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Selected Topics on Spectral Graph Theory

1. Graphs with Small Spectral Radius
Time: Friday (May 16) 4pm.-5:30p.m.

2. Laplacian and Random Walks on Graphs
Time: Thursday (May 22) 4pm.-5:30p.m.

3. Spectra of Random Graphs
Time: Thursday (May 29) 4pm.-5:30p.m.

4. Hypergraphs with Small Spectral Radius
Time: Friday (June 6) 4pm.-5:30p.m.

5. Lapalacian of Random Hypergraphs
Time: Thursday (June 12) 4pm.-5:30p.m.
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■ Given an n× n real matrix A, if Aα = λα, then α is an
eigenvector of A corresponding to the eigenvalue α.
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■ Given an n× n real matrix A, if Aα = λα, then α is an
eigenvector of A corresponding to the eigenvalue α.

■ If A is a real symmetric matrice, (i.e., A′ = A), then A
has n real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. There exists
an orthogonal matrix O such that

A = O−1ΛO.

Here Λ = diag(λ1, λ2, . . . , λn).

■ Spectral norm (or spectral radius)
ρ(A) = (maximum eigenvalue of A′A)1/2.

If A is real symmetric, then ρ(A) = max{|λ1|, |λn|}.
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■ A = (aij) is non-negative if aij ≥ 0.
■ A is irreducible if there exists a m such that Am is

positive.
■ A is aperiodic if the greatest common divisor of all

natural numbers m such that (Am)ii > 0 is 1.
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■ A = (aij) is non-negative if aij ≥ 0.
■ A is irreducible if there exists a m such that Am is

positive.
■ A is aperiodic if the greatest common divisor of all

natural numbers m such that (Am)ii > 0 is 1.

Perron-Frobenius theorem: If A is an aperiodic
irreducible non-negative matrix with spectral radius r, then r
is the largest eigenvalue in absolute value of A, and A has
an eigenvector α with eigenvalue r whose components are all
positive.
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■ G = (V,E): a simple connected graph on n vertices
■ A(G): the adjacency matrix
■ φG(λ) = det(λI − A(G)): the characteristic polynomial
■ ρ(G) (spectral radius): the largest root of φG(λ)

① ① ①
①

S4

A(S4) =







0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0







φS4
= λ4 − 3λ2 ρ(S4) =

√
3
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■ Let ∆(G) be the maximum degree, d(G) be the average
degree, and δ(G) be the minimum degree. Then

δ(G) ≤ d(G) ≤ ρ(G) ≤ ∆(G).
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■ Let ∆(G) be the maximum degree, d(G) be the average
degree, and δ(G) be the minimum degree. Then

δ(G) ≤ d(G) ≤ ρ(G) ≤ ∆(G).

■ If G is d-regular (i.e., all degrees equal to d), then
ρ(G) = d.

■ If G is connected and H is a subgraph of G, then
ρ(G) > ρ(H).

■ For the complete bipartite graph Ks,t, ρ(Ks,t) =
√
st.

■ In particular, ρ(G) ≥
√

∆(G).
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no two adjacent vertices share the same color.
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The chromatic number χ(G) of a graph G is the smallest
number of colors needed to color the vertices of G so that
no two adjacent vertices share the same color.

Wilf’s Theorem [1967]: χ(G) ≤ 1 + ρ(G).

Proof: Let k = maxH⊆G δ(H), where δ(H) is the minimum
degree of H. Order the vertices v1, v2, . . . , vn so that each
vertex vi has at most k neighbors in v1, . . . , vi−1. The
greedy algorithm shows that G is (k + 1)-colorable. Hence

χ(G) ≤ 1 + max
H⊆G

δ(H)

≤ 1 + max
H⊆G

ρ(H)

≤ 1 + ρ(G). �
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Smith [1970]: ρ(G) < 2 if and only if G is a simply-laced
Dynkin diagram.✉ ✉ ✉ ✉ ✉ ✉ ✉♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

An

✉ ✉ ✉ ✉ ✉ ✉ ✉♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
✉

Dn

✉ ✉ ✉ ✉ ✉
✉
E6

✉ ✉ ✉ ✉ ✉ ✉
✉
E7

✉ ✉ ✉ ✉ ✉ ✉ ✉
✉
E8
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root systems.
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said to be simply laced; this occurs in the cases A, D
and E.
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■ In the theory of Lie groups and Lie algebras, the simple
Lie algebras are classified by Dynkin diagrams of their
root systems.

■ There are four infinite families (An, Bn, Cn, and Dn),
and five exceptional cases (E6, E7, E8, F4, and G2).

■ If all roots have the same length, then the root system is
said to be simply laced; this occurs in the cases A, D
and E.

■ Smith’s theorem gives an equivalent graph-theory
definition for the simply-laced Dynkin diagrams.
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ρ(A) < 2 ⇔

I − 1
2A is positive definite. ⇔

Write I − 1
2A = BB′. ⇔

Let α1, . . . , αn be the column vector of B.
Then α1, . . . , αn forms a base of a root system.

