Graphs with Small Spectral Radius

Linyuan Lu
University of South Carolina

Coauthors: Lingsheng Shi and Jingfen Lan

Selected Topics on Spectral Graph Theory (I) Nankai University, Tianjin, May 16, 2014

Five talks

Selected Topics on Spectral Graph Theory

1. Graphs with Small Spectral Radius Time: Friday (May 16) 4pm.-5:30p.m.
2. Laplacian and Random Walks on Graphs Time: Thursday (May 22) 4pm.-5:30p.m.
3. Spectra of Random Graphs Time: Thursday (May 29) 4pm.-5:30p.m.
4. Hypergraphs with Small Spectral Radius Time: Friday (June 6) 4pm.-5:30p.m.
5. Lapalacian of Random Hypergraphs Time: Thursday (June 12) 4pm.-5:30p.m.

Backgrounds

I: Spectral Graph Theory II: Random Graph Theory III: Random Matrix Theory

Basic Linear Algebra

Given an $n \times n$ real matrix A, if $A \alpha=\lambda \alpha$, then α is an eigenvector of A corresponding to the eigenvalue α.

Basic Linear Algebra

- Given an $n \times n$ real matrix A, if $A \alpha=\lambda \alpha$, then α is an eigenvector of A corresponding to the eigenvalue α.
■ If A is a real symmetric matrice, (i.e., $A^{\prime}=A$), then A has n real eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. There exists an orthogonal matrix O such that

$$
A=O^{-1} \Lambda O
$$

Here $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$.

Basic Linear Algebra

- Given an $n \times n$ real matrix A, if $A \alpha=\lambda \alpha$, then α is an eigenvector of A corresponding to the eigenvalue α.
- If A is a real symmetric matrice, (i.e., $A^{\prime}=A$), then A has n real eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. There exists an orthogonal matrix O such that

$$
A=O^{-1} \Lambda O
$$

Here $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$.

- Spectral norm (or spectral radius) $\rho(A)=\left(\text { maximum eigenvalue of } A^{\prime} A\right)^{1 / 2}$.

Basic Linear Algebra

- Given an $n \times n$ real matrix A, if $A \alpha=\lambda \alpha$, then α is an eigenvector of A corresponding to the eigenvalue α.
- If A is a real symmetric matrice, (i.e., $A^{\prime}=A$), then A has n real eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. There exists an orthogonal matrix O such that

$$
A=O^{-1} \Lambda O
$$

Here $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$.

- Spectral norm (or spectral radius) $\rho(A)=\left(\text { maximum eigenvalue of } A^{\prime} A\right)^{1 / 2}$. If A is real symmetric, then $\rho(A)=\max \left\{\left|\lambda_{1}\right|,\left|\lambda_{n}\right|\right\}$.

Perron-Frobenius theorem

■ $A=\left(a_{i j}\right)$ is non-negative if $a_{i j} \geq 0$.
■ A is irreducible if there exists a m such that A^{m} is positive.
A is aperiodic if the greatest common divisor of all natural numbers m such that $\left(A^{m}\right)_{i i}>0$ is 1 .

Perron-Frobenius theorem

- $A=\left(a_{i j}\right)$ is non-negative if $a_{i j} \geq 0$.
- A is irreducible if there exists a m such that A^{m} is positive.
- A is aperiodic if the greatest common divisor of all natural numbers m such that $\left(A^{m}\right)_{i i}>0$ is 1 .

Perron-Frobenius theorem: If A is an aperiodic irreducible non-negative matrix with spectral radius r, then r is the largest eigenvalue in absolute value of A, and A has an eigenvector α with eigenvalue r whose components are all positive.

Basic Graph Notation

$G=(V, E):$ a simple connected graph on n vertices

Basic Graph Notation

■ $G=(V, E)$: a simple connected graph on n vertices $A(G)$: the adjacency matrix

Basic Graph Notation

■ $G=(V, E)$: a simple connected graph on n vertices $A(G)$: the adjacency matrix $\phi_{G}(\lambda)=\operatorname{det}(\lambda I-A(G))$: the characteristic polynomial

Basic Graph Notation

- $G=(V, E)$: a simple connected graph on n vertices $A(G)$: the adjacency matrix $\phi_{G}(\lambda)=\operatorname{det}(\lambda I-A(G))$: the characteristic polynomial $\rho(G)$ (spectral radius): the largest root of $\phi_{G}(\lambda)$

Basic Graph Notation

■ $G=(V, E)$: a simple connected graph on n vertices

- $A(G)$: the adjacency matrix
- $\phi_{G}(\lambda)=\operatorname{det}(\lambda I-A(G))$: the characteristic polynomial - $\rho(G)$ (spectral radius): the largest root of $\phi_{G}(\lambda)$

S_{4}

$$
A\left(S_{4}\right)=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Basic Graph Notation

■ $G=(V, E)$: a simple connected graph on n vertices

- $A(G)$: the adjacency matrix
- $\phi_{G}(\lambda)=\operatorname{det}(\lambda I-A(G))$: the characteristic polynomial
- $\rho(G)$ (spectral radius): the largest root of $\phi_{G}(\lambda)$

S_{4}

$$
A\left(S_{4}\right)=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

$$
\phi_{S_{4}}=\lambda^{4}-3 \lambda^{2}
$$

$$
\rho\left(S_{4}\right)=\sqrt{3}
$$

Easy facts

Let $\Delta(G)$ be the maximum degree, $d(G)$ be the average degree, and $\delta(G)$ be the minimum degree. Then

$$
\delta(G) \leq d(G) \leq \rho(G) \leq \Delta(G)
$$

Easy facts

- Let $\Delta(G)$ be the maximum degree, $d(G)$ be the average degree, and $\delta(G)$ be the minimum degree. Then

$$
\delta(G) \leq d(G) \leq \rho(G) \leq \Delta(G)
$$

- If G is d-regular (i.e., all degrees equal to d), then $\rho(G)=d$.

Easy facts

- Let $\Delta(G)$ be the maximum degree, $d(G)$ be the average degree, and $\delta(G)$ be the minimum degree. Then

$$
\delta(G) \leq d(G) \leq \rho(G) \leq \Delta(G)
$$

■ If G is d-regular (i.e., all degrees equal to d), then $\rho(G)=d$.

- If G is connected and H is a subgraph of G, then $\rho(G)>\rho(H)$.

Easy facts

- Let $\Delta(G)$ be the maximum degree, $d(G)$ be the average degree, and $\delta(G)$ be the minimum degree. Then

$$
\delta(G) \leq d(G) \leq \rho(G) \leq \Delta(G)
$$

■ If G is d-regular (i.e., all degrees equal to d), then $\rho(G)=d$.

