

Complex Graphs and Networks

Lecture 6: Spectrum of random graphs with given degrees

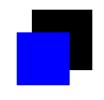
Linyuan Lu

lu@math.sc.edu

University of South Carolina

BASICS2008 SUMMER SCHOOL July 27 – August 2, 2008

Overview of talks



- Lecture 1: Overview and outlines
- Lecture 2: Generative models preferential attachment schemes
- Lecture 3: Duplication models for biological networks
- Lecture 4: The rise of the giant component
- Lecture 5: The small world phenomenon: average distance and diameter
- Lecture 6: Spectrum of random graphs with given degrees

(1) Adjacency matrix:

$$A = \left(\begin{array}{rrrr} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right)$$

Eigenvalues are

$$-\sqrt{2}, 0, \sqrt{2}.$$

(2) Combinatorial Laplacian

$$D - A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

Eigenvalues are

0, 1, 3.

Lecture 6: Spectrum of random graphs with given degrees

(3) Normalized Laplacian

$$I - D^{-1/2}AD^{-1/2} = \begin{pmatrix} 1 & -\frac{\sqrt{2}}{2} & 0\\ -\frac{\sqrt{2}}{2} & 1 & -\frac{\sqrt{2}}{2}\\ 0 & -\frac{\sqrt{2}}{2} & 1 \end{pmatrix}$$

Eigenvalues are

0, 1, 2.

Lecture 6: Spectrum of random graphs with given degrees

Relations

If G is a d-regular graph, then three spectra are related by linear translations.

$$D - A = dI - A$$
$$D - A = d(I - D^{-1/2}AD^{-1/2})$$
$$I - D^{-1/2}AD^{-1/2} = I - \frac{1}{d}A.$$

Relations

If G is a d-regular graph, then three spectra are related by linear translations.

$$D - A = dI - A$$
$$D - A = d(I - D^{-1/2}AD^{-1/2})$$
$$I - D^{-1/2}AD^{-1/2} = I - \frac{1}{d}A.$$

But they are quite different for general graphs.

Laplacian Spectrum

The (normalized) Laplacian is defined to be the matrix

$$\mathcal{L} = I - D^{-1/2} A D^{-1/2}.$$

1. All eigenvalues of \mathcal{L} are between 0 and 2.

$$0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{n-1} \leq 2.$$

2. *G* is connected if and only if $\lambda_1 > 0$.

3. G is bipartite if and only if
$$\lambda_{n-1} = 2$$
.

Lecture 6: Spectrum of random graphs with given degrees

Cheeger constant

The Cheeger constant h_G of a graph G is defined by

$$h_G = \inf_{S} \frac{|\partial(S)|}{\min\{\operatorname{vol}(S), \operatorname{vol}(\bar{S})\}}$$

where $\partial(S)$ denotes the set of edges leaving S. Cheeger's inequality states

$$2h_G \ge \lambda_1 \ge \frac{h_G^2}{2}.$$

Diameter

Let D(G) be the diameter of G, then

$$D(G) \leq \left\lceil \frac{\log \frac{\operatorname{vol}(G)}{\min_x d_x}}{\log \frac{\lambda_{n-1} + \lambda_1}{\lambda_{n-1} - \lambda_1}} \right\rceil$$

.

Diameter

Let D(G) be the diameter of G, then

$$D(G) \le \left\lceil \frac{\log \frac{\operatorname{vol}(G)}{\min_x d_x}}{\log \frac{\lambda_{n-1} + \lambda_1}{\lambda_{n-1} - \lambda_1}} \right\rceil$$

٠

In general, let D(X,Y) denote the distance between two subsets X and Y. Then

$$D(X,Y) \le \left\lceil \frac{\log \frac{\operatorname{vol}(G)}{\sqrt{\operatorname{vol}(X)\operatorname{vol}(Y)}}}{\log \frac{\lambda_{n-1}+\lambda_1}{\lambda_{n-1}-\lambda_1}} \right\rceil$$

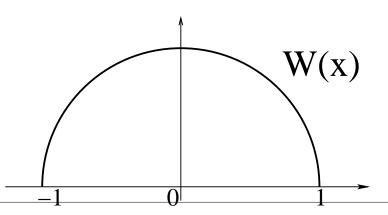
Lecture 6: Spectrum of random graphs with given degrees

Wigner's semicircle law

Wigner (1958)

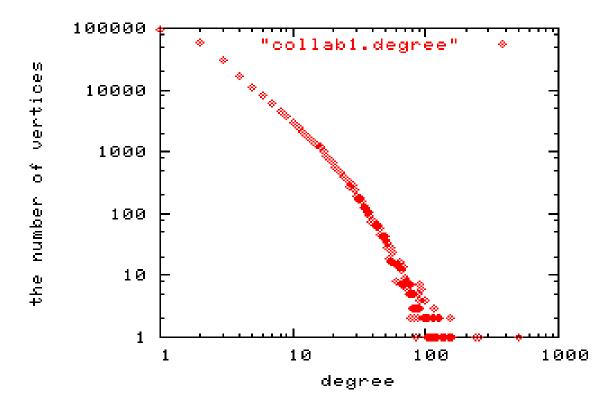
- A is a real symmetric $n \times n$ matrix.
- Entries a_{ij} are independent random variables.
- $E(a_{ij}^{2k+1}) = 0.$
- $E(a_{ij}^{\check{z}}) = m^2$.
- $E(a_{ij}^{2k}) < M.$

The distribution of eigenvalues of A converges into a semicircle distribution of radius $2m\sqrt{n}$.



The power law

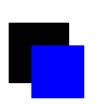
The number of vertices of degree k is approximately proportional to $k^{-\beta}$ for some positive $\beta.$



power law graph is a graph which satisfies the power law.