Classifying irreducible simple-laced root systems is equivalent
to classifying the connected graphs with ρ(G) < 2.
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Smith [1970]: ρ(G) = 2 if and only if G is a simply-laced
extended Dynkin diagram.

✉ ✉ ✉ ✉ ✉ ✉♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣✉
✭
✭
✭
✭
✭
✭
✭
✭✭

❤
❤

❤
❤

❤
❤

❤
❤❤

Ãn

✉ ✉ ✉ ✉ ✉ ✉ ✉♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
✉ ✉

D̃n

✉ ✉ ✉ ✉ ✉
✉
✉

Ẽ6

✉ ✉ ✉ ✉ ✉ ✉ ✉
✉
Ẽ7

✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉
✉
Ẽ8



Graphs: 2 ≤ ρ(G) <
√

2 +
√
5
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Cvetkovic-Doob-Gutman [1982], completed by
Brouwer-Neumaier [1989]:
T (1, b, c), b ≥ 2, c ≥ 6:

t t t t t t t♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
t

T (2, 2, c), c ≥ 3:

t t t t t t♣ ♣ ♣ ♣ ♣ ♣ ♣
t
t

Q(a, b, c), a ≥ 3, c ≥ 2, b > a+ c:

t t t t t t t t t t♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
t t
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Shearer [1989]: For every number λ ≥
√

2 +
√
5

= 2.058171027..., there exists a sequence of graphs {Gn}
such that λ = limn→∞ ρ(Gn).
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Shearer [1989]: For every number λ ≥
√

2 +
√
5

= 2.058171027..., there exists a sequence of graphs {Gn}
such that λ = limn→∞ ρ(Gn).

lim
b,c→∞

ρ(T (1, b, c)) =

√

2 +
√
5.

lim
c→∞

ρ(T (2, 2, c)) =

√

2 +
√
5.

lim
n→∞

ρ(Q(n, 2n+ 1, n)) =

√

2 +
√
5.



Properties

Graphs with small spectral radius Linyuan Lu – 15 / 61

■ If G2 is a proper subgraph of G1, then ρ(G1) > ρ(G2).



Properties

Graphs with small spectral radius Linyuan Lu – 15 / 61

■ If G2 is a proper subgraph of G1, then ρ(G1) > ρ(G2).

■ Let G′ be a graph obtained from G by by subdividing a
edge uv of G. Then

1. ρ(G′) > ρ(G) if uv is not on an internal path and
G 6= Cn.

2. ρ(G′) < ρ(G) if uv is on an internal path and
G 6= D̃n.
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■ If G2 is a proper subgraph of G1, then ρ(G1) > ρ(G2).

■ Let G′ be a graph obtained from G by by subdividing a
edge uv of G. Then

1. ρ(G′) > ρ(G) if uv is not on an internal path and
G 6= Cn.

2. ρ(G′) < ρ(G) if uv is on an internal path and
G 6= D̃n.

s s s s
u v

An internal path



Open quipus

Graphs with small spectral radius Linyuan Lu – 16 / 61

Notation of an open quipus:

Pm1,m2,...,mt

n1,n2,...,nt,p
.

s s s ss s s s s ss s
s sq q q

0 1 p− 1m1 mt

Pn1
Pnt
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Which connected graph on n vertices and a given diameter

D has minimal spectral radius?
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D ∈ {1, 2, ⌊n/2⌋, n− 3, n− 2, n− 1} and for almost all
graphs on at most 20 vertices by a computer search.
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In 2007, van Dam and Kooij posed the following question:
Which connected graph on n vertices and a given diameter

D has minimal spectral radius?

They solved this problem for
D ∈ {1, 2, ⌊n/2⌋, n− 3, n− 2, n− 1} and for almost all
graphs on at most 20 vertices by a computer search.

Among all connected graphs on n vertices and a given
diameter D, let Gmin

n,D be a minimum graph having the
smallest spectral radius.
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Van Dam - Kooij [2007]:

■ For D = 2 and n ≥ 3, Gmin
n,2 is either a star Sn or a

Moore graph.



Previous results

Graphs with small spectral radius Linyuan Lu – 18 / 61

Van Dam - Kooij [2007]:

■ For D = 2 and n ≥ 3, Gmin
n,2 is either a star Sn or a

Moore graph.

■ For D = ⌊n/2⌋ and n ≥ 7, Gmin
n,⌊n/2⌋ = Cn.



Previous results

Graphs with small spectral radius Linyuan Lu – 18 / 61

Van Dam - Kooij [2007]:

■ For D = 2 and n ≥ 3, Gmin
n,2 is either a star Sn or a

Moore graph.

■ For D = ⌊n/2⌋ and n ≥ 7, Gmin
n,⌊n/2⌋ = Cn.

■ For D = n− 2, Gmin
n,n−2 = Dn.
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Van Dam - Kooij [2007]:

■ For D = 2 and n ≥ 3, Gmin
n,2 is either a star Sn or a

Moore graph.

■ For D = ⌊n/2⌋ and n ≥ 7, Gmin
n,⌊n/2⌋ = Cn.

■ For D = n− 2, Gmin
n,n−2 = Dn.

