Complex Graphs and Networks

Lecture 6: Spectrum of random graphs with given degrees

Linyuan Lu

lu@math.sc.edu
University of South Carolina

> BASICS2008 SUMMER SCHOOL July 27 - August 2,2008

Overview of talks

- Lecture 1: Overview and outlines

■ Lecture 2: Generative models - preferential attachment schemes

- Lecture 3: Duplication models for biological networks

■ Lecture 4: The rise of the giant component

- Lecture 5: The small world phenomenon: average distance and diameter

■ Lecture 6: Spectrum of random graphs with given degrees

Three spectra of a graph

A graph G :

(1) Adjacency matrix:

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Eigenvalues are

$$
-\sqrt{2}, 0, \sqrt{2}
$$

Three spectra of a graph

A graph G :

(2) Combinatorial Laplacian

$$
D-A=\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right)
$$

Eigenvalues are

$$
0,1,3 .
$$

Three spectra of a graph

A graph G :

(3) Normalized Laplacian

$$
I-D^{-1 / 2} A D^{-1 / 2}=\left(\begin{array}{ccc}
1 & -\frac{\sqrt{2}}{2} & 0 \\
-\frac{\sqrt{2}}{2} & 1 & -\frac{\sqrt{2}}{2} \\
0 & -\frac{\sqrt{2}}{2} & 1
\end{array}\right)
$$

Eigenvalues are

$$
0,1,2 .
$$

Relations

If G is a d-regular graph, then three spectra are related by linear translations.

$$
\begin{aligned}
D-A & =d I-A \\
D-A & =d\left(I-D^{-1 / 2} A D^{-1 / 2}\right) \\
I-D^{-1 / 2} A D^{-1 / 2} & =I-\frac{1}{d} A .
\end{aligned}
$$

Relations

If G is a d-regular graph, then three spectra are related by linear translations.

$$
\begin{aligned}
D-A & =d I-A \\
D-A & =d\left(I-D^{-1 / 2} A D^{-1 / 2}\right) \\
I-D^{-1 / 2} A D^{-1 / 2} & =I-\frac{1}{d} A
\end{aligned}
$$

But they are quite different for general graphs.

Laplacian Spectrum

The (normalized) Laplacian is defined to be the matrix

$$
\mathcal{L}=I-D^{-1 / 2} A D^{-1 / 2}
$$

1. All eigenvalues of \mathcal{L} are between 0 and 2 .

$$
0 \leq \lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n-1} \leq 2
$$

2. G is connected if and only if $\lambda_{1}>0$.
3. G is bipartite if and only if $\lambda_{n-1}=2$.

Cheeger constant

The Cheeger constant h_{G} of a graph G is defined by

$$
h_{G}=\inf _{S} \frac{|\partial(S)|}{\min \{\operatorname{vol}(S), \operatorname{vol}(\bar{S})\}}
$$

where $\partial(S)$ denotes the set of edges leaving S.
Cheeger's inequality states

$$
2 h_{G} \geq \lambda_{1} \geq \frac{h_{G}^{2}}{2}
$$

Diameter

Let $D(G)$ be the diameter of G, then

$$
D(G) \leq\left\lceil\frac{\log \frac{\operatorname{vol}(G)}{\min _{x} d_{x}}}{\log \frac{\lambda_{n-1}+\lambda_{1}}{\lambda_{n-1}-\lambda_{1}}}\right\rceil
$$

Diameter

Let $D(G)$ be the diameter of G, then

$$
D(G) \leq\left\lceil\frac{\log \frac{\operatorname{vol}(G)}{\min _{x} d_{x}}}{\log \frac{\lambda_{n-1}+\lambda_{1}}{\lambda_{n-1}-\lambda_{1}}}\right\rceil .
$$

In general, let $D(X, Y)$ denote the distance between two subsets X and Y. Then

$$
D(X, Y) \leq\left\lceil\left[\frac{\log \frac{\operatorname{vol}(G)}{\sqrt{\operatorname{vol}(X) \operatorname{vol}(Y)}}}{\log \frac{\lambda_{n-1}+\lambda_{1}}{\lambda_{n-1}-\lambda_{1}}}\right\rceil\right.
$$

Wigner's semicircle law

Wigner (1958)

- A is a real symmetric $n \times n$ matrix.
- Entries $a_{i j}$ are independent random variables.
- $E\left(a_{i j}^{2 k+1}\right)=0$.
- $E\left(a_{i j}^{2}\right)=m^{2}$.
- $E\left(a_{i j}^{2 k}\right)<M$.

The distribution of eigenvalues of A converges into a semicircle distribution of radius $2 m \sqrt{n}$.

The power law

The number of vertices of degree k is approximately proportional to $k^{-\beta}$ for some positive β.

A power law graph is a graph which satisfies the power law.

A spectrum question

Do the eigenvalues of a power law graph follow the semicircle law or do the eigenvalues have a power law distribution?

Evidence for the semicircle law for power law graphs

The eigenvalues of an Erdős-Rényi random graph follow the semicircle law. (Füredi and Komlós, 1981)

Experimental results

Faloutsos et al. (1999) The eigenvalues of the Internet graph do not follow the semicircle law.

Experimental results

- Faloutsos et al. (1999) The eigenvalues of the Internet graph do not follow the semicircle law.
- Farkas et. al. (2001), Goh et. al. (2001) The spectrum of a power law graph follows a "triangular-like" distribution.

Experimental results

■ Faloutsos et al. (1999) The eigenvalues of the Internet graph do not follow the semicircle law.