- If G is connected and H is a subgraph of G, then $\rho(G)>\rho(H)$.
- For the complete bipartite graph $K_{s, t}, \rho\left(K_{s, t}\right)=\sqrt{s t}$.

Easy facts

- Let $\Delta(G)$ be the maximum degree, $d(G)$ be the average degree, and $\delta(G)$ be the minimum degree. Then

$$
\delta(G) \leq d(G) \leq \rho(G) \leq \Delta(G)
$$

■ If G is d-regular (i.e., all degrees equal to d), then $\rho(G)=d$.

- If G is connected and H is a subgraph of G, then $\rho(G)>\rho(H)$.
- For the complete bipartite graph $K_{s, t}, \rho\left(K_{s, t}\right)=\sqrt{s t}$.
- In particular, $\rho(G) \geq \sqrt{\Delta(G)}$.

An application

The chromatic number $\chi(G)$ of a graph G is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color.

An application

The chromatic number $\chi(G)$ of a graph G is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color.
Wilf's Theorem [1967]: $\chi(G) \leq 1+\rho(G)$.

An application

The chromatic number $\chi(G)$ of a graph G is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color.

Wilf's Theorem [1967]: $\chi(G) \leq 1+\rho(G)$.

Proof: Let $k=\max _{H \subseteq G} \delta(H)$, where $\delta(H)$ is the minimum degree of H. Order the vertices $v_{1}, v_{2}, \ldots, v_{n}$ so that each vertex v_{i} has at most k neighbors in v_{1}, \ldots, v_{i-1}. The greedy algorithm shows that G is $(k+1)$-colorable. Hence

$$
\begin{aligned}
\chi(G) & \leq 1+\max _{H \subseteq G} \delta(H) \\
& \leq 1+\max _{H \subseteq G} \rho(H) \\
& \leq 1+\rho(G) .
\end{aligned}
$$

\square

Graphs with $\rho(G)<2$

Smith [1970]: $\rho(G)<2$ if and only if G is a simply-laced Dynkin diagram.

Dynkin diagrams

- In the theory of Lie groups and Lie algebras, the simple Lie algebras are classified by Dynkin diagrams of their root systems.

Dynkin diagrams

- In the theory of Lie groups and Lie algebras, the simple Lie algebras are classified by Dynkin diagrams of their root systems.
- There are four infinite families $\left(A_{n}, B_{n}, C_{n}\right.$, and $\left.D_{n}\right)$, and five exceptional cases $\left(E_{6}, E_{7}, E_{8}, F_{4}\right.$, and $\left.G_{2}\right)$.

Dynkin diagrams

- In the theory of Lie groups and Lie algebras, the simple Lie algebras are classified by Dynkin diagrams of their root systems.
- There are four infinite families $\left(A_{n}, B_{n}, C_{n}\right.$, and $\left.D_{n}\right)$, and five exceptional cases $\left(E_{6}, E_{7}, E_{8}, F_{4}\right.$, and $\left.G_{2}\right)$.
- If all roots have the same length, then the root system is said to be simply laced; this occurs in the cases A, D and E.

Dynkin diagrams

- In the theory of Lie groups and Lie algebras, the simple Lie algebras are classified by Dynkin diagrams of their root systems.
- There are four infinite families $\left(A_{n}, B_{n}, C_{n}\right.$, and $\left.D_{n}\right)$, and five exceptional cases $\left(E_{6}, E_{7}, E_{8}, F_{4}\right.$, and $\left.G_{2}\right)$.
- If all roots have the same length, then the root system is said to be simply laced; this occurs in the cases A, D and E.
- Smith's theorem gives an equivalent graph-theory definition for the simply-laced Dynkin diagrams.

Connection

$$
\rho(A)<2
$$

Connection

$$
\begin{gathered}
\rho(A)<2 \Leftrightarrow \\
I-\frac{1}{2} A \text { is positive definite. }
\end{gathered}
$$

Connection

$$
\rho(A)<2 \Leftrightarrow
$$

$I-\frac{1}{2} A$ is positive definite. \Leftrightarrow
Write $I-\frac{1}{2} A=B B^{\prime}$.

Connection

$$
\rho(A)<2 \Leftrightarrow
$$

$I-\frac{1}{2} A$ is positive definite. \Leftrightarrow

$$
\text { Write } I-\frac{1}{2} A=B B^{\prime} . \Leftrightarrow
$$

Let $\alpha_{1}, \ldots, \alpha_{n}$ be the column vector of B.
Then $\alpha_{1}, \ldots, \alpha_{n}$ forms a base of a root system.

Connection

$$
\rho(A)<2 \Leftrightarrow
$$

$I-\frac{1}{2} A$ is positive definite. \Leftrightarrow
Write $I-\frac{1}{2} A=B B^{\prime} . \Leftrightarrow$
Let $\alpha_{1}, \ldots, \alpha_{n}$ be the column vector of B.
Then $\alpha_{1}, \ldots, \alpha_{n}$ forms a base of a root system.
Classifying irreducible simple-laced root systems is equivalent to classifying the connected graphs with $\rho(G)<2$.

Graphs with $\rho(G)=2$

Smith [1970]: $\rho(G)=2$ if and only if G is a simply-laced extended Dynkin diagram.

Graphs: $2 \leq \rho(G)<\sqrt{2+\sqrt{5}}$

Cvetkovic-Doob-Gutman [1982], completed by Brouwer-Neumaier [1989]: $T(1, b, c), b \geq 2, c \geq 6$:

$$
T(2,2, c), c \geq 3:
$$

$$
Q(a, b, c), a \geq 3, c \geq 2, b>a+c:
$$

Limit points of spectral radii

Shearer [1989]: For every number $\lambda \geq \sqrt{2+\sqrt{5}}$ $=2.058171027 \ldots$, there exists a sequence of graphs $\left\{G_{n}\right\}$ such that $\lambda=\lim _{n \rightarrow \infty} \rho\left(G_{n}\right)$.

Limit points of spectral radii

Shearer [1989]: For every number $\lambda \geq \sqrt{2+\sqrt{5}}$ $=2.058171027 \ldots$, there exists a sequence of graphs $\left\{G_{n}\right\}$ such that $\lambda=\lim _{n \rightarrow \infty} \rho\left(G_{n}\right)$.

$$
\begin{gathered}
\lim _{b, c \rightarrow \infty} \rho(T(1, b, c))=\sqrt{2+\sqrt{5}} . \\
\lim _{c \rightarrow \infty} \rho(T(2,2, c))=\sqrt{2+\sqrt{5}} . \\
\lim _{n \rightarrow \infty} \rho(Q(n, 2 n+1, n))=\sqrt{2+\sqrt{5}} .
\end{gathered}
$$

Properties

If G_{2} is a proper subgraph of G_{1}, then $\rho\left(G_{1}\right)>\rho\left(G_{2}\right)$.