✉ ✉ ✉ ✉ ✉ ✉ ✉♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
✉

■ For D = n− 3, Gmin
n,n−3 = D̃n.

✉ ✉ ✉ ✉ ✉ ✉ ✉♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
✉ ✉
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Van Dam and Kooij [2007] conjectured that for any

e ≥ 2 and n large enough, Gmin
n,n−e = P

⌊ e−1

2
⌋,n−e−⌈ e−1

2
⌉

⌊ e−1

2
⌋,⌈ e−1

2
⌉,n−e+1

.

✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

✉
✉

✉
✉♣♣♣♣♣♣♣ ♣♣♣♣♣♣♣

⌊e−1
2 ⌋

⌊e−1
2 ⌋

⌈e−1
2 ⌉

⌈e−1
2 ⌉
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Yuan-Shao-Liu [2008] proved this conjecture holds for
D = n− 4. Namely, Gmin

n,n−4 = P 2,n−5
2,1,n−3.

✉ ✉ ✉ ✉ ✉ ✉ ✉♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
✉
✉

✉
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Cioabǎ-van Dam-Koolen-Lee [2010] proved this
conjecture holds for D = n− 5. Namely, Gmin

n,n−4 = P 2,n−e−2
2,2,n−4 .

✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
✉
✉

✉
✉
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Cioabǎ-van Dam-Koolen-Lee [2010] proved this
conjecture holds for D = n− 5. Namely, Gmin

n,n−4 = P 2,n−e−2
2,2,n−4 .

✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
✉
✉

✉
✉

They also disproved this conjecture for all e ≥ 6 and n
large enough.
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Theorem [Cioabǎ-van Dam-Koolen-Lee 2010] For fixed

integer e ≥ 6, ρ(Gmin
n,n−e) →

√

2 +
√
5 as n→ ∞. Moreover,

Gmin
n,n−e must be contained in one of the three families for n

large enough.

Pn,e = {P 2,m2,...,me−4,n−e−2
2,1,...1,2,n−e+1 | 2<m2<...<me−4<n−e−2}

P ′
n,e = {P 2,m2,...,me−3,n−e−1

2,1,...1,1,n−e+1 | 2<m2<...<me−4<n−e−1}
P ′′
n,e = {P 1,m2,...,me−2,n−e−1

1,1,...1,1,n−e+1 | 1<m2<...<me−4<n−e−1}.
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r r r r r rrr rrrr rr rrq q q
q q q

k1 k2 kr
︸︷︷︸ ︸︷︷︸ ︸︷︷︸

T(k1,k2,...,kr)

r r r r rrr rrr rr rrq q q
q q q

k1 k2 kr
︸︷︷︸ ︸︷︷︸ ︸︷︷︸

T ′
(k1,k2,...,kr)

r r r rr rrr rr rrq q q
q q q

k1 k2 kr
︸︷︷︸ ︸︷︷︸ ︸︷︷︸

T ′′
(k1,k2,...,kr)
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■ Conjecture 1: Gmin
n,n−e is in Pn,e.
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Cioabǎ-van Dam-Koolen-Lee [2010] made the following
three conjectures.

■ Conjecture 1: Gmin
n,n−e is in Pn,e.

■ Conjecture 2: For D = n− 6 and n large enough,

Gmin
n,n−6 = P

2,⌈D−1

2
⌉,D−2
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Gmin
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2,⌊D−2

3
⌋,D−⌊D−2

3
⌋,D−2

2,1,1,2,n−6 .
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Cioabǎ-van Dam-Koolen-Lee [2010] made the following
three conjectures.

■ Conjecture 1: Gmin
n,n−e is in Pn,e.

■ Conjecture 2: For D = n− 6 and n large enough,

Gmin
n,n−6 = P

2,⌈D−1

2
⌉,D−2

2,1,2,n−5 .

■ Conjecture 3: For D = n− 7 and n large enough,

Gmin
n,n−7 = P

2,⌊D+2

3
⌋,D−⌊D+2

3
⌋,D−2

2,1,1,2,n−6 .



Three conjectures

Graphs with small spectral radius Linyuan Lu – 25 / 61

Cioabǎ-van Dam-Koolen-Lee [2010] made the following
three conjectures.

■ Conjecture 1: Gmin
n,n−e is in Pn,e.

■ Conjecture 2: For D = n− 6 and n large enough,

Gmin
n,n−6 = P

2,⌈D−1

2
⌉,D−2

2,1,2,n−5 .

■ Conjecture 3: For D = n− 7 and n large enough,

Gmin
n,n−7 = P

2,⌊D+2

3
⌋,D−⌊D+2

3
⌋,D−2

2,1,1,2,n−6 .