- Farkas et. al. (2001), Goh et. al. (2001) The spectrum of a power law graph follows a "triangular-like" distribution.
- Mihail and Papadimitriou (2002) They showed that the large eigenvalues are determined by the large degrees. Thus, the significant part of the spectrum of a power law graph follows the power law.

$$
\mu_{i} \approx \sqrt{d_{i}}
$$

Model $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$

Random graph model with given expected degree sequence - n nodes with weights $w_{1}, w_{2}, \ldots, w_{n}$.

Model $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$

Random graph model with given expected degree sequence

- n nodes with weights $w_{1}, w_{2}, \ldots, w_{n}$.
- For each pair (i, j), create an edge independently with probability $p_{i j}=w_{i} w_{j} \rho$, where $\rho=\frac{1}{\sum_{i=1}^{n} w_{i}}$.

Model $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$

Random graph model with given expected degree sequence

- n nodes with weights $w_{1}, w_{2}, \ldots, w_{n}$.
- For each pair (i, j), create an edge independently with probability $p_{i j}=w_{i} w_{j} \rho$, where $\rho=\frac{1}{\sum_{i=1}^{n} w_{i}}$.
- The graph H has probability

$$
\prod_{i j \in E(H)} p_{i j} \prod_{i j \notin E(H)}\left(1-p_{i j}\right) .
$$

Model $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$

Random graph model with given expected degree sequence

- n nodes with weights $w_{1}, w_{2}, \ldots, w_{n}$.
- For each pair (i, j), create an edge independently with probability $p_{i j}=w_{i} w_{j} \rho$, where $\rho=\frac{1}{\sum_{i=1}^{n} w_{i}}$.
- The graph H has probability

$$
\prod_{i j \in E(H)} p_{i j} \prod_{i j \notin E(H)}\left(1-p_{i j}\right) .
$$

- The expected degree of vertex i is w_{i}.

A example: $G(1,2,1)$

1/16

3/16

3/16

3/16

1/16

1/16

1/16

3/16

Loops are omitted here.

Notations

For $G=G\left(w_{1}, \ldots, w_{n}\right)$, let

- $d=\frac{1}{n} \sum_{n=1}^{n} w_{i}$
- $\tilde{d}=\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n} w_{i}}$.
- The volume of $S: \operatorname{Vol}(S)=\sum_{i \in S} w_{i}$.
- The k-th volume of $S: \operatorname{Vol}_{k}(S)=\sum_{i \in S} w_{i}^{k}$.

Notations

For $G=G\left(w_{1}, \ldots, w_{n}\right)$, let

- $d=\frac{1}{n} \sum_{i=1}^{n} w_{i}$
- $\tilde{d}=\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n} w_{i}}$.
- The volume of $S: \operatorname{Vol}(S)=\sum_{i \in S} w_{i}$.
- The k-th volume of $S: \operatorname{Vol}_{k}(S)=\sum_{i \in S} w_{i}^{k}$.

We have

$$
\tilde{d} \geq d
$$

$"="$ holds if and only if $w_{1}=\cdots=w_{n}$.

Eigenvalues of $G\left(w_{1}, \ldots, w_{n}\right)$

Chung, Vu, and Lu (2003)

Suppose $w_{1} \geq w_{2} \geq \ldots \geq w_{n}$. Let μ_{i} be i-th largest eigenvalue of $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$. Let $m=w_{1}$ and $\tilde{d}=\sum_{i=1}^{n} w_{i}^{2} \rho$. Almost surely we have:
■ $(1-o(1)) \max \{\sqrt{m}, \tilde{d}\} \leq \mu_{1} \leq 7 \sqrt{\log n} \cdot \max \{\sqrt{m}, \tilde{d}\}$.

Eigenvalues of $G\left(w_{1}, \ldots, w_{n}\right)$

Chung, Vu, and Lu (2003)

Suppose $w_{1} \geq w_{2} \geq \ldots \geq w_{n}$. Let μ_{i} be i-th largest eigenvalue of $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$. Let $m=w_{1}$ and $\tilde{d}=\sum_{i=1}^{n} w_{i}^{2} \rho$. Almost surely we have:
■ $(1-o(1)) \max \{\sqrt{m}, \tilde{d}\} \leq \mu_{1} \leq 7 \sqrt{\log n} \cdot \max \{\sqrt{m}, \tilde{d}\}$.

- $\mu_{1}=(1+o(1)) \tilde{d}$, if $\tilde{d}>\sqrt{m} \log n$.

Eigenvalues of $G\left(w_{1}, \ldots, w_{n}\right)$

Chung, Vu, and Lu (2003)

Suppose $w_{1} \geq w_{2} \geq \ldots \geq w_{n}$. Let μ_{i} be i-th largest eigenvalue of $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$. Let $m=w_{1}$ and $\tilde{d}=\sum_{i=1}^{n} w_{i}^{2} \rho$. Almost surely we have:
■ $(1-o(1)) \max \{\sqrt{m}, \tilde{d}\} \leq \mu_{1} \leq 7 \sqrt{\log n} \cdot \max \{\sqrt{m}, \tilde{d}\}$.

- $\mu_{1}=(1+o(1)) \tilde{d}$, if $\tilde{d}>\sqrt{m} \log n$.

■ $\mu_{1}=(1+o(1)) \sqrt{m}$, if $\sqrt{m}>\tilde{d} \log ^{2} n$.