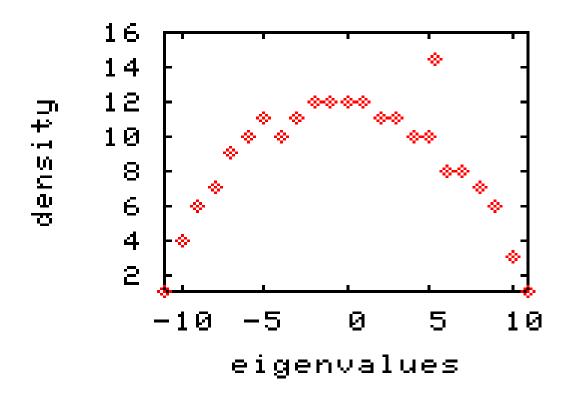
A spectrum question

Do the eigenvalues of a power law graph follow the semicircle law or do the eigenvalues have a power law distribution?



Evidence for the semicircle law for power law graphs

The eigenvalues of an Erdős-Rényi random graph follow the semicircle law. (Füredi and Komlós, 1981)



Experimental results

Faloutsos et al. (1999) The eigenvalues of the Internet graph do not follow the semicircle law.

Experimental results

- **Faloutsos et al. (1999)** The eigenvalues of the Internet graph do not follow the semicircle law.
- Farkas et. al. (2001), Goh et. al. (2001) The spectrum of a power law graph follows a "triangular-like" distribution.

Experimental results

- **Faloutsos et al. (1999)** The eigenvalues of the Internet graph do not follow the semicircle law.
- Farkas et. al. (2001), Goh et. al. (2001) The spectrum of a power law graph follows a "triangular-like" distribution.
- Mihail and Papadimitriou (2002) They showed that the large eigenvalues are determined by the large degrees. Thus, the significant part of the spectrum of a power law graph follows the power law.

$$\mu_i \approx \sqrt{d_i}.$$

Model $G(w_1, w_2, ..., w_n)$

Random graph model with given expected degree sequence

- n nodes with weights w_1, w_2, \ldots, w_n .

Model $G(w_1, w_2, \ldots, w_n)$

Random graph model with given expected degree sequence

- n nodes with weights w_1, w_2, \ldots, w_n .
- For each pair (i, j), create an edge independently with probability $p_{ij} = w_i w_j \rho$, where $\rho = \frac{1}{\sum_{i=1}^n w_i}$.

Model $G(w_1, w_2, \ldots, w_n)$

Random graph model with given expected degree sequence

- n nodes with weights w_1, w_2, \ldots, w_n .
- For each pair (i, j), create an edge independently with probability $p_{ij} = w_i w_j \rho$, where $\rho = \frac{1}{\sum_{i=1}^n w_i}$.
- The graph H has probability

$$\prod_{ij\in E(H)} p_{ij} \prod_{ij\notin E(H)} (1-p_{ij}).$$

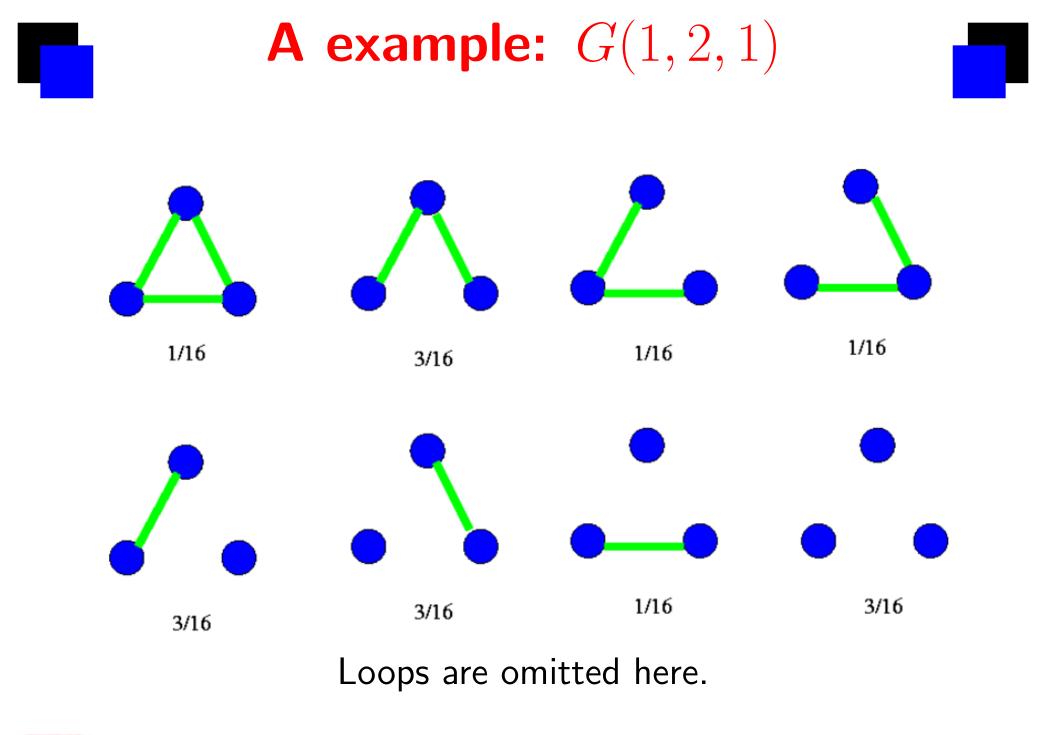
Model $G(w_1, w_2, \ldots, w_n)$

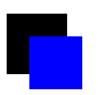
Random graph model with given expected degree sequence

- n nodes with weights w_1, w_2, \ldots, w_n .
- For each pair (i, j), create an edge independently with probability $p_{ij} = w_i w_j \rho$, where $\rho = \frac{1}{\sum_{i=1}^n w_i}$.
- The graph H has probability

$$\prod_{ij\in E(H)} p_{ij} \prod_{ij\notin E(H)} (1-p_{ij}).$$

- The expected degree of vertex i is w_i .