We settled all three conjectures positively.
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Theorem 1 [Lan-Lu-Shi 2012] Given e ≥ 6, if
n ≥ 4e2 − 24e+ 38, then Gmin

n,n−e = T(k1,...,kr) ∈ Pn,e.

r r r r r rrr rrrr rr rrq q q
q q q

k1 k2 kr
︸︷︷︸ ︸︷︷︸ ︸︷︷︸
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Theorem 1 [Lan-Lu-Shi 2012] Given e ≥ 6, if
n ≥ 4e2 − 24e+ 38, then Gmin

n,n−e = T(k1,...,kr) ∈ Pn,e.

r r r r r rrr rrrr rr rrq q q
q q q

k1 k2 kr
︸︷︷︸ ︸︷︷︸ ︸︷︷︸

Moreover, let r = e− 4 and s =

r∑

i=1

ki

r + 2
r . We have

1. ⌊s⌋ ≤ ki ≤ ⌈s⌉+ 1 for i = 2, ..., r − 1 and
⌊s⌋ − 1 ≤ ki ≤ ⌊s⌋ for i = 1, r.
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Theorem 1 [Lan-Lu-Shi 2012] Given e ≥ 6, if
n ≥ 4e2 − 24e+ 38, then Gmin

n,n−e = T(k1,...,kr) ∈ Pn,e.

r r r r r rrr rrrr rr rrq q q
q q q

k1 k2 kr
︸︷︷︸ ︸︷︷︸ ︸︷︷︸

Moreover, let r = e− 4 and s =

r∑

i=1

ki

r + 2
r . We have

1. ⌊s⌋ ≤ ki ≤ ⌈s⌉+ 1 for i = 2, ..., r − 1 and
⌊s⌋ − 1 ≤ ki ≤ ⌊s⌋ for i = 1, r.

2. |ki − kj| ≤ 1 for 2 ≤ i, j ≤ r − 1.
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Theorem 1 [Lan-Lu-Shi 2012] Given e ≥ 6, if
n ≥ 4e2 − 24e+ 38, then Gmin

n,n−e = T(k1,...,kr) ∈ Pn,e.

r r r r r rrr rrrr rr rrq q q
q q q

k1 k2 kr
︸︷︷︸ ︸︷︷︸ ︸︷︷︸

Moreover, let r = e− 4 and s =

r∑

i=1

ki

r + 2
r . We have

1. ⌊s⌋ ≤ ki ≤ ⌈s⌉+ 1 for i = 2, ..., r − 1 and
⌊s⌋ − 1 ≤ ki ≤ ⌊s⌋ for i = 1, r.

2. |ki − kj| ≤ 1 for 2 ≤ i, j ≤ r − 1.
3. 0 ≤ ki − kj ≤ 2 for 2 ≤ i ≤ r − 1 and j = 1, r.
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Theorem 2 [Lan-Lu-Shi 2012] For fixed e ≥ 7,
n = (e− 4)k − 2 + 2e, and k large enough,
Gmin

n,n−e = T(k−1,k,...,k,k−1).

r r r r r rrr rrrr rr rrrrq q q
q q q

k−1 k k k−1
︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸
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Theorem 2 [Lan-Lu-Shi 2012] For fixed e ≥ 7,
n = (e− 4)k − 2 + 2e, and k large enough,
Gmin

n,n−e = T(k−1,k,...,k,k−1).

r r r r r rrr rrrr rr rrrrq q q
q q q

k−1 k k k−1
︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸

ρ(T(k−1,k,...,k,k−1)) only depends on k, not on r.



Useful parameters
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Let x1, x2 (x1 ≤ x2) be two roots of x2 − λx+ 1 = 0. Let
d2 = x32 − λ. Then

■ λ =
√

2 +
√
5 is the largest root of d2 = 0.
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Let x1, x2 (x1 ≤ x2) be two roots of x2 − λx+ 1 = 0. Let
d2 = x32 − λ. Then

■ λ =
√

2 +
√
5 is the largest root of d2 = 0.

■ d2(λ) is increasing on [
√

2 +
√
5,∞).
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Let x1, x2 (x1 ≤ x2) be two roots of x2 − λx+ 1 = 0. Let
d2 = x32 − λ. Then

■ λ =
√

2 +
√
5 is the largest root of d2 = 0.

■ d2(λ) is increasing on [
√

2 +
√
5,∞).

■ ρ(T(k−1,k,...,k,k−1)) is the largest root of the equation

d2 =
2xk1

1− xk1
.
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Theorem 3 [Lan-Lu-Shi 2012] For fixed e ≥ 7 and n
large enough, let s = n−2e+2

e−4 . We have

2xs1
1− xs1

≤ d2(ρ(G
min
n,n−e)) ≤

2x
⌊s⌋
1

1− x
⌊s⌋
1

.
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Theorem 3 [Lan-Lu-Shi 2012] For fixed e ≥ 7 and n
large enough, let s = n−2e+2

e−4 . We have

2xs1
1− xs1

≤ d2(ρ(G
min
n,n−e)) ≤

2x
⌊s⌋
1

1− x
⌊s⌋
1

.

The equality holds if s is an integer. In this case,
Gmin

n,n−e = T(k−1,k,...,k,k−1).
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Theorem 3 [Lan-Lu-Shi 2012] For fixed e ≥ 7 and n
large enough, let s = n−2e+2

e−4 . We have

2xs1
1− xs1

≤ d2(ρ(G
min
n,n−e)) ≤

2x
⌊s⌋
1

1− x
⌊s⌋
1

.