Eigenvalues of $G\left(w_{1}, \ldots, w_{n}\right)$

Chung, Vu, and Lu (2003)

Suppose $w_{1} \geq w_{2} \geq \ldots \geq w_{n}$. Let μ_{i} be i-th largest eigenvalue of $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$. Let $m=w_{1}$ and $\tilde{d}=\sum_{i=1}^{n} w_{i}^{2} \rho$. Almost surely we have:
■ $(1-o(1)) \max \{\sqrt{m}, \tilde{d}\} \leq \mu_{1} \leq 7 \sqrt{\log n} \cdot \max \{\sqrt{m}, \tilde{d}\}$.

- $\mu_{1}=(1+o(1)) \tilde{d}$, if $\tilde{d}>\sqrt{m} \log n$.

■ $\mu_{1}=(1+o(1)) \sqrt{m}$, if $\sqrt{m}>\tilde{d} \log ^{2} n$.
$\mu_{k} \approx \sqrt{w_{k}}$ and $\mu_{n+1-k} \approx-\sqrt{w_{k}}$, if $\sqrt{w_{k}}>\tilde{d} \log ^{2} n$.

Random power law graphs

The first k and last k eigenvalues of the random power law graph with $\beta>2.5$ follows the power law distribution with exponent $2 \beta-1$. It results a "triangular-like" shape.

Proof of Theorem 1:

1. First we prove $\mu_{1} \geq(1+o(1)) \sqrt{m}$.

Proof of Theorem 1:

1. First we prove $\mu_{1} \geq(1+o(1)) \sqrt{m}$.

We observe

- It contains a star of size $(1+o(1)) m$.

Proof of Theorem 1:

1. First we prove $\mu_{1} \geq(1+o(1)) \sqrt{m}$.

We observe

- It contains a star of size $(1+o(1)) m$.
- The largest eigenvalue of a star of size m is $\sqrt{m-1}$.

Proof of Theorem 1:

1. First we prove $\mu_{1} \geq(1+o(1)) \sqrt{m}$.

We observe

- It contains a star of size $(1+o(1)) m$.
- The largest eigenvalue of a star of size m is $\sqrt{m-1}$.
- $\mu_{1}(G) \geq \mu_{1}(H)$ for any subgraph H of G.

Proof of Theorem 1:

1. First we prove $\mu_{1} \geq(1+o(1)) \sqrt{m}$.

We observe

- It contains a star of size $(1+o(1)) m$.
- The largest eigenvalue of a star of size m is $\sqrt{m-1}$.

■ $\mu_{1}(G) \geq \mu_{1}(H)$ for any subgraph H of G.
Hence $\mu_{1} \geq(1+o(1)) \sqrt{m}$.

Proof continues

Now we will prove $\mu_{1} \geq(1+o(1)) \tilde{d}$.

Proof continues

Now we will prove $\mu_{1} \geq(1+o(1)) \tilde{d}$.
Let $X=\alpha^{*} A \alpha$, where $\alpha=\frac{1}{\sqrt{\sum_{i=1}^{n} w_{i}^{2}}}\left(w_{1}, w_{2}, \ldots, w_{n}\right)^{*}$ is a unit vector.

- $\mu_{1} \geq X$.

Proof continues

Now we will prove $\mu_{1} \geq(1+o(1)) \tilde{d}$.
Let $X=\alpha^{*} A \alpha$, where $\alpha=\frac{1}{\sqrt{\sum_{i=1}^{n} w_{i}^{2}}}\left(w_{1}, w_{2}, \ldots, w_{n}\right)^{*}$ is a unit vector.

- $\mu_{1} \geq X$.
- X can be written as a sum of independent random variables. $X=\frac{1}{\sum_{i=1}^{n} w_{i}^{2}} \sum_{i, j} w_{i} w_{j} X_{i, j}$, where $X_{i j}$ is the 0-1 random variable with $\operatorname{Pr}\left(X_{i, j}=1\right)=w_{i} w_{j} \rho$.

Proof continues

Now we will prove $\mu_{1} \geq(1+o(1)) \tilde{d}$.
Let $X=\alpha^{*} A \alpha$, where $\alpha=\frac{1}{\sqrt{\sum_{i=1}^{n} w_{i}^{2}}}\left(w_{1}, w_{2}, \ldots, w_{n}\right)^{*}$ is a unit vector.

- $\mu_{1} \geq X$.
- X can be written as a sum of independent random variables. $X=\frac{1}{\sum_{i=1}^{n} w_{i}^{2}} \sum_{i, j} w_{i} w_{j} X_{i, j}$, where $X_{i j}$ is the $0-1$ random variable with $\operatorname{Pr}\left(X_{i, j}=1\right)=w_{i} w_{j} \rho$.
- $E(X)=\tilde{d}$.

Proof continues

Now we will prove $\mu_{1} \geq(1+o(1)) \tilde{d}$.
Let $X=\alpha^{*} A \alpha$, where $\alpha=\frac{1}{\sqrt{\sum_{i=1}^{n} w_{i}^{2}}}\left(w_{1}, w_{2}, \ldots, w_{n}\right)^{*}$ is a unit vector.

- $\mu_{1} \geq X$.
- X can be written as a sum of independent random variables. $X=\frac{1}{\sum_{i=1}^{n} w_{i}^{2}} \sum_{i, j} w_{i} w_{j} X_{i, j}$, where $X_{i j}$ is the 0-1 random variable with $\operatorname{Pr}\left(X_{i, j}=1\right)=w_{i} w_{j} \rho$.
- $E(X)=\tilde{d}$.
X concentrates on $E(X)$.