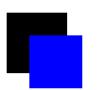




Notations

For $G = G(w_1, \ldots, w_n)$, let

- $d = \frac{1}{n} \sum_{i=1}^{n} w_i$ - $\tilde{d} = \frac{\sum_{i=1}^{n} w_i^2}{\sum_{i=1}^{n} w_i}$.
- The volume of S: $\operatorname{Vol}(S) = \sum_{i \in S} w_i$.
- The k-th volume of S: $\operatorname{Vol}_k(\overline{S}) = \sum_{i \in S} w_i^k$.



Notations

For
$$G = G(w_1, \ldots, w_n)$$
, let

- $d = \frac{1}{n} \sum_{i=1}^{n} w_i$ - $\tilde{d} = \frac{\sum_{i=1}^{n} w_i^2}{\sum_{i=1}^{n} w_i}$.
- The volume of S: $\operatorname{Vol}(S) = \sum_{i \in S} w_i$.
- The k-th volume of S: $\operatorname{Vol}_k(\overline{S}) = \sum_{i \in S} w_i^k$.

We have

$$\tilde{d} \ge d$$

"=" holds if and only if $w_1 = \cdots = w_n$.

Chung, Vu, and Lu (2003) Suppose $w_1 \ge w_2 \ge \ldots \ge w_n$. Let μ_i be *i*-th largest eigenvalue of $G(w_1, w_2, \ldots, w_n)$. Let $m = w_1$ and $\tilde{d} = \sum_{i=1}^n w_i^2 \rho$. Almost surely we have:

 $(1-o(1)) \max\{\sqrt{m}, \tilde{d}\} \le \mu_1 \le 7\sqrt{\log n} \cdot \max\{\sqrt{m}, \tilde{d}\}.$

Chung, Vu, and Lu (2003) Suppose $w_1 \ge w_2 \ge \ldots \ge w_n$. Let μ_i be *i*-th largest eigenvalue of $G(w_1, w_2, \ldots, w_n)$. Let $m = w_1$ and $\tilde{d} = \sum_{i=1}^n w_i^2 \rho$. Almost surely we have: $(1-o(1)) \max\{\sqrt{m}, \tilde{d}\} \le \mu_1 \le 7\sqrt{\log n} \cdot \max\{\sqrt{m}, \tilde{d}\}.$

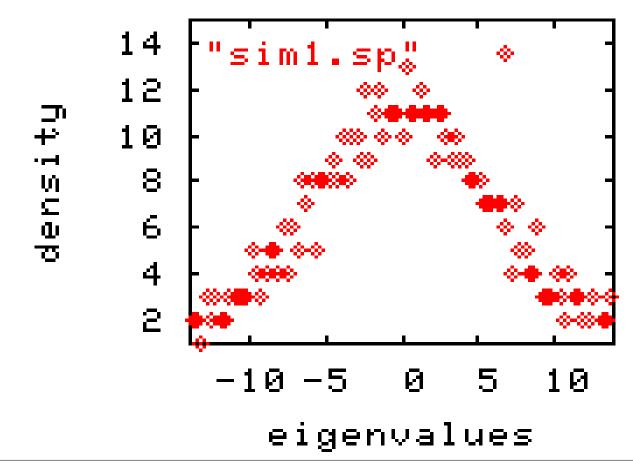
$$\mu_1 = (1 + o(1))\tilde{d}, \text{ if } \tilde{d} > \sqrt{m}\log n.$$

Chung, Vu, and Lu (2003) Suppose $w_1 > w_2 \geq \ldots \geq w_n$. Let μ_i be *i*-th largest eigenvalue of $G(w_1, w_2, \ldots, w_n)$. Let $m = w_1$ and $d = \sum_{i=1}^{n} w_i^2 \rho$. Almost surely we have: • $(1-o(1)) \max\{\sqrt{m}, \tilde{d}\} \le \mu_1 \le 7\sqrt{\log n} \cdot \max\{\sqrt{m}, d\}.$ $\mu_1 = (1 + o(1))\tilde{d}, \text{ if } \tilde{d} > \sqrt{m}\log n.$ • $\mu_1 = (1 + o(1))\sqrt{m}$, if $\sqrt{m} > \tilde{d} \log^2 n$.

Chung, Vu, and Lu (2003) Suppose $w_1 \ge w_2 \ge \ldots \ge w_n$. Let μ_i be *i*-th largest eigenvalue of $G(w_1, w_2, \ldots, w_n)$. Let $m = w_1$ and $d = \sum_{i=1}^{n} w_i^2 \rho$. Almost surely we have: $(1-o(1)) \max\{\sqrt{m}, \tilde{d}\} \le \mu_1 \le 7\sqrt{\log n} \cdot \max\{\sqrt{m}, \tilde{d}\}.$ • $\mu_1 = (1 + o(1))\tilde{d}$, if $\tilde{d} > \sqrt{m} \log n$. • $\mu_1 = (1 + o(1))\sqrt{m}$, if $\sqrt{m} > \tilde{d} \log^2 n$. • $\mu_k \approx \sqrt{w_k}$ and $\mu_{n+1-k} \approx -\sqrt{w_k}$, if $\sqrt{w_k} > \tilde{d} \log^2 n$.

Random power law graphs

The first k and last k eigenvalues of the random power law graph with $\beta > 2.5$ follows the power law distribution with exponent $2\beta - 1$. It results a "triangular-like" shape.



1. First we prove $\mu_1 \ge (1 + o(1))\sqrt{m}$.

1. First we prove $\mu_1 \ge (1 + o(1))\sqrt{m}$.

We observe

• It contains a star of size (1 + o(1))m.