The equality holds if s is an integer. In this case,
Gmin

n,n−e = T(k−1,k,...,k,k−1).

Corollary: ρ(Gmin
n,n−e) =

√

2 +
√
5 +O(τ−s/2).

Here τ =
√
5+1
2 = 1.618... is the golden ratio.



Our results for D = n− 6
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Theorem 4 [Lan-Lu-Shi 2012] For D = n− 6 and n large
enough, Gmin

n,n−6 is unique up to a graph isomorphism.

r r rr
r

rr rrr r r
k1 k2
︸︷︷︸ ︸︷︷︸
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Theorem 4 [Lan-Lu-Shi 2012] For D = n− 6 and n large
enough, Gmin

n,n−6 is unique up to a graph isomorphism.

r r rr
r

rr rrr r r
k1 k2
︸︷︷︸ ︸︷︷︸

■ If n = 2k + 12, then Gmin
n,n−6 = Tk,k.
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Theorem 4 [Lan-Lu-Shi 2012] For D = n− 6 and n large
enough, Gmin

n,n−6 is unique up to a graph isomorphism.

r r rr
r

rr rrr r r
k1 k2
︸︷︷︸ ︸︷︷︸

■ If n = 2k + 12, then Gmin
n,n−6 = Tk,k.

■ If n = 2k + 13, then Gmin
n,n−6 = Tk,k+1.
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Theorem 5 [Lan-Lu-Shi 2012] For D = n− 7 and n large
enough, Gmin

n,e is unique up to a graph isomorphism.

r r rr
r

rr rr rrr r r
k1 k2 k3
︸︷︷︸ ︸︷︷︸ ︸︷︷︸
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Theorem 5 [Lan-Lu-Shi 2012] For D = n− 7 and n large
enough, Gmin

n,e is unique up to a graph isomorphism.

r r rr
r

rr rr rrr r r
k1 k2 k3
︸︷︷︸ ︸︷︷︸ ︸︷︷︸

■ If n = 3k + 14, then Gmin
n,e = T(k,k,k).
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Theorem 5 [Lan-Lu-Shi 2012] For D = n− 7 and n large
enough, Gmin

n,e is unique up to a graph isomorphism.

r r rr
r

rr rr rrr r r
k1 k2 k3
︸︷︷︸ ︸︷︷︸ ︸︷︷︸

■ If n = 3k + 14, then Gmin
n,e = T(k,k,k).

■ If n = 3k + 15, then Gmin
n,e = T(k,k+1,k).
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Theorem 5 [Lan-Lu-Shi 2012] For D = n− 7 and n large
enough, Gmin

n,e is unique up to a graph isomorphism.

r r rr
r

rr rr rrr r r
k1 k2 k3
︸︷︷︸ ︸︷︷︸ ︸︷︷︸

■ If n = 3k + 14, then Gmin
n,e = T(k,k,k).

■ If n = 3k + 15, then Gmin
n,e = T(k,k+1,k).

■ If n = 3k + 16, then Gmin
n,e = T(k,k+2,k).
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Theorem 6 [Lan-Lu-Shi 2012] For D = n− 8 and n large
enough, Gmin

n,e is determined up to a graph isomorphism as
follows.

r r rr
r

rr rr rr rrr r r
k1 k2 k3 k4
︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸
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Theorem 6 [Lan-Lu-Shi 2012] For D = n− 8 and n large
enough, Gmin

n,e is determined up to a graph isomorphism as
follows.

r r rr
r

rr rr rr rrr r r
k1 k2 k3 k4
︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸

■ If n = 4k + 16, then Gmin
n,e is one of three graphs

T(k,k,k,k), T(k,k,k+1,k−1), and T(k−1,k+1,k+1,k−1).
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Theorem 6 [Lan-Lu-Shi 2012] For D = n− 8 and n large
enough, Gmin

n,e is determined up to a graph isomorphism as
follows.

r r rr
r

rr rr rr rrr r r
k1 k2 k3 k4
︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸

■ If n = 4k + 16, then Gmin
n,e is one of three graphs

T(k,k,k,k), T(k,k,k+1,k−1), and T(k−1,k+1,k+1,k−1).

■ If n = 4k + 17, then Gmin
n,e = T(k,k+1,k,k).
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Theorem 6 [Lan-Lu-Shi 2012] For D = n− 8 and n large
enough, Gmin

n,e is determined up to a graph isomorphism as
follows.

r r rr
r

rr rr rr rrr r r
k1 k2 k3 k4
︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸

■ If n = 4k + 16, then Gmin
n,e is one of three graphs

T(k,k,k,k), T(k,k,k+1,k−1), and T(k−1,k+1,k+1,k−1).

■ If n = 4k + 17, then Gmin
n,e = T(k,k+1,k,k).

■ If n = 4k + 18, then Gmin
n,e = T(k,k+1,k+1,k).
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Theorem 6 [Lan-Lu-Shi 2012] For D = n− 8 and n large
enough, Gmin

n,e is determined up to a graph isomorphism as
follows.

r r rr
r

rr rr rr rrr r r
k1 k2 k3 k4
︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸

■ If n = 4k + 16, then Gmin
n,e is one of three graphs

T(k,k,k,k), T(k,k,k+1,k−1), and T(k−1,k+1,k+1,k−1).