Properties

- If G_{2} is a proper subgraph of G_{1}, then $\rho\left(G_{1}\right)>\rho\left(G_{2}\right)$. Let G^{\prime} be a graph obtained from G by by subdividing a edge $u v$ of G. Then

1. $\rho\left(G^{\prime}\right)>\rho(G)$ if $u v$ is not on an internal path and $G \neq C_{n}$.
2. $\rho\left(G^{\prime}\right)<\rho(G)$ if $u v$ is on an internal path and $G \neq \tilde{D}_{n}$.

Properties

- If G_{2} is a proper subgraph of G_{1}, then $\rho\left(G_{1}\right)>\rho\left(G_{2}\right)$. Let G^{\prime} be a graph obtained from G by by subdividing a edge $u v$ of G. Then

1. $\rho\left(G^{\prime}\right)>\rho(G)$ if $u v$ is not on an internal path and $G \neq C_{n}$.
2. $\rho\left(G^{\prime}\right)<\rho(G)$ if $u v$ is on an internal path and $G \neq \tilde{D}_{n}$.

An internal path

Open quipus

Notation of an open quipus:

$$
P_{n_{1}, n_{2}, \ldots, n_{t}, p}^{m_{1}, m_{2}, \ldots, m_{t}}
$$

Diameter and spectral radius

In 2007, van Dam and Kooij posed the following question: Which connected graph on n vertices and a given diameter D has minimal spectral radius?

Diameter and spectral radius

In 2007, van Dam and Kooij posed the following question: Which connected graph on n vertices and a given diameter D has minimal spectral radius?

They solved this problem for $D \in\{1,2,\lfloor n / 2\rfloor, n-3, n-2, n-1\}$ and for almost all graphs on at most 20 vertices by a computer search.

Diameter and spectral radius

In 2007, van Dam and Kooij posed the following question: Which connected graph on n vertices and a given diameter D has minimal spectral radius?
They solved this problem for
$D \in\{1,2,\lfloor n / 2\rfloor, n-3, n-2, n-1\}$ and for almost all graphs on at most 20 vertices by a computer search.

Among all connected graphs on n vertices and a given diameter D, let $G_{n, D}^{m i n}$ be a minimum graph having the smallest spectral radius.

Previous results

Van Dam - Kooij [2007]:

For $D=2$ and $n \geq 3, G_{n, 2}^{\min }$ is either a star S_{n} or a Moore graph.

Previous results

Van Dam - Kooij [2007]:

- For $D=2$ and $n \geq 3, G_{n, 2}^{\min }$ is either a star S_{n} or a Moore graph.
■ For $D=\lfloor n / 2\rfloor$ and $n \geq 7, G_{n,\lfloor n / 2\rfloor}^{\min }=C_{n}$.

Previous results

Van Dam - Kooij [2007]:

- For $D=2$ and $n \geq 3, G_{n, 2}^{\min }$ is either a star S_{n} or a Moore graph.
- For $D=\lfloor n / 2\rfloor$ and $n \geq 7, G_{n,\lfloor n / 2\rfloor}^{\min }=C_{n}$.
- For $D=n-2, G_{n, n-2}^{m i n}=D_{n}$.

Previous results

Van Dam - Kooij [2007]:

- For $D=2$ and $n \geq 3, G_{n, 2}^{\min }$ is either a star S_{n} or a Moore graph.
■ For $D=\lfloor n / 2\rfloor$ and $n \geq 7, G_{n,\lfloor n / 2\rfloor}^{\min }=C_{n}$.
- For $D=n-2, G_{n, n-2}^{m i n}=D_{n}$.

- For $D=n-3, G_{n, n-3}^{m i n}=\tilde{D}_{n}$.

What about $D=n-e$?

Van Dam and Kooij [2007] conjectured that for any
$e \geq 2$ and n large enough, $G_{n, n-e}^{\min }=P_{\left[\frac{e-1}{2}\right\rfloor,\left\lceil\left[\frac{e-1}{2}\right\rceil, n-e+1\right.}^{\left[\frac{e-1}{2} \left\lvert\,, n-e-\frac{e-1}{2}\right.\right]}$.

The case $D=n-4$

Yuan-Shao-Liu [2008] proved this conjecture holds for $D=n-4$. Namely, $G_{n, n-4}^{\text {min }}=P_{2,1, n-3}^{2, n-5}$.

The cases $D=n-5$

Cioabǎ-van Dam-Koolen-Lee [2010] proved this conjecture holds for $D=n-5$. Namely, $G_{n, n-4}^{\min }=P_{2,2, n-4}^{2, n-e-2}$.

The cases $D=n-5$

Cioabǎ-van Dam-Koolen-Lee [2010] proved this conjecture holds for $D=n-5$. Namely, $G_{n, n-4}^{\min }=P_{2,2, n-4}^{2, n-e-2}$.

They also disproved this conjecture for all $e \geq 6$ and n large enough.

Previous results

Theorem [Cioabǎ-van Dam-Koolen-Lee 2010] For fixed

 integer $e \geq 6, \rho\left(G_{n, n-e}^{m i n}\right) \rightarrow \sqrt{2+\sqrt{5}}$ as $n \rightarrow \infty$. Moreover, $G_{n, n-e}^{\min }$ must be contained in one of the three families for n large enough.$$
\begin{aligned}
& \mathcal{P}_{n, e}=\left\{P_{2,1, \ldots, 2, n-e+1}^{2, m_{2}, \ldots, m_{e-4}, n-e-2} \mid 2<m_{2}<\ldots<m_{e-4}<n-e-2\right\} \\
& \mathcal{P}_{n, e}^{\prime}=\left\{P_{2,1, \ldots, \ldots, 1, m_{e-3}, n-e-1}^{2, m_{2}} \mid 2<m_{2}<\ldots<m_{e-4}<n-e-1\right\} \\
& \mathcal{P}_{n, e}^{\prime \prime}=\left\{P_{1,1, \ldots, \ldots, 1, n-e+1}^{1, m_{2}, \ldots, m_{e-2}, n-e-1} \mid 1<m_{2}<\ldots<m_{e-4}<n-e-1\right\} .
\end{aligned}
$$

Three families

$$
T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}^{\prime}
$$

$T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}^{\prime \prime}$

Three conjectures

Cioabǎ-van Dam-Koolen-Lee [2010] made the following three conjectures.

- Conjecture 1: $G_{n, n-e}^{\min }$ is in $\mathcal{P}_{n, e}$.