1. First we prove $\mu_1 \ge (1 + o(1))\sqrt{m}$.

We observe

- It contains a star of size (1 + o(1))m.
- The largest eigenvalue of a star of size m is $\sqrt{m-1}$.

1. First we prove $\mu_1 \ge (1 + o(1))\sqrt{m}$.

We observe

- It contains a star of size (1 + o(1))m.
- The largest eigenvalue of a star of size m is $\sqrt{m-1}$.
- $\mu_1(G) \ge \mu_1(H)$ for any subgraph H of G.

1. First we prove $\mu_1 \ge (1 + o(1))\sqrt{m}$.

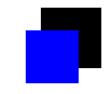
We observe

- It contains a star of size (1 + o(1))m.
- The largest eigenvalue of a star of size m is $\sqrt{m-1}$.
- $\mu_1(G) \ge \mu_1(H)$ for any subgraph H of G.

Hence $\mu_1 \ge (1 + o(1))\sqrt{m}$.

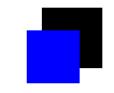
Proof continues

Now we will prove $\mu_1 \ge (1 + o(1))\tilde{d}$.



Now we will prove $\mu_1 \ge (1 + o(1))d$. Let $X = \alpha^* A \alpha$, where $\alpha = \frac{1}{\sqrt{\sum_{i=1}^n w_i^2}} (w_1, w_2, \dots, w_n)^*$ is a unit vector.

 $\bullet \quad \mu_1 \ge X.$



Now we will prove $\mu_1 \ge (1 + o(1))d$. Let $X = \alpha^* A \alpha$, where $\alpha = \frac{1}{\sqrt{\sum_{i=1}^n w_i^2}} (w_1, w_2, \dots, w_n)^*$ is a unit vector.

- $\bullet \quad \mu_1 \geq X.$
- X can be written as a sum of independent random variables. $X = \frac{1}{\sum_{i=1}^{n} w_i^2} \sum_{i,j} w_i w_j X_{i,j}$, where X_{ij} is the 0-1 random variable with $Pr(X_{i,j} = 1) = w_i w_j \rho$.

Now we will prove $\mu_1 \ge (1 + o(1))d$. Let $X = \alpha^* A \alpha$, where $\alpha = \frac{1}{\sqrt{\sum_{i=1}^n w_i^2}} (w_1, w_2, \dots, w_n)^*$ is a unit vector.

- $\bullet \quad \mu_1 \geq X.$
 - X can be written as a sum of independent random variables. $X = \frac{1}{\sum_{i=1}^{n} w_i^2} \sum_{i,j} w_i w_j X_{i,j}$, where X_{ij} is the 0-1 random variable with $Pr(X_{i,j} = 1) = w_i w_j \rho$.

$$E(X) = \tilde{d}.$$

Now we will prove $\mu_1 \ge (1 + o(1))d$. Let $X = \alpha^* A \alpha$, where $\alpha = \frac{1}{\sqrt{\sum_{i=1}^n w_i^2}} (w_1, w_2, \dots, w_n)^*$ is a unit vector.

- $\bullet \quad \mu_1 \geq X.$
 - X can be written as a sum of independent random variables. $X = \frac{1}{\sum_{i=1}^{n} w_i^2} \sum_{i,j} w_i w_j X_{i,j}$, where X_{ij} is the 0-1 random variable with $Pr(X_{i,j} = 1) = w_i w_j \rho$.

$$\bullet \quad E(X) = \tilde{d}.$$

X concentrates on E(X).

Lecture 6: Spectrum of random graphs with given degrees

Lemma A:

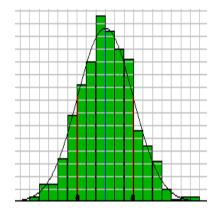
Let X_1, \ldots, X_n be independent random variables with

$$Pr(X_i = 1) = p_i, \qquad Pr(X_i = 0) = 1 - p_i$$

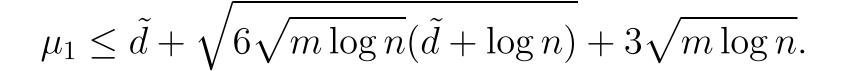
For $X = \sum_{i=1}^{n} a_i X_i$, we have $E(X) = \sum_{i=1}^{n} a_i p_i$ and we define $\nu = \sum_{i=1}^{n} a_i^2 p_i$. Then we have

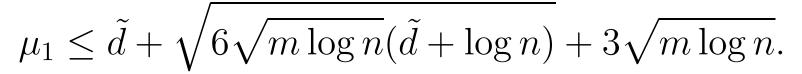
$$Pr(X < E(X) - t) \leq e^{-\frac{t^2}{2\nu}};$$

$$Pr(X > E(X) + t) \leq e^{-\frac{t^2}{2(Var(X) + at/3)}};$$



where a the maximum coefficient among a_i 's.





Proof of Lemma B: For a fixed value x (to be chosen later), we define $C = diag(c_1, c_2, \ldots, c_n)$ as follows:

$$c_i = \begin{cases} w_i & \text{if } w_i > x \\ x & \text{otherwise} \end{cases}$$

$$\mu_1 \le \tilde{d} + \sqrt{6\sqrt{m\log n}(\tilde{d} + \log n)} + 3\sqrt{m\log n}.$$

Proof of Lemma B: For a fixed value x (to be chosen later), we define $C = diag(c_1, c_2, \ldots, c_n)$ as follows:

$$c_i = \begin{cases} w_i & \text{if } w_i > x \\ x & \text{otherwise.} \end{cases}$$

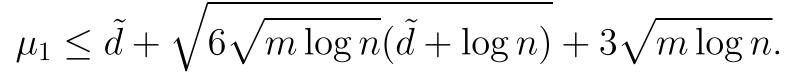
 μ_1 is bounded by the maximum row sum of $C^{-1}AC$.

$$\mu_1 \le \tilde{d} + \sqrt{6\sqrt{m\log n}(\tilde{d} + \log n)} + 3\sqrt{m\log n}.$$

Proof of Lemma B: For a fixed value x (to be chosen later), we define $C = diag(c_1, c_2, \ldots, c_n)$ as follows:

$$c_i = \begin{cases} w_i & \text{if } w_i > x \\ x & \text{otherwise.} \end{cases}$$

 μ_1 is bounded by the maximum row sum of $C^{-1}AC$. The *i*-th row sum X_i of $C^{-1}AC$ is $X_i = \frac{1}{c_i} \sum_{j=1}^n c_j a_{ij}$.