■ If n = 4k + 17, then Gmin
n,e = T(k,k+1,k,k).

■ If n = 4k + 18, then Gmin
n,e = T(k,k+1,k+1,k).

■ If n = 4k + 19, then Gmin
n,e = T(k,k+1,k+2,k).
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Consider three basic operations to extend a rooted graph

ψi : (H, v
′) → (G, v)

for i = 1, 2, 3.

s s ss s ss ss
v v vv′ v′ v′H H H

G G G



Observations
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■ Any tree in three families Pn,e, Pn,e, and Pn,e can be
built from a single vertex graph using above operations
recursively.

r r r r r rrr rrrr rr rrq q q
q q q

k1 k2 kr
︸︷︷︸ ︸︷︷︸ ︸︷︷︸
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■ Any tree in three families Pn,e, Pn,e, and Pn,e can be
built from a single vertex graph using above operations
recursively.

r r r r r rrr rrrr rr rrq q q
q q q

k1 k2 kr
︸︷︷︸ ︸︷︷︸ ︸︷︷︸

■ (φG, φG−v) can be computed from (φH , φH−v′) .

(
φG
φG−v

)

=Mi

(
φH
φH−v′

)

Mi are 2×2-matrices with entries in Z[λ].



Choosing right base
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Let x1 ≤ x2 be two root of x2 − λx+ 1 = 0. Let

(
p(G,v)

q(G,v)

)

=

(
1 1
x2 x1

)−1(
φG
φG−v

)

.
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Let x1 ≤ x2 be two root of x2 − λx+ 1 = 0. Let

(
p(G,v)

q(G,v)

)

=

(
1 1
x2 x1

)−1(
φG
φG−v

)

.

For any G in the three families Pn,e, P ′
n,e, P ′′

n,e, we can write
φG as the product of some matrices.



The first operation
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s sv v′H

G

(
p(G,v)

q(G,v)

)

=

(
x1 0
0 x2

)(
p(H,v′)

q(H,v′)

)



The second operation
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✉ ✉v v′
H

G

✉

(
p(G,v)

q(G,v)

)

=
1

x2 − x1

(
λ− x31 x1
−x2 x32 − λ

)(
p(H,v′)

q(H,v′)

)
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✉ ✉v v′
H

G

✉

(
p(G,v)

q(G,v)

)

=
1

x2 − x1

(
λ− x31 x1
−x2 x32 − λ

)(
p(H,v′)

q(H,v′)

)

Let d1 = λ− x31 and d2 = x32 − λ.



The third operation

Graphs with small spectral radius Linyuan Lu – 38 / 61

✉ ✉v v′
H

G

✉
✉

(
p(G,v)

q(G,v)

)

=
1

x2 − x1

(
x41 + λ2 − 1 λx1

−λx2 x42 − λ2 + 1

)(
p(H,v′)

q(H,v′)

)
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Lemma 1: Let ρ′′k0 = limi,j→∞ ρ(T ′′
(i,k0,j)

). Then ρ′′k0 is the
largest root of

d2 = xk01 .

t tt
t

t
t

t
t

t
t

i k0 j

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
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Lemma 2 Let ρ′k0 = limj→∞ ρ(T ′
(k0,j)

). Then ρ′k0 is the
largest root of

d2 = d
1

2

1x
k0+

1

2

1 .

t t t t t
t
t

t
t
t

j k0

︸ ︷︷ ︸ ︸ ︷︷ ︸



Sketched proof of Gmin
n,e ∈ Pn,e
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Otherwise, Gmin
n,e has at least one internal length

ki ≪ k = ⌈n−2e+2
e−4 ⌉.



Sketched proof of Gmin
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Otherwise, Gmin
n,e has at least one internal length

ki ≪ k = ⌈n−2e+2
e−4 ⌉.

Case 1: ki is not at the end.

ρ(Gmin
n,e ) ≥ ρ(T ′′

(∞,ki,∞)) ≥ ρ(Tk−1,k,...,k,k−1).

Contradiction.
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Otherwise, Gmin
n,e has at least one internal length

ki ≪ k = ⌈n−2e+2
e−4 ⌉.

Case 1: ki is not at the end.

ρ(Gmin
n,e ) ≥ ρ(T ′′

(∞,ki,∞)) ≥ ρ(Tk−1,k,...,k,k−1).

Contradiction.

Case 2: ki is at the end.

ρ(Gmin
n,e ) ≥ ρ(T ′

(∞,ki)
) ≥ ρ(Tk−1,k,...,k,k−1).

Contradiction.