Three conjectures

Cioabǎ-van Dam-Koolen-Lee [2010] made the following three conjectures.

- Conjecture 1: $G_{n, n-e}^{\min }$ is in $\mathcal{P}_{n, e}$.
- Conjecture 2: For $D=n-6$ and n large enough,

$$
G_{n, n-6}^{\min }=P_{2,1,2, n-5}^{2,\left\lceil\frac{D-1}{2}\right\rceil, D-2}
$$

Three conjectures

Cioabǎ-van Dam-Koolen-Lee [2010] made the following

 three conjectures.- Conjecture 1: $G_{n, n-e}^{\min }$ is in $\mathcal{P}_{n, e}$.
- Conjecture 2: For $D=n-6$ and n large enough, $G_{n, n-6}^{\min }=P_{2,1,2, n-5}^{2, \int \frac{D-1}{2}, D-2}$.
- Conjecture 3: For $D=n-7$ and n large enough, $G_{n, n-7}^{\min }=P_{2,1,1,2, n-6}^{2,\left\lfloor\frac{D-2}{3}\right\rfloor, D-\left\lfloor\frac{D-2}{3}\right\rfloor, D-2}$.

Three conjectures

Cioabǎ-van Dam-Koolen-Lee [2010] made the following

 three conjectures.- Conjecture 1: $G_{n, n-e}^{\min }$ is in $\mathcal{P}_{n, e}$.
- Conjecture 2: For $D=n-6$ and n large enough, $G_{n, n-6}^{\min }=P_{2,1,2, n-5}^{2,\left\lceil\frac{D-1}{2}\right], D-2}$.
- Conjecture 3: For $D=n-7$ and n large enough, $G_{n, n-7}^{\text {min }}=P_{2,1,1,2, n-6}^{2,\left\lfloor\frac{D+1}{3}\right\rfloor, D-\left\lfloor\frac{D+2}{3}\right\rfloor, D-2}$.

Three conjectures

Cioabǎ-van Dam-Koolen-Lee [2010] made the following three conjectures.

- Conjecture 1: $G_{n, n-e}^{\min }$ is in $\mathcal{P}_{n, e}$.
- Conjecture 2: For $D=n-6$ and n large enough, $G_{n, n-6}^{\text {min }}=P_{2,1,2, n-5}^{2,\left\lceil\frac{D-1}{2}\right], D-2}$.
- Conjecture 3: For $D=n-7$ and n large enough, $G_{n, n-7}^{\text {min }}=P_{2,1,1,2, n-6}^{2,\left\lfloor\frac{D+1}{3}\right\rfloor, D-\left\lfloor\frac{D+2}{3}\right\rfloor, D-2}$.

We settled all three conjectures positively.

Our results

Theorem 1 [Lan-Lu-Shi 2012] Given $e \geq 6$, if

$n \geq 4 e^{2}-24 e+38$, then $G_{n, n-e}^{\min }=T_{\left(k_{1}, \ldots, k_{r}\right)} \in \mathcal{P}_{n, e}$.

Our results

Theorem 1 [Lan-Lu-Shi 2012] Given $e \geq 6$, if
$n \geq 4 e^{2}-24 e+38$, then $G_{n, n-e}^{\min }=T_{\left(k_{1}, \ldots, k_{r}\right)} \in \mathcal{P}_{n, e}$.

Moreover, let $r=e-4$ and $s=\frac{\sum_{i=1}^{r} k_{i}}{r}+\frac{2}{r}$. We have 1. $\lfloor s\rfloor \leq k_{i} \leq\lceil s\rceil+1$ for $i=2, \ldots, r-1$ and $\lfloor s\rfloor-1 \leq k_{i} \leq\lfloor s\rfloor$ for $i=1, r$.

Our results

Theorem 1 [Lan-Lu-Shi 2012] Given $e \geq 6$, if
$n \geq 4 e^{2}-24 e+38$, then $G_{n, n-e}^{\min }=T_{\left(k_{1}, \ldots, k_{r}\right)} \in \mathcal{P}_{n, e}$.

Moreover, let $r=e-4$ and $s=\frac{\sum_{i=1}^{r} k_{i}}{r}+\frac{2}{r}$. We have

1. $\lfloor s\rfloor \leq k_{i} \leq\lceil s\rceil+1$ for $i=2, \ldots, r-1$ and $\lfloor s\rfloor-1 \leq k_{i} \leq\lfloor s\rfloor$ for $i=1, r$.
2. $\left|k_{i}-k_{j}\right| \leq 1$ for $2 \leq i, j \leq r-1$.

Our results

Theorem 1 [Lan-Lu-Shi 2012] Given $e \geq 6$, if
$n \geq 4 e^{2}-24 e+38$, then $G_{n, n-e}^{\min }=T_{\left(k_{1}, \ldots, k_{r}\right)} \in \mathcal{P}_{n, e}$.

Moreover, let $r=e-4$ and $s=\frac{\sum_{i=1}^{r} k_{i}}{r}+\frac{2}{r}$. We have 1. $\lfloor s\rfloor \leq k_{i} \leq\lceil s\rceil+1$ for $i=2, \ldots, r-1$ and $\lfloor s\rfloor-1 \leq k_{i} \leq\lfloor s\rfloor$ for $i=1, r$.
2. $\left|k_{i}-k_{j}\right| \leq 1$ for $2 \leq i, j \leq r-1$.
3. $0 \leq k_{i}-k_{j} \leq 2$ for $2 \leq i \leq r-1$ and $j=1, r$.

A special case

Theorem 2 [Lan-Lu-Shi 2012] For fixed $e \geq 7$,

 $n=(e-4) k-2+2 e$, and k large enough, $G_{n, n-e}^{\min }=T_{(k-1, k, \ldots, k, k-1)}$.

A special case

Theorem 2 [Lan-Lu-Shi 2012] For fixed $e \geq 7$, $n=(e-4) k-2+2 e$, and k large enough, $G_{n, n-e}^{m i n}=T_{(k-1, k, \ldots, k, k-1)}$.

$\rho\left(T_{(k-1, k, \ldots, k, k-1)}\right)$ only depends on k, not on r.

Useful parameters

Let $x_{1}, x_{2}\left(x_{1} \leq x_{2}\right)$ be two roots of $x^{2}-\lambda x+1=0$. Let $d_{2}=x_{2}^{3}-\lambda$. Then

- $\lambda=\sqrt{2+\sqrt{5}}$ is the largest root of $d_{2}=0$.