Lemma A:

Let X_{1}, \ldots, X_{n} be independent random variables with

$$
\operatorname{Pr}\left(X_{i}=1\right)=p_{i}, \quad \operatorname{Pr}\left(X_{i}=0\right)=1-p_{i}
$$

For $X=\sum_{i=1}^{n} a_{i} X_{i}$, we have $E(X)=\sum_{i=1}^{n} a_{i} p_{i}$ and we define $\nu=\sum_{i=1}^{n} a_{i}^{2} p_{i}$. Then we have

$$
\begin{aligned}
& \operatorname{Pr}(X<E(X)-t) \leq e^{-\frac{t^{2}}{2 \nu}} ; \\
& \operatorname{Pr}(X>E(X)+t) \leq e^{-\frac{t^{2}}{2(\operatorname{Var}(X)+a t / 3)}} ;
\end{aligned}
$$

where a the maximum coefficient among
 a_{i} 's.

Lemma B:

$$
\mu_{1} \leq \tilde{d}+\sqrt{6 \sqrt{m \log n}(\tilde{d}+\log n)}+3 \sqrt{m \log n}
$$

Lemma B:

$$
\mu_{1} \leq \tilde{d}+\sqrt{6 \sqrt{m \log n}(\tilde{d}+\log n)}+3 \sqrt{m \log n}
$$

Proof of Lemma B: For a fixed value x (to be chosen later), we define $C=\operatorname{diag}\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ as follows:

$$
c_{i}= \begin{cases}w_{i} & \text { if } w_{i}>x \\ x & \text { otherwise }\end{cases}
$$

Lemma B:

$$
\mu_{1} \leq \tilde{d}+\sqrt{6 \sqrt{m \log n}(\tilde{d}+\log n)}+3 \sqrt{m \log n}
$$

Proof of Lemma B: For a fixed value x (to be chosen later), we define $C=\operatorname{diag}\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ as follows:

$$
c_{i}= \begin{cases}w_{i} & \text { if } w_{i}>x \\ x & \text { otherwise } .\end{cases}
$$

μ_{1} is bounded by the maximum row sum of $C^{-1} A C$.

Lemma B:

$$
\mu_{1} \leq \tilde{d}+\sqrt{6 \sqrt{m \log n}(\tilde{d}+\log n)}+3 \sqrt{m \log n}
$$

Proof of Lemma B: For a fixed value x (to be chosen later), we define $C=\operatorname{diag}\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ as follows:

$$
c_{i}= \begin{cases}w_{i} & \text { if } w_{i}>x \\ x & \text { otherwise } .\end{cases}
$$

μ_{1} is bounded by the maximum row sum of $C^{-1} A C$.
The i-th row sum X_{i} of $C^{-1} A C$ is $X_{i}=\frac{1}{c_{i}} \sum_{j=1}^{n} c_{j} a_{i j}$.

Lemma B:

$$
\mu_{1} \leq \tilde{d}+\sqrt{6 \sqrt{m \log n}(\tilde{d}+\log n)}+3 \sqrt{m \log n}
$$

Proof of Lemma B: For a fixed value x (to be chosen later), we define $C=\operatorname{diag}\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ as follows:

$$
c_{i}= \begin{cases}w_{i} & \text { if } w_{i}>x \\ x & \text { otherwise } .\end{cases}
$$

μ_{1} is bounded by the maximum row sum of $C^{-1} A C$.
The i-th row sum X_{i} of $C^{-1} A C$ is $X_{i}=\frac{1}{c_{i}} \sum_{j=1}^{n} c_{j} a_{i j}$. We have

$$
\begin{aligned}
E\left(X_{i}\right) & \leq \tilde{d}+x \\
\operatorname{Var}\left(X_{i}\right) & \leq \frac{m}{x} \tilde{d}+x .
\end{aligned}
$$

Proof continues

By Lemma A, we have

$$
\operatorname{Pr}\left(\left|X_{i}-E\left(X_{i}\right)\right|>t\right) \leq e^{-\frac{t^{2}}{2\left(V \operatorname{Var}\left(X_{i}\right)+m t / 3 x\right)}} .
$$

Proof continues

By Lemma A, we have

$$
\operatorname{Pr}\left(\left|X_{i}-E\left(X_{i}\right)\right|>t\right) \leq e^{-\frac{t^{2}}{2\left(V \operatorname{ar}\left(X_{i}\right)+m t / 3 x\right)}} .
$$

We choose $x=\sqrt{m \log n}, t=\sqrt{6 \operatorname{Var}\left(X_{i}\right) \log n}+\frac{2 m}{x} \log n$.

Proof continues

By Lemma A, we have

$$
\operatorname{Pr}\left(\left|X_{i}-E\left(X_{i}\right)\right|>t\right) \leq e^{-\frac{t^{2}}{2\left(\operatorname{Var}\left(X_{i}\right)+m t / 3 x\right)}} .
$$

We choose $x=\sqrt{m \log n}, t=\sqrt{6 \operatorname{Var}\left(X_{i}\right) \log n}+\frac{2 m}{x} \log n$. With probability at least $1-n^{-1}$, we have

$$
\mu_{1} \leq \max _{i}\left\{X_{i}\right\}
$$

Proof continues

By Lemma A, we have

$$
\operatorname{Pr}\left(\left|X_{i}-E\left(X_{i}\right)\right|>t\right) \leq e^{-\frac{t^{2}}{2\left(\operatorname{Var}\left(X_{i}\right)+m t / 3 x\right)}} .
$$

We choose $x=\sqrt{m \log n}, t=\sqrt{6 \operatorname{Var}\left(X_{i}\right) \log n}+\frac{2 m}{x} \log n$. With probability at least $1-n^{-1}$, we have

$$
\begin{aligned}
\mu_{1} & \leq \max _{i}\left\{X_{i}\right\} \\
& \leq \max _{i}\left\{E\left(X_{i}\right)+t\right\}
\end{aligned}
$$