Proof of Lemma B: For a fixed value x (to be chosen later), we define $C = diag(c_1, c_2, \ldots, c_n)$ as follows:

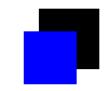
$$c_i = \begin{cases} w_i & \text{if } w_i > x \\ x & \text{otherwise.} \end{cases}$$

 μ_1 is bounded by the maximum row sum of $C^{-1}AC$. The *i*-th row sum X_i of $C^{-1}AC$ is $X_i = \frac{1}{c_i} \sum_{j=1}^n c_j a_{ij}$. We have

$$E(X_i) \le \tilde{d} + x;$$

$$Var(X_i) \le \frac{m}{x}\tilde{d} + x$$

Lecture 6: Spectrum of random graphs with given degrees



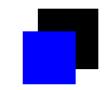
By Lemma A, we have

$$Pr(|X_i - E(X_i)| > t) \le e^{-\frac{t^2}{2(Var(X_i) + mt/3x)}}$$

By Lemma A, we have

$$Pr(|X_i - E(X_i)| > t) \le e^{-\frac{t^2}{2(Var(X_i) + mt/3x)}}.$$

We choose $x = \sqrt{m \log n}, t = \sqrt{6Var(X_i) \log n} + \frac{2m}{x} \log n$.



By Lemma A, we have

$$Pr(|X_i - E(X_i)| > t) \le e^{-\frac{t^2}{2(Var(X_i) + mt/3x)}}.$$

We choose $x = \sqrt{m \log n}$, $t = \sqrt{6Var(X_i) \log n} + \frac{2m}{x} \log n$. With probability at least $1 - n^{-1}$, we have

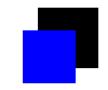
 $\mu_1 \leq \max_i \{X_i\}$

By Lemma A, we have

$$Pr(|X_i - E(X_i)| > t) \le e^{-\frac{t^2}{2(Var(X_i) + mt/3x)}}.$$

We choose $x = \sqrt{m \log n}$, $t = \sqrt{6Var(X_i) \log n} + \frac{2m}{x} \log n$. With probability at least $1 - n^{-1}$, we have

$$\mu_1 \leq \max_i \{X_i\} \\ \leq \max_i \{E(X_i) + t\}$$



By Lemma A, we have

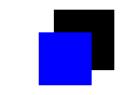
$$Pr(|X_i - E(X_i)| > t) \le e^{-\frac{t^2}{2(Var(X_i) + mt/3x)}}.$$

We choose $x = \sqrt{m \log n}$, $t = \sqrt{6Var(X_i) \log n} + \frac{2m}{x} \log n$. With probability at least $1 - n^{-1}$, we have

$$u_1 \leq \max_i \{X_i\}$$

$$\leq \max_i \{E(X_i) + t\}$$

$$\leq \tilde{d} + \sqrt{6\sqrt{m\log n}(\tilde{d} + \log n)} + 3\sqrt{m\log n}.$$



The outline for proving $\mu_k = (1 + o(1))\sqrt{w_k}$.

The outline for proving $\mu_k = (1 + o(1))\sqrt{w_k}$.

$$S = \{i | w_i > \frac{m}{\log^{1+\epsilon/2} n}\};$$

$$T = \{i | w_i \le \tilde{d} \log^{1+\epsilon/2} n\}.$$

$$S$$
 and T are disjoint.

The outline for proving $\mu_k = (1 + o(1))\sqrt{w_k}$.

$$S = \{i | w_i > \frac{m}{\log^{1+\epsilon/2} n}\};$$

$$T = \{i | w_i \le \tilde{d} \log^{1+\epsilon/2} n\}.$$

•
$$S$$
 and T are disjoint.

$$G = G(\bar{S}) \cup G(\bar{T}) \cup G(S,T).$$

The outline for proving $\mu_k = (1 + o(1))\sqrt{w_k}$.

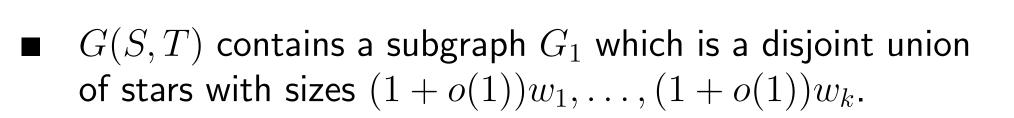
$$S = \{i | w_i > \frac{m}{\log^{1+\epsilon/2} n}\};$$

$$T = \{i | w_i \le \tilde{d} \log^{1+\epsilon/2} n\}.$$

$$\blacksquare$$
 S and T are disjoint.

$$G = G(\bar{S}) \cup G(\bar{T}) \cup G(S,T).$$

Apply Lemma B to $G(\bar{S})$ and $G(\bar{T})$, we have $\mu_1(G(\bar{S})) = o(\sqrt{w_k})$ and $\mu_1(G(\bar{T})) = o(\sqrt{w_k})$.