Useful parameters

Let $x_{1}, x_{2}\left(x_{1} \leq x_{2}\right)$ be two roots of $x^{2}-\lambda x+1=0$. Let $d_{2}=x_{2}^{3}-\lambda$. Then

- $\lambda=\sqrt{2+\sqrt{5}}$ is the largest root of $d_{2}=0$.
- $d_{2}(\lambda)$ is increasing on $[\sqrt{2+\sqrt{5}}, \infty)$.

Useful parameters

Let $x_{1}, x_{2}\left(x_{1} \leq x_{2}\right)$ be two roots of $x^{2}-\lambda x+1=0$. Let $d_{2}=x_{2}^{3}-\lambda$. Then

- $\lambda=\sqrt{2+\sqrt{5}}$ is the largest root of $d_{2}=0$.
- $d_{2}(\lambda)$ is increasing on $[\sqrt{2+\sqrt{5}}, \infty)$.
- $\rho\left(T_{(k-1, k, \ldots, k, k-1)}\right)$ is the largest root of the equation

$$
d_{2}=\frac{2 x_{1}^{k}}{1-x_{1}^{k}} .
$$

Our results

Theorem 3 [Lan-Lu-Shi 2012] For fixed $e \geq 7$ and n

 large enough, let $s=\frac{n-2 e+2}{e-4}$. We have$$
\frac{2 x_{1}^{s}}{1-x_{1}^{s}} \leq d_{2}\left(\rho\left(G_{n, n-e}^{\min }\right)\right) \leq \frac{2 x_{1}^{\lfloor s\rfloor}}{1-x_{1}^{\lfloor s\rfloor}} .
$$

Our results

Theorem 3 [Lan-Lu-Shi 2012] For fixed $e \geq 7$ and n

 large enough, let $s=\frac{n-2 e+2}{e-4}$. We have$$
\frac{2 x_{1}^{s}}{1-x_{1}^{s}} \leq d_{2}\left(\rho\left(G_{n, n-e}^{\min }\right)\right) \leq \frac{2 x_{1}^{\lfloor s\rfloor}}{1-x_{1}^{\lfloor s\rfloor}}
$$

The equality holds if s is an integer. In this case, $G_{n, n-e}^{\min }=T_{(k-1, k, \ldots, k, k-1)}$.

Our results

Theorem 3 [Lan-Lu-Shi 2012] For fixed $e \geq 7$ and n

 large enough, let $s=\frac{n-2 e+2}{e-4}$. We have$$
\frac{2 x_{1}^{s}}{1-x_{1}^{s}} \leq d_{2}\left(\rho\left(G_{n, n-e}^{\min }\right)\right) \leq \frac{2 x_{1}^{\lfloor s\rfloor}}{1-x_{1}^{\lfloor s\rfloor}} .
$$

The equality holds if s is an integer. In this case, $G_{n, n-e}^{m i n}=T_{(k-1, k, \ldots, k, k-1)}$.
Corollary: $\rho\left(G_{n, n-e}^{\min }\right)=\sqrt{2+\sqrt{5}}+O\left(\tau^{-s / 2}\right)$. Here $\tau=\frac{\sqrt{5}+1}{2}=1.618 \ldots$ is the golden ratio.

Our results for $D=n-6$

Theorem 4 [Lan-Lu-Shi 2012] For $D=n-6$ and n large enough, $G_{n, n-6}^{\text {min }}$ is unique up to a graph isomorphism.

Our results for $D=n-6$

Theorem 4 [Lan-Lu-Shi 2012] For $D=n-6$ and n large enough, $G_{n, n-6}^{\min }$ is unique up to a graph isomorphism.

■ If $n=2 k+12$, then $G_{n, n-6}^{\min }=T_{k, k}$.

Our results for $D=n-6$

Theorem 4 [Lan-Lu-Shi 2012] For $D=n-6$ and n large enough, $G_{n, n-6}^{m i n}$ is unique up to a graph isomorphism.

■ If $n=2 k+12$, then $G_{n, n-6}^{\min }=T_{k, k}$.
■ If $n=2 k+13$, then $G_{n, n-6}^{\min }=T_{k, k+1}$.

Our results for $D=n-7$

Theorem 5 [Lan-Lu-Shi 2012] For $D=n-7$ and n large enough, $G_{n, e}^{m i n}$ is unique up to a graph isomorphism.

Our results for $D=n-7$

Theorem 5 [Lan-Lu-Shi 2012] For $D=n-7$ and n large enough, $G_{n, e}^{m i n}$ is unique up to a graph isomorphism.

■ If $n=3 k+14$, then $G_{n, e}^{\min }=T_{(k, k, k)}$.

Our results for $D=n-7$

 Theorem 5 [Lan-Lu-Shi 2012] For $D=n-7$ and n large enough, $G_{n, e}^{\text {min }}$ is unique up to a graph isomorphism.

■ If $n=3 k+14$, then $G_{n, e}^{\min }=T_{(k, k, k)}$.
■ If $n=3 k+15$, then $G_{n, e}^{\min }=T_{(k, k+1, k)}$.

Our results for $D=n-7$

 Theorem 5 [Lan-Lu-Shi 2012] For $D=n-7$ and n large enough, $G_{n, e}^{m i n}$ is unique up to a graph isomorphism.

■ If $n=3 k+14$, then $G_{n, e}^{\min }=T_{(k, k, k)}$.
■ If $n=3 k+15$, then $G_{n, e}^{\min }=T_{(k, k+1, k)}$.
■ If $n=3 k+16$, then $G_{n, e}^{m i n}=T_{(k, k+2, k)}$.

Our results for $D=n-8$

Theorem 6 [Lan-Lu-Shi 2012] For $D=n-8$ and n large enough, $G_{n, e}^{m i n}$ is determined up to a graph isomorphism as follows.

Our results for $D=n-8$

Theorem 6 [Lan-Lu-Shi 2012] For $D=n-8$ and n large enough, $G_{n, e}^{m i n}$ is determined up to a graph isomorphism as follows.

- If $n=4 k+16$, then $G_{n, e}^{\min }$ is one of three graphs $T_{(k, k, k, k)}, T_{(k, k, k+1, k-1)}$, and $T_{(k-1, k+1, k+1, k-1)}$.

Our results for $D=n-8$

Theorem 6 [Lan-Lu-Shi 2012] For $D=n-8$ and n large enough, $G_{n, e}^{m i n}$ is determined up to a graph isomorphism as follows.

■ If $n=4 k+16$, then $G_{n, e}^{\min }$ is one of three graphs $T_{(k, k, k, k)}, T_{(k, k, k+1, k-1)}$, and $T_{(k-1, k+1, k+1, k-1)}$.
■ If $n=4 k+17$, then $G_{n, e}^{\text {min }}=T_{(k, k+1, k, k)}$.