Proof continues

By Lemma A, we have

$$
\operatorname{Pr}\left(\left|X_{i}-E\left(X_{i}\right)\right|>t\right) \leq e^{-\frac{t^{2}}{2\left(\operatorname{Var}\left(X_{i}\right)+m t / 3 x\right)}} .
$$

We choose $x=\sqrt{m \log n}, t=\sqrt{6 \operatorname{Var}\left(X_{i}\right) \log n}+\frac{2 m}{x} \log n$. With probability at least $1-n^{-1}$, we have

$$
\begin{aligned}
\mu_{1} & \leq \max _{i}\left\{X_{i}\right\} \\
& \leq \max _{i}\left\{E\left(X_{i}\right)+t\right\} \\
& \leq \tilde{d}+\sqrt{6 \sqrt{m \log n}(\tilde{d}+\log n)}+3 \sqrt{m \log n}
\end{aligned}
$$

Sketch proof

The outline for proving $\mu_{k}=(1+o(1)) \sqrt{w_{k}}$.

Sketch proof

The outline for proving $\mu_{k}=(1+o(1)) \sqrt{w_{k}}$.

$$
\begin{aligned}
S & =\left\{i \left\lvert\, w_{i}>\frac{m}{\log ^{1+\epsilon / 2} n}\right.\right\} \\
T & =\left\{i \mid w_{i} \leq \tilde{d} \log ^{1+\epsilon / 2} n\right\}
\end{aligned}
$$

- S and T are disjoint.

Sketch proof

The outline for proving $\mu_{k}=(1+o(1)) \sqrt{w_{k}}$.

$$
\begin{aligned}
& S=\left\{i \left\lvert\, w_{i}>\frac{m}{\log ^{1+\epsilon / 2} n}\right.\right\} \\
& T=\left\{i \mid w_{i} \leq \tilde{d} \log ^{1+\epsilon / 2} n\right\}
\end{aligned}
$$

- S and T are disjoint.
- $G=G(\bar{S}) \cup G(\bar{T}) \cup G(S, T)$.

Sketch proof

The outline for proving $\mu_{k}=(1+o(1)) \sqrt{w_{k}}$.

$$
\begin{aligned}
& S=\left\{i \left\lvert\, w_{i}>\frac{m}{\log ^{1+\epsilon / 2} n}\right.\right\} \\
& T=\left\{i \mid w_{i} \leq \tilde{d} \log ^{1+\epsilon / 2} n\right\}
\end{aligned}
$$

- S and T are disjoint.
- $G=G(\bar{S}) \cup G(\bar{T}) \cup G(S, T)$.

Apply Lemma B to $G(\bar{S})$ and $G(\bar{T})$, we have $\mu_{1}(G(\bar{S}))=o\left(\sqrt{w_{k}}\right)$ and $\mu_{1}(G(\bar{T}))=o\left(\sqrt{w_{k}}\right)$.

Sketch proof

- $G(S, T)$ contains a subgraph G_{1} which is a disjoint union of stars with sizes $(1+o(1)) w_{1}, \ldots,(1+o(1)) w_{k}$.

Sketch proof

- $G(S, T)$ contains a subgraph G_{1} which is a disjoint union of stars with sizes $(1+o(1)) w_{1}, \ldots,(1+o(1)) w_{k}$.
- The maximum degrees m_{S} and m_{T} of $G_{2}=G(S, T) \backslash G_{1}$ are small. We have

$$
\mu_{1}\left(G_{2}\right) \leq \sqrt{m_{S} m_{T}}=o\left(\sqrt{w_{k}}\right)
$$

Sketch proof

- $G(S, T)$ contains a subgraph G_{1} which is a disjoint union of stars with sizes $(1+o(1)) w_{1}, \ldots,(1+o(1)) w_{k}$.
- The maximum degrees m_{S} and m_{T} of $G_{2}=G(S, T) \backslash G_{1}$ are small. We have

$$
\mu_{1}\left(G_{2}\right) \leq \sqrt{m_{S} m_{T}}=o\left(\sqrt{w_{k}}\right)
$$

Putting together, for $1 \leq i \leq k$, we have

$$
\begin{aligned}
\left|\mu_{i}(G)-\sqrt{w_{i}}\right| & \leq\left|\mu_{i}(G)-\mu_{i}\left(G_{1}\right)\right|+o\left(\sqrt{w_{i}}\right) \\
& \leq \mid \mu_{1}(G(\bar{S}))+\mu_{1}(G(\bar{T}))+\mu_{1}\left(G_{2}\right)+o\left(\sqrt{w_{i}}\right) \\
& =o\left(\sqrt{w_{i}}\right) .
\end{aligned}
$$

Laplacian spectrum

Random walks on a graph G :

$$
\begin{gathered}
\pi_{k+1}=A D^{-1} \pi_{k} \\
A D^{-1} \sim D^{-1 / 2} A D^{-1 / 2}
\end{gathered}
$$

Laplacian spectrum

Random walks on a graph G :

$$
\begin{gathered}
\pi_{k+1}=A D^{-1} \pi_{k} \\
A D^{-1} \sim D^{-1 / 2} A D^{-1 / 2}
\end{gathered}
$$

Laplacian spectrum

$$
0=\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{n-1} \leq 2
$$

are the eigenvalues of $L=I-D^{-1 / 2} A D^{-1 / 2}$.