- G(S,T) contains a subgraph G_1 which is a disjoint union of stars with sizes $(1 + o(1))w_1, \ldots, (1 + o(1))w_k$.
- The maximum degrees m_S and m_T of $G_2 = G(S,T) \setminus G_1$ are small. We have

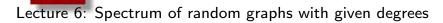
$$\mu_1(G_2) \le \sqrt{m_S m_T} = o(\sqrt{w_k}).$$

- G(S,T) contains a subgraph G_1 which is a disjoint union of stars with sizes $(1 + o(1))w_1, \ldots, (1 + o(1))w_k$.
- The maximum degrees m_S and m_T of $G_2 = G(S,T) \setminus G_1$ are small. We have

$$\mu_1(G_2) \le \sqrt{m_S m_T} = o(\sqrt{w_k}).$$

Putting together, for $1 \leq i \leq k$, we have

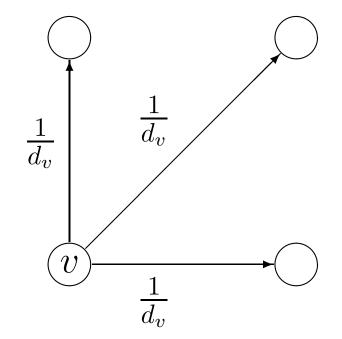
$$\begin{aligned} |\mu_i(G) - \sqrt{w_i}| &\leq |\mu_i(G) - \mu_i(G_1)| + o(\sqrt{w_i}) \\ &\leq |\mu_1(G(\bar{S})) + \mu_1(G(\bar{T})) + \mu_1(G_2) + o(\sqrt{w_i}) \\ &= o(\sqrt{w_i}). \end{aligned}$$



Laplacian spectrum

Random walks on a graph G:

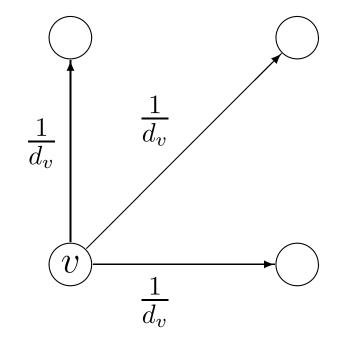
$$\pi_{k+1} = AD^{-1}\pi_k.$$
$$AD^{-1} \sim D^{-1/2}AD^{-1/2}$$



Laplacian spectrum

Random walks on a graph G:

$$\pi_{k+1} = AD^{-1}\pi_k.$$
$$AD^{-1} \sim D^{-1/2}AD^{-1/2}.$$



Laplacian spectrum

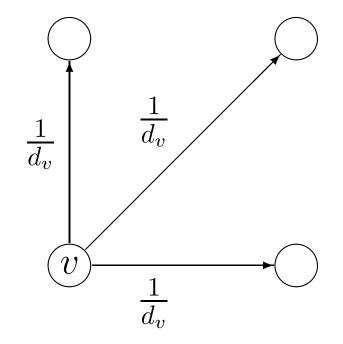
$$0 = \lambda_0 \le \lambda_1 \le \dots \le \lambda_{n-1} \le 2$$

are the eigenvalues of $L = I - D^{-1/2}AD^{-1/2}$.

Laplacian spectrum

Random walks on a graph G:

$$\pi_{k+1} = AD^{-1}\pi_k.$$
$$AD^{-1} \sim D^{-1/2}AD^{-1/2}$$

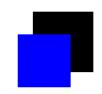


Laplacian spectrum

$$0 = \lambda_0 \le \lambda_1 \le \dots \le \lambda_{n-1} \le 2$$

are the eigenvalues of $L = I - D^{-1/2}AD^{-1/2}$. The eigenvalues of AD^{-1} are $1, 1 - \lambda_1, \dots, 1 - \lambda_{n-1}$.

Spectral Radius



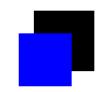
Let

- $w_{min} = \min\{w_1,\ldots,w_n\}$
- $d = \frac{1}{n} \sum_{i=1}^{n} w_i$
- g(n) a function tending to infinity arbitrarily slowly.

Chung, Vu, and Lu (2003)

If $w_{\min} \gg \log^2 n$, then almost surely the Laplacian spectrum λ_i 's of $G(w_1, \ldots, w_n)$ satisfy

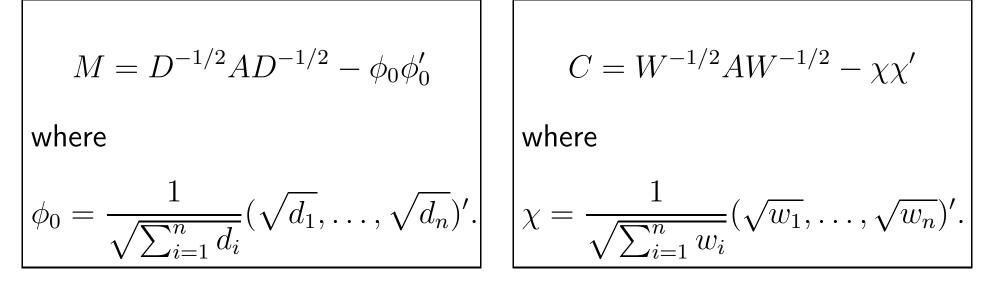
$$\max_{i \neq 0} |1 - \lambda_i| \le (1 + o(1)) \frac{4}{\sqrt{d}} + \frac{g(n) \log^2 n}{w_{\min}}$$