3
2

√
2 as a spectral limit
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The number 3
2

√
2 is the limit of the spectral radius of the

following graphs:
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The number 3
2

√
2 is the limit of the spectral radius of the

following graphs:
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The number 3
2

√
2 is the limit of the spectral radius of the

following graphs:



Graphs: ρ(G) ≤ 3
2

√
2
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Woo-Neumaier [2007]: If ρ(G) ≤ 3
2

√
2, then G is one of

the following graphs:

■ A dagger:

n-4
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Woo-Neumaier [2007]: If ρ(G) ≤ 3
2

√
2, then G is one of

the following graphs:

■ A dagger:

n-4

■ An open quipu:

k k k k k

m m m m m m

0

0

1

1 i-1 i

i

r-1 r

r r+1
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Woo-Neumaier [2007]: If ρ(G) ≤ 3
2

√
2, then G is one of

the following graphs:

■ A dagger:

n-4

■ An open quipu:

k k k k k

m m m m m m

0

0

1

1 i-1 i

i

r-1 r

r r+1

■ A closed quipu:

m

m

m

m

m

m

1 k 

2
i-1

i

r-1

r

k 

k 

k 

1

2 i

r
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n-4

■ If G has a vertex of degree 4 and ρ(G) ≤ 3
2

√
2, then G

is a dagger.
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n-4

■ If G has a vertex of degree 4 and ρ(G) ≤ 3
2

√
2, then G

is a dagger.

■ All daggers have spectral radius less than 3
2

√
2.
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n-4

■ If G has a vertex of degree 4 and ρ(G) ≤ 3
2

√
2, then G

is a dagger.

■ All daggers have spectral radius less than 3
2

√
2.

■ The dagger on n vertices has diameter n− 3.



Open quipus
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k k k k k

m m m m m m

0

0

1

1 i-1 i

i

r-1 r

r r+1

P
(m0,m1,...,mt)
(k0,k1,...,kt+1)

■ If G is a tree with degrees at most 3 and ρ(G) ≤ 3
2

√
2,

then G is an open quipu.
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k k k k k

m m m m m m

0

0

1

1 i-1 i

i

r-1 r

r r+1

P
(m0,m1,...,mt)
(k0,k1,...,kt+1)

■ If G is a tree with degrees at most 3 and ρ(G) ≤ 3
2

√
2,

then G is an open quipu.

■ Not all open quipus statisfy ρ(G) ≤ 3
2

√
2.



Closed quipus
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m

m

m

m

m

m

1 k 

2
i-1

i

r-1

r

k 

k 

k 

1

2 i

r

C
(m1,m2,...,mt)
(k1,k2,...,kt)

■ If G contains a cycle and ρ(G) ≤ 3
2

√
2, then G is a

closed quipu.
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m

m

m

m

m

m

1 k 

2
i-1

i

r-1

r

k 

k 

k 

1

2 i

r

C
(m1,m2,...,mt)
(k1,k2,...,kt)

■ If G contains a cycle and ρ(G) ≤ 3
2

√
2, then G is a

closed quipu.

■ Not all closed quipus statisfy ρ(G) ≤ 3
2

√
2.
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Can one describe those open (or closed)
quipus with ρ(G) ≤ 3

2

√
2?
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Can one describe those open (or closed)
quipus with ρ(G) ≤ 3

2

√
2?

We could not answer this question exactly,
but we can derive information of the
diameters.
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Theorem 1 [Lan-Lu 2013] Suppose that T is an open
quipu on n vertices (n ≥ 6) with ρ(T ) < 3

2

√
2. Then the

diameter of T satisfies D(T ) ≥ 2n−4
3 .
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Theorem 1 [Lan-Lu 2013] Suppose that T is an open
quipu on n vertices (n ≥ 6) with ρ(T ) < 3

2

√
2. Then the

diameter of T satisfies D(T ) ≥ 2n−4
3 .

The equality holds if and only if T = P
(1,m)
(1,m−2,m) (for m ≥ 2).

s s s s s s ss s
s
m

mm− 2



Our result
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Theorem 1 [Lan-Lu 2013] Suppose that L is a closed
quipu on n vertices (n ≥ 13) with ρ(L) < 3

2

√
2. Then the

diameter of L satisfies n
3 < D(L) ≤ 2n−2

3 .
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Theorem 1 [Lan-Lu 2013] Suppose that L is a closed
quipu on n vertices (n ≥ 13) with ρ(L) < 3

2

√
2. Then the

diameter of L satisfies n
3 < D(L) ≤ 2n−2

3 .

Moreover, if L is neither C
(m)
(2m+3) nor C

(m)
(2m+5), then

D(L) ≤ 2n−4
3 .

✫✪
✬✩s s sm2m+ 3

✫✪
✬✩s s sm2m+ 5



Diameter v.s. spectral radius
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Cn

closed quipus open quipus

Q(a, b, c)
T (2, 2, c)
T (1, b, c)

D̃n

Pn

Dn

2

√

2 +
√
5

3
2

√
2

ρ

n
3

n
2

2n−4
3 n-1 D



Case D ≈ n
2
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Theorem [Cioabǎ-van Dam-Koolen-Lee, 2010]: For
e = 1, 2, 3, 4 and sufficiently large n with n+ e even,

C
(⌊ e

2
⌋,⌈ e

2
⌉)

(n−e−2

2
,n−e−2

2
)
is the unique minimizer graph Gmin

n,n+e

2

.
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Theorem [Cioabǎ-van Dam-Koolen-Lee, 2010]: For
e = 1, 2, 3, 4 and sufficiently large n with n+ e even,

C
(⌊ e

2
⌋,⌈ e

2
⌉)

(n−e−2

2
,n−e−2

2
)
is the unique minimizer graph Gmin

n,n+e

2

.