Laplacian spectrum

Random walks on a graph G :

$$
\begin{gathered}
\pi_{k+1}=A D^{-1} \pi_{k} \\
A D^{-1} \sim D^{-1 / 2} A D^{-1 / 2}
\end{gathered}
$$

Laplacian spectrum

$$
0=\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{n-1} \leq 2
$$

are the eigenvalues of $L=I-D^{-1 / 2} A D^{-1 / 2}$.
The eigenvalues of $A D^{-1}$ are $1,1-\lambda_{1}, \ldots, 1-\lambda_{n-1}$.

Spectral Radius

Let

- $w_{\min }=\min \left\{w_{1}, \ldots, w_{n}\right\}$
- $d=\frac{1}{n} \sum_{i=1}^{n} w_{i}$
- $g(n)$ - a function tending to infinity arbitrarily slowly.

Chung, Vu, and Lu (2003)

If $w_{\text {min }} \gg \log ^{2} n$, then almost surely the Laplacian spectrum λ_{i} 's of $G\left(w_{1}, \ldots, w_{n}\right)$ satisfy

$$
\max _{i \neq 0}\left|1-\lambda_{i}\right| \leq(1+o(1)) \frac{4}{\sqrt{d}}+\frac{g(n) \log ^{2} n}{w_{\min }} .
$$

Approximation

$$
M=D^{-1 / 2} A D^{-1 / 2}-\phi_{0} \phi_{0}^{\prime}
$$

where
$\phi_{0}=\frac{1}{\sqrt{\sum_{i=1}^{n} d_{i}}}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{n}}\right)^{\prime}$.

$$
C=W^{-1 / 2} A W^{-1 / 2}-\chi \chi^{\prime}
$$

where
$\chi=\frac{1}{\sqrt{\sum_{i=1}^{n} w_{i}}}\left(\sqrt{w_{1}}, \ldots, \sqrt{w_{n}}\right)^{\prime}$.

Approximation

$$
M=D^{-1 / 2} A D^{-1 / 2}-\phi_{0} \phi_{0}^{\prime}
$$

where
$\phi_{0}=\frac{1}{\sqrt{\sum_{i=1}^{n} d_{i}}}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{n}}\right)^{\prime}$.

$$
C=W^{-1 / 2} A W^{-1 / 2}-\chi \chi^{\prime}
$$

where

$$
\chi=\frac{1}{\sqrt{\sum_{i=1}^{n} w_{i}}}\left(\sqrt{w_{1}}, \ldots, \sqrt{w_{n}}\right)^{\prime}
$$

- C can be viewed as the "expectation" of M.

Approximation

$$
M=D^{-1 / 2} A D^{-1 / 2}-\phi_{0} \phi_{0}^{\prime}
$$

where
$\phi_{0}=\frac{1}{\sqrt{\sum_{i=1}^{n} d_{i}}}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{n}}\right)^{\prime}$.

$$
C=W^{-1 / 2} A W^{-1 / 2}-\chi \chi^{\prime}
$$

where

$$
\chi=\frac{1}{\sqrt{\sum_{i=1}^{n} w_{i}}}\left(\sqrt{w_{1}}, \ldots, \sqrt{w_{n}}\right)^{\prime}
$$

- C can be viewed as the "expectation" of M. We have

$$
\|M-C\| \leq(1+o(1)) \frac{2}{\sqrt{d}} .
$$

Approximation

$$
M=D^{-1 / 2} A D^{-1 / 2}-\phi_{0} \phi_{0}^{\prime}
$$

where
$\phi_{0}=\frac{1}{\sqrt{\sum_{i=1}^{n} d_{i}}}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{n}}\right)^{\prime}$.

$$
C=W^{-1 / 2} A W^{-1 / 2}-\chi \chi^{\prime}
$$

where

$$
\chi=\frac{1}{\sqrt{\sum_{i=1}^{n} w_{i}}}\left(\sqrt{w_{1}}, \ldots, \sqrt{w_{n}}\right)^{\prime}
$$

- C can be viewed as the "expectation" of M. We have

$$
\|M-C\| \leq(1+o(1)) \frac{2}{\sqrt{d}} .
$$

- $\quad M$ has eigenvalues $0,1-\lambda_{1}, \ldots, 1-\lambda_{n-1}$, since

$$
M=I-L-\phi_{0}^{*} \phi_{0} \text { and } L \phi_{0}=0
$$

Results on spectrum of C

Chung, Vu, and Lu (2003)

We have
If $w_{\text {min }} \gg \sqrt{d} \log ^{2} n$, then

$$
\|C\|=(1+o(1)) \frac{2}{\sqrt{d}} .
$$

Results on spectrum of C

Chung, Vu, and Lu (2003)

We have

- If $w_{\min } \gg \sqrt{d} \log ^{2} n$, then

$$
\|C\|=(1+o(1)) \frac{2}{\sqrt{d}} .
$$

- If $w_{\text {min }} \gg \sqrt{d}$, the eigenvalues of C follow the semi-circle distribution with radius $r \approx \frac{2}{\sqrt{d}}$.