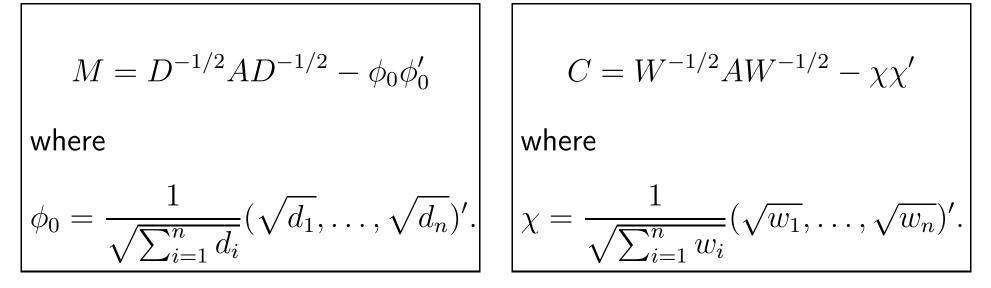
$$M = D^{-1/2}AD^{-1/2} - \phi_0\phi'_0$$

where
$$\phi_0 = \frac{1}{\sqrt{\sum_{i=1}^n d_i}}(\sqrt{d_1}, \dots, \sqrt{d_n})'.$$
$$C = W^{-1/2}AW^{-1/2} - \chi\chi'$$

where
$$\chi = \frac{1}{\sqrt{\sum_{i=1}^n w_i}}(\sqrt{w_1}, \dots, \sqrt{w_n})'.$$



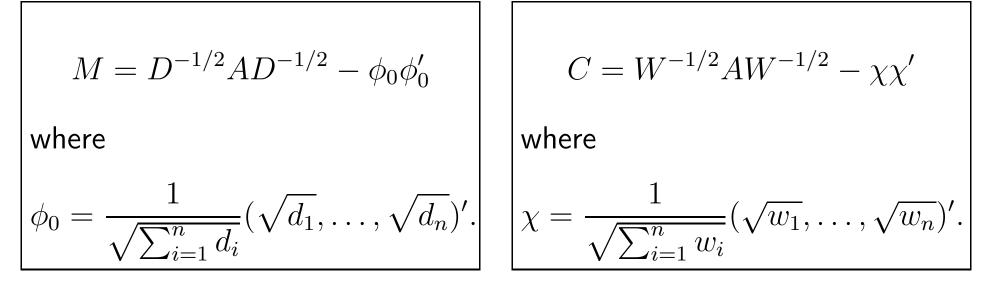
- C can be viewed as the "expectation" of M.



- C can be viewed as the "expectation" of M. We have

$$||M - C|| \le (1 + o(1))\frac{2}{\sqrt{d}}.$$

Lecture 6: Spectrum of random graphs with given degrees



- C can be viewed as the "expectation" of M. We have

$$||M - C|| \le (1 + o(1))\frac{2}{\sqrt{d}}.$$

- M has eigenvalues $0, 1 - \lambda_1, \dots, 1 - \lambda_{n-1}$, since $M = I - L - \phi_0^* \phi_0$ and $L \phi_0 = 0$.

Results on spectrum of C

Chung, Vu, and Lu (2003) We have

• If $w_{\min} \gg \sqrt{d} \log^2 n$, then

$$||C|| = (1 + o(1))\frac{2}{\sqrt{d}}.$$

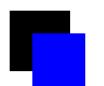
Results on spectrum of C

Chung, Vu, and Lu (2003) We have

• If $w_{\min} \gg \sqrt{d} \log^2 n$, then

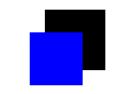
$$||C|| = (1 + o(1))\frac{2}{\sqrt{d}}.$$

If $w_{\min} \gg \sqrt{d}$, the eigenvalues of C follow the semi-circle distribution with radius $r \approx \frac{2}{\sqrt{d}}$.



Wigner's high moment method:

$$\|C\| \leq [\operatorname{Trace}(C^{2k})]^{\frac{1}{2k}}.$$



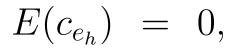
Wigner's high moment method:

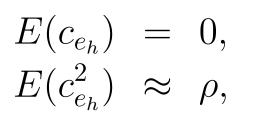
$$\|C\| \leq [\operatorname{Trace}(C^{2k})]^{\frac{1}{2k}}.$$

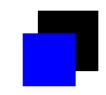
First we will bound $E(\operatorname{Trace}(C^{2k}))$.

$$E(\operatorname{Trace}(C^{2k})) = \sum_{i_1, i_2, \dots, i_{2k}} E(c_{i_1 i_2} c_{i_2 i_3} \cdots c_{i_{2k-1} i_{2k}} c_{i_{2k} i_1})$$
$$= \sum_{l \ge 1} \sum_{I_l} \prod_{h=1}^l E(c_{e_h}^{m_h})$$

 $I_k = \{ \text{ closed walks of length } 2k \text{ which use } l \text{ different edges} \\ e_1, \ldots, e_l \text{ with corresponding multiplicities } m_1, \ldots, m_l. \}$



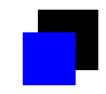




$$E(c_{e_h}) = 0,$$

$$E(c_{e_h}^2) \approx \rho,$$

$$E(c_{e_h}^{m_h}) \leq \frac{\rho}{w_{min}^{m_h-2}}.$$



$$E(c_{e_h}) = 0,$$

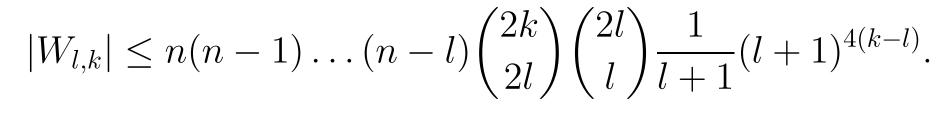
$$E(c_{e_h}^2) \approx \rho,$$

$$E(c_{e_h}^{m_h}) \leq \frac{\rho}{w_{min}^{m_h-2}}.$$

We have

$$E(\mathsf{Trace}(C^{2k})) \le \sum_{l=1}^{l} W_{l,k} \frac{\rho^l}{w_{min}^{2k-2l}}.$$

Here $W_{l,k}$ denotes the set of closed good walks on K_n of length 2k using exactly l different edges.