They Conjectured that the statement above holds for any
constant e ≥ 1.
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Theorem I [Lu-Lan 2013]: For n ≥ 13 and
n
2 ≤ D ≤ 2n−7

3 , C
(D−⌊n

2
⌋,D−⌈n

2
⌉)

(n−D−1,n−D−1) is the unique minimizer

graph Gmin
n,D .

Cioabǎ-van Dam-Koolen-Lee’s conjecture is settled in a
stronger way.
The upper bound 2n−7

3 can not replaced by 2n−3
3 .



Summary
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The minimizer graph Gmin
n,D is determined for the following

range of D.

1
n
2

2n
3 n− 1

■ Van Dam-Kooij [2007]
■ Yuan-Shao-Liu [2008]
■ Cioabǎ-van Dam-Koolen-Lee[2010]
■ Lan-Lu-Shi[2012]
■ Lan-Lu[2013]



Recursive construction
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For m ≥ 0, consider the basic operations to extend a rooted
graph

ψm : (H, v′) → (G, v).

s s
s

s

v v′H

Pm

G

■ Any tree open quipu can be built
from a single vertex graph using
above operations recursively.

■ The characteristic polynomials
(φG, φG−v) can be computed
from (φH , φH−v′).



Choosing right base
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Let x1 ≤ x2 be two root of x2 − λx+ 1 = 0. Let

(
p(G,v)

q(G,v)

)

=

(
1 1
x2 x1

)−1(
φG
φG−v

)

.
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Let x1 ≤ x2 be two root of x2 − λx+ 1 = 0. Let

(
p(G,v)

q(G,v)

)

=

(
1 1
x2 x1

)−1(
φG
φG−v

)

.

Then

(
p(Gm,v)

q(Gm,v)

)

=
1

x2 − x1

(

d
(1)
m x1φPm−1

−x2φPm−1
d
(2)
m

)(
p(H,v′)

q(H,v′)

)

,

where φPm
= xm+1

2 −xm+1
1

x2−x1
, d

(1)
m = φPm

− xm+2
1 , and

d
(2)
m = xm+2

2 − φPm
.



Special value ρm,k
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Let ρm,k be the the largest root of the equation

d
(2)
m =

2φPm−1
xk
1

1−xk+1
1

. Then, ρm,k is the spectral radius of the

following graphs.

■ P
(m+1,m+1)
(m+1,k−2,m+1),

■ P
(m+1,m,m+1)
(m+1,k−1,k−1,m+1),

■ P
(m+1,m,...,m,m+1)
(m+1,k−1,k,...,k,k−1,m+1),

■ C
(m)
(k) ,

■ C
(m,m)
(k,k) ,

■ C
(m,...,m)
(k,...,k) ,



Quipus with ρ(G) = ρm,k
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r r r r r rr r r r r r
r rr r r r

r r r r
q q q
q q qk − 1 k k k − 1m+ 1 m+ 1

m+ 1 m+ 1
m m m m

m

k

k

k

k

k

k
m

m m

m m

ρm,k <
3
2

√
2 if and only if

■ “m ≥ 2 and k ≥ 2m+ 3”,

■ or “m = 1 and k ≥ 4”.



A necessary condition of ρ < 3
2

√
2
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Theorem [Lan-Lu 2013] Suppose an open quipu

P
(m0,...,mr)
(m0,k1,...,kr,mr)

has spectral radius less than 3
2

√
2. Then the

following statements hold.

1. For 2 ≤ i ≤ r− 1, we have ki ≥ mi−1 +mi. Moreover if
mi−1,mi ≥ 2, then ki ≥ mi−1 +mi + 1.

2. We have k1 ≥ m0 +m1 if m0 ≥ 2; and k1 ≥ m1 − 1 if
m0 = 1.

3. We have kr ≥ mr +mr−1 if mr ≥ 2; and kr ≥ mr−1 − 1
if mr = 1.



A sufficient condition of ρ < 3
2

√
2
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Theorem [Lan-Lu 2013] Suppose that an open quipu

P
(m0,...,mr)
(m0,k1,...,kr,mr)

satisfies

1. m0,mr ≥ 2;
2. ki ≥ mi−1 +mi + 3 for 2 ≤ i ≤ r − 1;
3. kj ≥ mj−1 +mj + 1 for j = 1, r.

Then we have ρ(P
(m0,...,mr)
(m0,k1,...,kr,mr)

) < 3
2

√
2.



Open problems
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Determine Gmin
n,D for D in the empy region.

1
n
2

2n
3 n− 1



Open problems
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Determine Gmin
n,D for D in the empy region.

1
n
2

2n
3 n− 1

In particular, determine Gmin
n,n−e for e = 9, 10, 11, 12, . . ..
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