Proof

Wigner's high moment method:

$$
\|C\| \leq\left[\operatorname{Trace}\left(C^{2 k}\right)\right]^{\frac{1}{2 k}} .
$$

Proof

Wigner's high moment method:

$$
\|C\| \leq\left[\operatorname{Trace}\left(C^{2 k}\right)\right)^{\frac{1}{2 k}} .
$$

First we will bound $E\left(\operatorname{Trace}\left(C^{2 k}\right)\right)$.

$$
\begin{aligned}
E\left(\operatorname{Trace}\left(C^{2 k}\right)\right) & =\sum_{i_{1}, i_{2}, \ldots, i_{2 k}} E\left(c_{i_{1} i_{2}} c_{i_{2} i_{3}} \cdots c_{i_{2 k-1} i_{2 k}} c_{i_{2 k} i_{1}}\right) \\
& =\sum_{l \geq 1} \sum_{I_{l}} \prod_{h=1}^{l} E\left(c_{e_{h}}^{m_{h}}\right)
\end{aligned}
$$

$I_{k}=\{$ closed walks of length $2 k$ which use l different edges e_{1}, \ldots, e_{l} with corresponding multiplicities $\left.m_{1}, \ldots, m_{l} \cdot\right\}$

Proof continues

$$
E\left(c_{e_{h}}\right)=0
$$

Proof continues

$$
\begin{aligned}
& E\left(c_{e_{h}}\right)=0, \\
& E\left(c_{e_{h}}^{2}\right) \approx \rho,
\end{aligned}
$$

Proof continues

$$
\begin{aligned}
E\left(c_{e_{h}}\right) & =0 \\
E\left(c_{e_{h}}^{2}\right) & \approx \rho \\
E\left(c_{e_{h}}^{m_{h}}\right) & \leq \frac{\rho}{w_{\min }^{m_{h}-2}}
\end{aligned}
$$

Proof continues

$$
\begin{aligned}
E\left(c_{e_{h}}\right) & =0 \\
E\left(c_{e_{h}}^{2}\right) & \approx \rho \\
E\left(c_{e_{h}}^{m_{h}}\right) & \leq \frac{\rho}{w_{\min }^{m_{h}-2}}
\end{aligned}
$$

We have

$$
E\left(\operatorname{Trace}\left(C^{2 k}\right)\right) \leq \sum_{l=1}^{l} W_{l, k} \frac{\rho^{l}}{w_{\min }^{2 k-2 l}}
$$

Here $W_{l, k}$ denotes the set of closed good walks on K_{n} of length $2 k$ using exactly l different edges.

Proof continues

$$
\left|W_{l, k}\right| \leq n(n-1) \ldots(n-l)\binom{2 k}{2 l}\binom{2 l}{l} \frac{1}{l+1}(l+1)^{4(k-l)} .
$$

If $w_{\text {min }} \gg \sqrt{d} \log ^{2} n, W_{k, k} \rho^{k} \approx n\left(\frac{2}{\sqrt{d}}\right)^{2 k}$ is the main term in the previous sum.

Proof continues

$$
\left|W_{l, k}\right| \leq n(n-1) \ldots(n-l)\binom{2 k}{2 l}\binom{2 l}{l} \frac{1}{l+1}(l+1)^{4(k-l)} .
$$

If $w_{\text {min }} \gg \sqrt{d} \log ^{2} n, W_{k, k} \rho^{k} \approx n\left(\frac{2}{\sqrt{d}}\right)^{2 k}$ is the main term in the previous sum.

$$
E\left(\operatorname{Trace}\left(C^{2 k}\right)\right)=(1+o(1)) n\left(\frac{2}{\sqrt{d}}\right)^{2 k}
$$

Proof continues

By Markov's inequality, we have

$$
\operatorname{Pr}\left(\|C\| \geq(1+\epsilon) \frac{2}{\sqrt{d}}\right)=\operatorname{Pr}\left(\|C\|^{2 k} \geq(1+\epsilon)^{2 k}\left(\frac{2}{\sqrt{d}}\right)^{2 k}\right)
$$

Proof continues

By Markov's inequality, we have

$$
\begin{aligned}
\operatorname{Pr}\left(\|C\| \geq(1+\epsilon) \frac{2}{\sqrt{d}}\right) & =\operatorname{Pr}\left(\|C\|^{2 k} \geq(1+\epsilon)^{2 k}\left(\frac{2}{\sqrt{d}}\right)^{2 k}\right) \\
& \leq \frac{E\left(\operatorname{Trace}\left(C^{2 k}\right)\right)}{(1+\epsilon)^{2 k}\left(\frac{2}{\sqrt{d}}\right)^{2 k}}
\end{aligned}
$$

Proof continues

By Markov's inequality, we have

$$
\begin{aligned}
\operatorname{Pr}\left(\|C\| \geq(1+\epsilon) \frac{2}{\sqrt{d}}\right) & =\operatorname{Pr}\left(\|C\|^{2 k} \geq(1+\epsilon)^{2 k}\left(\frac{2}{\sqrt{d}}\right)^{2 k}\right) \\
& \leq \frac{E\left(\operatorname{Trace}\left(C^{2 k}\right)\right)}{(1+\epsilon)^{2 k}\left(\frac{2}{\sqrt{d}}\right)^{2 k}} \\
& \leq \frac{(1+o(1)) n\left(\frac{2}{\sqrt{d}}\right)^{2 k}}{(1+\epsilon)^{2 k}\left(\frac{2}{\sqrt{d}}\right)^{2 k}}
\end{aligned}
$$

Proof continues

By Markov's inequality, we have

$$
\begin{aligned}
\operatorname{Pr}\left(\|C\| \geq(1+\epsilon) \frac{2}{\sqrt{d}}\right) & =\operatorname{Pr}\left(\|C\|^{2 k} \geq(1+\epsilon)^{2 k}\left(\frac{2}{\sqrt{d}}\right)^{2 k}\right) \\
& \leq \frac{E\left(\operatorname{Trace}\left(C^{2 k}\right)\right)}{(1+\epsilon)^{2 k}\left(\frac{2}{\sqrt{d}}\right)^{2 k}} \\
& \leq \frac{(1+o(1)) n\left(\frac{2}{\sqrt{d}}\right)^{2 k}}{(1+\epsilon)^{2 k}\left(\frac{2}{\sqrt{d}}\right)^{2 k}} \\
& =\frac{(1+o(1)) n}{(1+\epsilon)^{2 k}}
\end{aligned}
$$