Our results for $D=n-8$

Theorem 6 [Lan-Lu-Shi 2012] For $D=n-8$ and n large enough, $G_{n, e}^{\text {min }}$ is determined up to a graph isomorphism as follows.

- If $n=4 k+16$, then $G_{n, e}^{\min }$ is one of three graphs $T_{(k, k, k, k)}, T_{(k, k, k+1, k-1)}$, and $T_{(k-1, k+1, k+1, k-1)}$.
■ If $n=4 k+17$, then $G_{n, e}^{\min }=T_{(k, k+1, k, k)}$.
■ If $n=4 k+18$, then $G_{n, e}^{\text {min }}=T_{(k, k+1, k+1, k)}$.

Our results for $D=n-8$

Theorem 6 [Lan-Lu-Shi 2012] For $D=n-8$ and n large enough, $G_{n, e}^{\text {min }}$ is determined up to a graph isomorphism as follows.

- If $n=4 k+16$, then $G_{n, e}^{\min }$ is one of three graphs $T_{(k, k, k, k)}, T_{(k, k, k+1, k-1)}$, and $T_{(k-1, k+1, k+1, k-1)}$.
■ If $n=4 k+17$, then $G_{n, e}^{\min }=T_{(k, k+1, k, k)}$.
■ If $n=4 k+18$, then $G_{n, e}^{\text {min }}=T_{(k, k+1, k+1, k)}$.
If $n=4 k+19$, then $G_{n, e}^{\min }=T_{(k, k+1, k+2, k)}$.

Three basic operations

Consider three basic operations to extend a rooted graph

$$
\psi_{i}:\left(H, v^{\prime}\right) \rightarrow(G, v)
$$

for $i=1,2,3$.

Observations

Any tree in three families $\mathcal{P}_{n, e}, \mathcal{P}_{n, e}$, and $\mathcal{P}_{n, e}$ can be built from a single vertex graph using above operations recursively.

Observations

- Any tree in three families $\mathcal{P}_{n, e}, \mathcal{P}_{n, e}$, and $\mathcal{P}_{n, e}$ can be built from a single vertex graph using above operations recursively.

$\left(\phi_{G}, \phi_{G-v}\right)$ can be computed from ($\left.\phi_{H}, \phi_{H-v^{\prime}}\right)$.

$$
\binom{\phi_{G}}{\phi_{G-v}}=M_{i}\binom{\phi_{H}}{\phi_{H-v^{\prime}}}
$$

M_{i} are 2×2-matrices with entries in $\mathbb{Z}[\lambda]$.

Choosing right base

Let $x_{1} \leq x_{2}$ be two root of $x^{2}-\lambda x+1=0$. Let

$$
\binom{p_{(G, v)}}{q_{(G, v)}}=\left(\begin{array}{cc}
1 & 1 \\
x_{2} & x_{1}
\end{array}\right)^{-1}\binom{\phi_{G}}{\phi_{G-v}} .
$$

Choosing right base

Let $x_{1} \leq x_{2}$ be two root of $x^{2}-\lambda x+1=0$. Let

$$
\binom{p_{(G, v)}}{q_{(G, v)}}=\left(\begin{array}{cc}
1 & 1 \\
x_{2} & x_{1}
\end{array}\right)^{-1}\binom{\phi_{G}}{\phi_{G-v}}
$$

For any G in the three families $\mathcal{P}_{n, e}, \mathcal{P}_{n, e}^{\prime}, \mathcal{P}_{n, e}^{\prime \prime}$, we can write ϕ_{G} as the product of some matrices.

The first operation

$$
\binom{p_{(G, v)}}{q_{(G, v)}}=\left(\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right)\binom{p_{\left(H, v^{\prime}\right)}}{q_{\left(H, v^{\prime}\right)}}
$$

The second operation

G

$$
\binom{p_{(G, v)}}{q_{(G, v)}}=\frac{1}{x_{2}-x_{1}}\left(\begin{array}{cc}
\lambda-x_{1}^{3} & x_{1} \\
-x_{2} & x_{2}^{3}-\lambda
\end{array}\right)\binom{p_{\left(H, v^{\prime}\right)}}{q_{\left(H, v^{\prime}\right)}}
$$

The second operation

G

$$
\binom{p_{(G, v)}}{q_{(G, v)}}=\frac{1}{x_{2}-x_{1}}\left(\begin{array}{cc}
\lambda-x_{1}^{3} & x_{1} \\
-x_{2} & x_{2}^{3}-\lambda
\end{array}\right)\binom{p_{\left(H, v^{\prime}\right)}}{q_{\left(H, v^{\prime}\right)}}
$$

Let $d_{1}=\lambda-x_{1}^{3}$ and $d_{2}=x_{2}^{3}-\lambda$.

The third operation

G
$\binom{p_{(G, v)}}{q_{(G, v)}}=\frac{1}{x_{2}-x_{1}}\left(\begin{array}{cc}x_{1}^{4}+\lambda^{2}-1 & \lambda x_{1} \\ -\lambda x_{2} & x_{2}^{4}-\lambda^{2}+1\end{array}\right)\binom{p_{\left(H, v^{\prime}\right)}}{q_{\left(H, v^{\prime}\right)}}$

Lemma 1

Lemma 1: Let $\rho_{k_{0}}^{\prime \prime}=\lim _{i, j \rightarrow \infty} \rho\left(T_{\left(i, k_{0}, j\right)}^{\prime \prime}\right)$. Then $\rho_{k_{0}}^{\prime \prime}$ is the largest root of

$$
d_{2}=x_{1}^{k_{0}} .
$$

Lemma 2

Lemma 2 Let $\rho_{k_{0}}^{\prime}=\lim _{j \rightarrow \infty} \rho\left(T_{\left(k_{0}, j\right)}^{\prime}\right)$. Then $\rho_{k_{0}}^{\prime}$ is the largest root of

$$
d_{2}=d_{1}^{\frac{1}{2}} x_{1}^{k_{0}+\frac{1}{2}} .
$$

Sketched proof of $G_{n, e}^{\min } \in \mathcal{P}_{n, e}$

Otherwise, $G_{n, e}^{\min }$ has at least one internal length
$k_{i} \ll k=\left\lceil\frac{n-2 e+2}{e-4}\right\rceil$.

Sketched proof of $G_{n, e}^{\min } \in \mathcal{P}_{n, e}$

Otherwise, $G_{n, e}^{m i n}$ has at least one internal length
$k_{i} \ll k=\left\lceil\frac{n-2 e+2}{e-4}\right\rceil$.
Case 1: k_{i} is not at the end.

$$
\rho\left(G_{n, e}^{\min }\right) \geq \rho\left(T_{\left(\infty, k_{i}, \infty\right)}^{\prime \prime}\right) \geq \rho\left(T_{k-1, k, \ldots, k, k-1}\right)
$$

Contradiction.

