^{(2)}_m
\end{pmatrix}
\begin{pmatrix}
 p(H,v') \\
 q(H,v')
\end{pmatrix},
$$

where $\phi_{P_m} = \frac{x_2^{m+1} - x_1^{m+1}}{x_2 - x_1}$, $d^{(1)}_m = \phi_{P_m} - x_1^{m+2}$, and

$$
d^{(2)}_m = x_2^{m+2} - \phi_{P_m}.
$$
Special value $\rho_{m,k}$

Let $\rho_{m,k}$ be the largest root of the equation

$$d_m^{(2)} = \frac{2\phi_{P_{m-1}} x_1^k}{1 - x_1^{k+1}}.$$ Then, $\rho_{m,k}$ is the spectral radius of the following graphs.

- $P^{(m+1,m+1)}_{(m+1,k-2,m+1)}$
- $P^{(m+1,m,m+1)}_{(m+1,k-1,k-1,m+1)}$
- $P^{(m+1,m,...,m,m+1)}_{(m+1,k-1,k,...,k,k-1,m+1)}$
- $C^{(m)}_{(k)}$
- $C^{(m,m)}_{(k,k)}$
- $C^{(m,...,m)}_{(k,...,k)}$
Quipus with $\rho(G) = \rho_{m,k}$

$\rho_{m,k} < \frac{3}{2}\sqrt{2}$ if and only if
- “$m \geq 2$ and $k \geq 2m + 3$”,
- or “$m = 1$ and $k \geq 4$”.
A necessary condition of $\rho < \frac{3}{2} \sqrt{2}$

Theorem [Lan-Lu 2013] Suppose an open quipu $P^{(m_0,\ldots,m_r)}_{(m_0,k_1,\ldots,k_r,m_r)}$ has spectral radius less than $\frac{3}{2} \sqrt{2}$. Then the following statements hold.

1. For $2 \leq i \leq r - 1$, we have $k_i \geq m_{i-1} + m_i$. Moreover if $m_{i-1}, m_i \geq 2$, then $k_i \geq m_{i-1} + m_i + 1$.

2. We have $k_1 \geq m_0 + m_1$ if $m_0 \geq 2$; and $k_1 \geq m_1 - 1$ if $m_0 = 1$.

3. We have $k_r \geq m_r + m_{r-1}$ if $m_r \geq 2$; and $k_r \geq m_{r-1} - 1$ if $m_r = 1$.
Theorem [Lan-Lu 2013] Suppose that an open quipu $P^{(m_0,\ldots,m_r)}_{(m_0,k_1,\ldots,k_r,m_r)}$ satisfies

1. $m_0, m_r \geq 2$;
2. $k_i \geq m_{i-1} + m_i + 3$ for $2 \leq i \leq r - 1$;
3. $k_j \geq m_{j-1} + m_j + 1$ for $j = 1, r$.

Then we have $\rho(P^{(m_0,\ldots,m_r)}_{(m_0,k_1,\ldots,k_r,m_r)}) < \frac{3}{2}\sqrt{2}$.
Determine $G_{n,D}^{\min}$ for D in the empty region.
Determine $G_{n,D}^{\min}$ for D in the empy region.

In particular, determine $G_{n,n-e}^{\min}$ for $e = 9, 10, 11, 12, \ldots$.

2. Linyuan Lu and Jingfen Lan, Diameter of Graphs with Spectral Radius at most $\frac{3}{2}\sqrt{2}$, *Linear Algebra and its Application*, 438, No. 11, (2013), 4382-4407.

Homepage: http://www.math.sc.edu/~lu/

Thank You