Proof continues

By Markov's inequality, we have

$$
\begin{aligned}
\operatorname{Pr}\left(\|C\| \geq(1+\epsilon) \frac{2}{\sqrt{d}}\right) & =\operatorname{Pr}\left(\|C\|^{2 k} \geq(1+\epsilon)^{2 k}\left(\frac{2}{\sqrt{d}}\right)^{2 k}\right) \\
& \leq \frac{E\left(\operatorname{Trace}\left(C^{2 k}\right)\right)}{(1+\epsilon)^{2 k}\left(\frac{2}{\sqrt{d}}\right)^{2 k}} \\
& \leq \frac{(1+o(1)) n\left(\frac{2}{\sqrt{d}}\right)^{2 k}}{(1+\epsilon)^{2 k}\left(\frac{2}{\sqrt{d}}\right)^{2 k}} \\
& =\frac{(1+o(1)) n}{(1+\epsilon)^{2 k}} \\
& =o(1), \quad \text { if } k \gg \log n .
\end{aligned}
$$

The proof of the semicircle law

Let $W(x)$ be the cumulative distribution function of the unit semicircle.

$$
\begin{aligned}
\int_{-1}^{1} x^{2 k} d W(x) & =\frac{(2 k)!}{2^{2 k} k!(k+1)!} \\
\int_{-1}^{1} x^{2 k+1} d W(x) & =0
\end{aligned}
$$

The proof of the semicircle law

Let $C_{\text {nor }}=\left(\frac{2}{\sqrt{d}}\right)^{-1} C$. Let $N(x)$ be the number of eigenvalues of $C_{\text {nor }}$ less than x and $W_{n}(x)=n^{-1} N(x)$ be the cumulative distribution function.

The proof of the semicircle law

Let $C_{\text {nor }}=\left(\frac{2}{\sqrt{d}}\right)^{-1} C$. Let $N(x)$ be the number of eigenvalues of C nor less than x and $W_{n}(x)=n^{-1} N(x)$ be the cumulative distribution function.
For every $k \ll \log n$,

$$
\begin{gathered}
\int_{-\infty}^{\infty} x^{2 k} d W_{n}(x)=\frac{1}{n} E\left(\operatorname{Trace}\left(C_{\mathrm{nor}}^{2 k}\right)\right)=\frac{(1+o(1))(2 k)!}{2^{2 k} k!(k+1)!}, \\
\int_{-\infty}^{\infty} x^{2 k+1} d W_{n}(x)=\frac{1}{n} E\left(\operatorname{Trace}\left(C_{\mathrm{nor}}^{2 k+1}\right)\right)=o(1) .
\end{gathered}
$$

Thus, $W_{n}(x) \longrightarrow W(x)$ (in probability) as $n \rightarrow \infty$.

Summary

For the random graph with given expected degree sequence $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$, we proved that

- The largest eigenvalue μ_{1} is essentially the maximum of \sqrt{m} and \tilde{d}, if they are apart by at least a factor of $\log ^{2} n$.

Summary

For the random graph with given expected degree sequence $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$, we proved that

- The largest eigenvalue μ_{1} is essentially the maximum of \sqrt{m} and \tilde{d}, if they are apart by at least a factor of $\log ^{2} n$.
- If \tilde{d} is small enough $\left(<\frac{\sqrt{W_{k}}}{\log ^{2} n}\right.$, the k-th largest eigenvalue is about the square root of k-th largest weight w_{k}.

Summary

For the random graph with given expected degree sequence $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$, we proved that

- The largest eigenvalue μ_{1} is essentially the maximum of \sqrt{m} and \tilde{d}, if they are apart by at least a factor of $\log ^{2} n$.
- If \tilde{d} is small enough $\left(<\frac{\sqrt{w_{k}}}{\log ^{2} n}\right)$, the k-th largest eigenvalue is about the square root of k-th largest weight w_{k}.
- The non-zero Laplacian eigenvalues concentrate on 1 with spectral radius at most $\frac{4}{\sqrt{d}}$, if $w_{\text {min }} \gg \sqrt{d} \log ^{2} n$.

Summary

For the random graph with given expected degree sequence $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$, we proved that

- The largest eigenvalue μ_{1} is essentially the maximum of \sqrt{m} and \tilde{d}, if they are apart by at least a factor of $\log ^{2} n$.
- If \tilde{d} is small enough $\left(<\frac{\sqrt{w_{k}}}{\log ^{2} n}\right)$, the k-th largest eigenvalue is about the square root of k-th largest weight w_{k}.
- The non-zero Laplacian eigenvalues concentrate on 1 with spectral radius at most $\frac{4}{\sqrt{d}}$, if $w_{\text {min }} \gg \sqrt{d} \log ^{2} n$.

References

- Fan Chung, Linyuan Lu and Van Vu, The spectra of random graphs with given expected degrees, Proceedings of National Academy of Sciences, 100, No. 11, (2003), 6313-6318.
- Fan Chung, Linyuan Lu, and Van Vu, Eigenvalues of random power law graphs, Annals of Combinatorics, 7 (2003), 21-33.

Overview of talks

- Lecture 1: Overview and outlines

■ Lecture 2: Generative models - preferential attachment schemes

- Lecture 3: Duplication models for biological networks

■ Lecture 4: The rise of the giant component

- Lecture 5: The small world phenomenon: average distance and diameter

■ Lecture 6: Spectrum of random graphs with given degrees