Sketched proof of $G_{n, e}^{\text {min }} \in \mathcal{P}_{n, e}$

Otherwise, $G_{n, e}^{\min }$ has at least one internal length $k_{i} \ll k=\left\lceil\frac{n-2 e+2}{e-4}\right\rceil$.

Case 1: k_{i} is not at the end.

$$
\rho\left(G_{n, e}^{\min }\right) \geq \rho\left(T_{\left(\infty, k_{i}, \infty\right)}^{\prime \prime}\right) \geq \rho\left(T_{k-1, k, \ldots, k, k-1}\right)
$$

Contradiction.
Case 2: k_{i} is at the end.

$$
\rho\left(G_{n, e}^{\min }\right) \geq \rho\left(T_{\left(\infty, k_{i}\right)}^{\prime}\right) \geq \rho\left(T_{k-1, k, \ldots, k, k-1}\right)
$$

Contradiction.

$\frac{3}{2} \sqrt{2}$ as a spectral limit

The number $\frac{3}{2} \sqrt{2}$ is the limit of the spectral radius of the following graphs:

$\frac{3}{2} \sqrt{2}$ as a spectral limit

The number $\frac{3}{2} \sqrt{2}$ is the limit of the spectral radius of the following graphs:

$\frac{3}{2} \sqrt{2}$ as a spectral limit

The number $\frac{3}{2} \sqrt{2}$ is the limit of the spectral radius of the following graphs:

Graphs: $\rho(G) \leq \frac{3}{2} \sqrt{2}$

Woo-Neumaier [2007]: If $\rho(G) \leq \frac{3}{2} \sqrt{2}$, then G is one of the following graphs:

- A dagger:

Graphs: $\rho(G) \leq \frac{3}{2} \sqrt{2}$

Woo-Neumaier [2007]: If $\rho(G) \leq \frac{3}{2} \sqrt{2}$, then G is one of the following graphs:

- A dagger:

- An open quipu:

Graphs: $\rho(G) \leq \frac{3}{2} \sqrt{2}$

Woo-Neumaier [2007]: If $\rho(G) \leq \frac{3}{2} \sqrt{2}$, then G is one of the following graphs:

- A dagger:

- An open quipu:

- A closed quipu:

Daggers

- If G has a vertex of degree 4 and $\rho(G) \leq \frac{3}{2} \sqrt{2}$, then G is a dagger.

Daggers

- If G has a vertex of degree 4 and $\rho(G) \leq \frac{3}{2} \sqrt{2}$, then G is a dagger.
- All daggers have spectral radius less than $\frac{3}{2} \sqrt{2}$.

Daggers

- If G has a vertex of degree 4 and $\rho(G) \leq \frac{3}{2} \sqrt{2}$, then G is a dagger.
- All daggers have spectral radius less than $\frac{3}{2} \sqrt{2}$.
- The dagger on n vertices has diameter $n-3$.

Open quipus

If G is a tree with degrees at most 3 and $\rho(G) \leq \frac{3}{2} \sqrt{2}$, then G is an open quipu.

Open quipus

- If G is a tree with degrees at most 3 and $\rho(G) \leq \frac{3}{2} \sqrt{2}$, then G is an open quipu.
- Not all open quipus statisfy $\rho(G) \leq \frac{3}{2} \sqrt{2}$.

Closed quipus

- If G contains a cycle and $\rho(G) \leq \frac{3}{2} \sqrt{2}$, then G is a closed quipu.

Closed quipus

- If G contains a cycle and $\rho(G) \leq \frac{3}{2} \sqrt{2}$, then G is a closed quipu.
Not all closed quipus statisfy $\rho(G) \leq \frac{3}{2} \sqrt{2}$.

A question

Can one describe those open (or closed) quipus with $\rho(G) \leq \frac{3}{2} \sqrt{2}$?

A question

Can one describe those open (or closed) quipus with $\rho(G) \leq \frac{3}{2} \sqrt{2}$?
We could not answer this question exactly, but we can derive information of the diameters.

Our result

Theorem 1 [Lan-Lu 2013] Suppose that T is an open quipu on n vertices ($n \geq 6$) with $\rho(T)<\frac{3}{2} \sqrt{2}$. Then the diameter of T satisfies $D(T) \geq \frac{2 n-4}{3}$.

Our result

Theorem 1 [Lan-Lu 2013] Suppose that T is an open quipu on n vertices ($n \geq 6$) with $\rho(T)<\frac{3}{2} \sqrt{2}$. Then the diameter of T satisfies $D(T) \geq \frac{2 n-4}{3}$.
The equality holds if and only if $T=P_{(1, m-2, m)}^{(1, m)}$ (for $\left.m \geq 2\right)$.

Our result

Theorem 1 [Lan-Lu 2013] Suppose that L is a closed quipu on n vertices $(n \geq 13)$ with $\rho(L)<\frac{3}{2} \sqrt{2}$. Then the diameter of L satisfies $\frac{n}{3}<D(L) \leq \frac{2 n-2}{3}$.

Our result

Theorem 1 [Lan-Lu 2013] Suppose that L is a closed quipu on n vertices ($n \geq 13$) with $\rho(L)<\frac{3}{2} \sqrt{2}$. Then the diameter of L satisfies $\frac{n}{3}<D(L) \leq \frac{2 n-2}{3}$.
Moreover, if L is neither $C_{(2 m+3)}^{(m)}$ nor $C_{(2 m+5)}^{(m)}$, then $D(L) \leq \frac{2 n-4}{3}$.

Diameter v.s. spectral radius

Case $D \approx \frac{n}{2}$

Theorem [Cioabǎ-van Dam-Koolen-Lee, 2010]: For

 $e=1,2,3,4$ and sufficiently large n with $n+e$ even, $C_{\left(\frac{n-e-2}{2}, \frac{n-e-2}{2}\right)}^{\left.\left(\frac{e}{2}\right\rfloor,\left[\frac{e}{2}\right]\right)}$ is the unique minimizer graph $G_{n, \frac{n+e}{2}}^{m i n}$.
Case $D \approx \frac{n}{2}$

Theorem [Cioabǎ-van Dam-Koolen-Lee, 2010]: For $e=1,2,3,4$ and sufficiently large n with $n+e$ even, $C_{\left(\frac{n-e-2}{2}, \frac{n-e-2}{2}\right)}^{\left(\frac{e}{2}\right],\left[\frac{e}{\ell}\right)}$ is the unique minimizer graph $G_{n, \frac{n+e}{2}}^{m i n}$.
They Conjectured that the statement above holds for any constant $e \geq 1$.

Our result

Theorem I [Lu-Lan 2013]: For $n \geq 13$ and
$\frac{n}{2} \leq D \leq \frac{2 n-7}{3}, C_{(n-D-1, n-D-1)}^{\left(D-\left\lfloor\frac{n}{2}\right\rfloor, D-\left\lceil\frac{n}{2}\right\rceil\right)}$ is the unique minimizer graph $G_{n, D}^{\text {min }}$.

Cioabǎ-van Dam-Koolen-Lee's conjecture is settled in a stronger way.
The upper bound $\frac{2 n-7}{3}$ can not replaced by $\frac{2 n-3}{3}$.

Summary

The minimizer graph $G_{n, D}^{\text {min }}$ is determined for the following range of D.

- Van Dam-Kooij [2007]

■ Yuan-Shao-Liu [2008]

- Cioabǎ-van Dam-Koolen-Lee[2010]
- Lan-Lu-Shi[2012]

Lan-Lu[2013]

Recursive construction

For $m \geq 0$, consider the basic operations to extend a rooted graph

$$
\psi_{m}:\left(H, v^{\prime}\right) \rightarrow(G, v) .
$$

- Any tree open quipu can be built from a single vertex graph using above operations recursively.
- The characteristic polynomials (ϕ_{G}, ϕ_{G-v}) can be computed from $\left(\phi_{H}, \phi_{H-v^{\prime}}\right)$.

Choosing right base

Let $x_{1} \leq x_{2}$ be two root of $x^{2}-\lambda x+1=0$. Let

$$
\binom{p_{(G, v)}}{q_{(G, v)}}=\left(\begin{array}{cc}
1 & 1 \\
x_{2} & x_{1}
\end{array}\right)^{-1}\binom{\phi_{G}}{\phi_{G-v}} .
$$

Choosing right base

Let $x_{1} \leq x_{2}$ be two root of $x^{2}-\lambda x+1=0$. Let

$$
\binom{p_{(G, v)}}{q_{(G, v)}}=\left(\begin{array}{cc}
1 & 1 \\
x_{2} & x_{1}
\end{array}\right)^{-1}\binom{\phi_{G}}{\phi_{G-v}} .
$$

Then
$\binom{p_{\left(G_{m}, v\right)}}{q_{\left(G_{m}, v\right)}}=\frac{1}{x_{2}-x_{1}}\left(\begin{array}{ll}d_{m}^{(1)} & x_{1} \phi_{P_{m-1}} \\ -x_{2} \phi_{P_{m-1}} & d_{m}^{(2)}\end{array}\right)\binom{p_{\left(H, v^{\prime}\right)}}{q_{\left(H, v^{\prime}\right)}}$,
where $\phi_{P_{m}}=\frac{x_{2}^{m+1}-x_{1}^{m+1}}{x_{2}-x_{1}}, d_{m}^{(1)}=\phi_{P_{m}}-x_{1}^{m+2}$, and $d_{m}^{(2)}=x_{2}^{m+2}-\phi_{P_{m}}$.

Special value $\rho_{m, k}$

Let $\rho_{m, k}$ be the the largest root of the equation $d_{m}^{(2)}=\frac{2 \phi_{P_{m-1} x_{1}^{k}}^{k}}{1-x_{1}^{k+1}}$. Then, $\rho_{m, k}$ is the spectral radius of the following graphs.

- $P^{(m+1, m+1)}$
- $P_{(m+1, k-2, m+1)}$)
- $P_{(m+1, m, m+1)}^{(m+1, k-1, k-1}$
$P^{(m+1, k-1, k-1, m+1)}$ '
$P^{(m+1, m, \ldots, m, m+1)}$
$P_{(m+1, k-1, k, \ldots, k, k-1, m+1)}{ }^{\prime}$
$C_{(k)}^{(m)}$,
$C_{(k, k)}^{(m, m)}$,
$C_{(k, \ldots, k)}^{(m, \ldots, m)}$,

Quipus with $\rho(G)=\rho_{m, k}$

A necessary condition of $\rho<\frac{3}{2} \sqrt{2}$

Theorem [Lan-Lu 2013] Suppose an open quipu $P_{\left(m_{0}, k_{1}, \ldots, k_{r}, m_{r}\right)}^{\left(m_{0}, \ldots, m_{r}\right)}$ has spectral radius less than $\frac{3}{2} \sqrt{2}$. Then the following statements hold.

1. For $2 \leq i \leq r-1$, we have $k_{i} \geq m_{i-1}+m_{i}$. Moreover if $m_{i-1}, m_{i} \geq 2$, then $k_{i} \geq m_{i-1}+m_{i}+1$.
2. We have $k_{1} \geq m_{0}+m_{1}$ if $m_{0} \geq 2$; and $k_{1} \geq m_{1}-1$ if $m_{0}=1$.
3. We have $k_{r} \geq m_{r}+m_{r-1}$ if $m_{r} \geq 2$; and $k_{r} \geq m_{r-1}-1$ if $m_{r}=1$.

A sufficient condition of $\rho<\frac{3}{2} \sqrt{2}$

Theorem [Lan-Lu 2013] Suppose that an open quipu $P_{\left(m_{0}, k_{1}, \ldots, k_{r}, m_{r}\right)}^{\left(m_{0}, \ldots, m_{r}\right)}$ satisfies

1. $m_{0}, m_{r} \geq 2$;
2. $k_{i} \geq m_{i-1}+m_{i}+3$ for $2 \leq i \leq r-1$;
3. $k_{j} \geq m_{j-1}+m_{j}+1$ for $j=1, r$.

Then we have $\rho\left(P_{\left(m_{0}, k_{1}, \ldots, k_{r}, m_{r}\right)}^{\left(m_{0}, \ldots, m_{r}\right)}\right)<\frac{3}{2} \sqrt{2}$.

Open problems

Determine $G_{n, D}^{\min }$ for D in the empy region.

Open problems

Determine $G_{n, D}^{\min }$ for D in the empy region.

In particular, determine $G_{n, n-e}^{\min }$ for $e=9,10,11,12, \ldots$.

References

1. Jingfen Lan, Linyuan Lu, and Lingsheng Shi, Graphs with Diameter $n-e$ Minimizing the Spectral Radius, Linear Algebra and its Application, 437, No. 11, (2012), 2823-2850.
2. Linyuan Lu and Jingfen Lan, Diameter of Graphs with Spectral Radius at most $\frac{3}{2} \sqrt{2}$, Linear Algebra and its Application, 438, No. 11, (2013), 4382-4407.

Homepage: http://www.math.sc.edu/~ lu/

Thank You