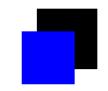


If $w_{min} \gg \sqrt{d} \log^2 n$, $W_{k,k} \rho^k \approx n (\frac{2}{\sqrt{d}})^{2k}$ is the main term in the previous sum.

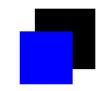
$$|W_{l,k}| \le n(n-1)\dots(n-l)\binom{2k}{2l}\binom{2l}{l+1}\frac{1}{l+1}(l+1)^{4(k-l)}$$

If $w_{min} \gg \sqrt{d} \log^2 n$, $W_{k,k} \rho^k \approx n (\frac{2}{\sqrt{d}})^{2k}$ is the main term in the previous sum.

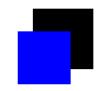
$$E(\operatorname{Trace}(C^{2k})) = (1 + o(1))n(\frac{2}{\sqrt{d}})^{2k}.$$



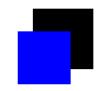
$$Pr(\|C\| \ge (1+\epsilon)\frac{2}{\sqrt{d}}) = Pr(\|C\|^{2k} \ge (1+\epsilon)^{2k}(\frac{2}{\sqrt{d}})^{2k})$$



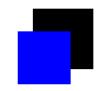
$$\begin{aligned} \Pr(\|C\| \ge (1+\epsilon)\frac{2}{\sqrt{d}}) &= \Pr(\|C\|^{2k} \ge (1+\epsilon)^{2k} (\frac{2}{\sqrt{d}})^{2k}) \\ &\le \frac{E(\operatorname{Trace}(C^{2k}))}{(1+\epsilon)^{2k} (\frac{2}{\sqrt{d}})^{2k}} \end{aligned}$$



$$\begin{aligned} \Pr(\|C\| \ge (1+\epsilon)\frac{2}{\sqrt{d}}) &= \Pr(\|C\|^{2k} \ge (1+\epsilon)^{2k} (\frac{2}{\sqrt{d}})^{2k}) \\ &\le \frac{E(\operatorname{Trace}(C^{2k}))}{(1+\epsilon)^{2k} (\frac{2}{\sqrt{d}})^{2k}} \\ &\le \frac{(1+o(1))n(\frac{2}{\sqrt{d}})^{2k}}{(1+\epsilon)^{2k} (\frac{2}{\sqrt{d}})^{2k}} \end{aligned}$$



$$\begin{aligned} \Pr(\|C\| \ge (1+\epsilon)\frac{2}{\sqrt{d}}) &= \Pr(\|C\|^{2k} \ge (1+\epsilon)^{2k} (\frac{2}{\sqrt{d}})^{2k}) \\ &\le \frac{E(\operatorname{Trace}(C^{2k}))}{(1+\epsilon)^{2k} (\frac{2}{\sqrt{d}})^{2k}} \\ &\le \frac{(1+o(1))n(\frac{2}{\sqrt{d}})^{2k}}{(1+\epsilon)^{2k} (\frac{2}{\sqrt{d}})^{2k}} \\ &= \frac{(1+o(1))n}{(1+\epsilon)^{2k}} \end{aligned}$$

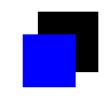


By Markov's inequality, we have

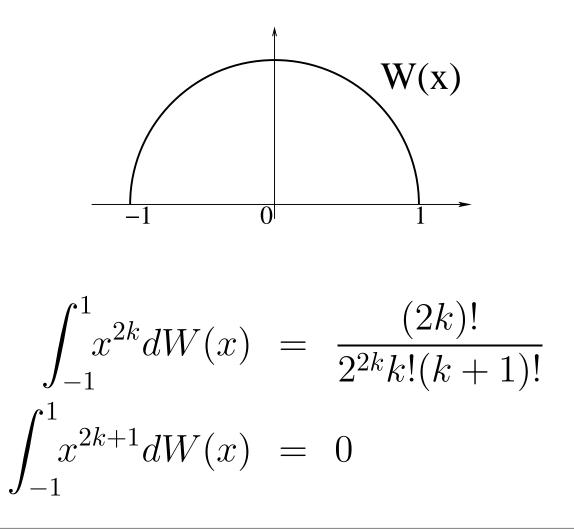
$$\begin{split} \Pr(\|C\| \geq (1+\epsilon)\frac{2}{\sqrt{d}}) &= \Pr(\|C\|^{2k} \geq (1+\epsilon)^{2k}(\frac{2}{\sqrt{d}})^{2k}) \\ &\leq \frac{E(\operatorname{Trace}(C^{2k}))}{(1+\epsilon)^{2k}(\frac{2}{\sqrt{d}})^{2k}} \\ &\leq \frac{(1+o(1))n(\frac{2}{\sqrt{d}})^{2k}}{(1+\epsilon)^{2k}(\frac{2}{\sqrt{d}})^{2k}} \\ &= \frac{(1+o(1))n}{(1+\epsilon)^{2k}} \\ &= o(1), \quad \text{if } k \gg \log n. \end{split}$$

Lecture 6: Spectrum of random graphs with given degrees

The proof of the semicircle law

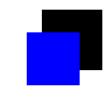


Let W(x) be the cumulative distribution function of the unit semicircle.



Lecture 6: Spectrum of random graphs with given degrees

The proof of the semicircle law



Let $C_{nor} = (\frac{2}{\sqrt{d}})^{-1}C$. Let N(x) be the number of eigenvalues of C_{nor} less than x and $W_n(x) = n^{-1}N(x)$ be the cumulative distribution function.

The proof of the semicircle law

Let $C_{\text{nor}} = (\frac{2}{\sqrt{d}})^{-1}C$. Let N(x) be the number of eigenvalues of C_{nor} less than x and $W_n(x) = n^{-1}N(x)$ be the cumulative distribution function. For every $k \ll \log n$,

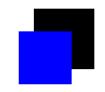
$$\int_{-\infty}^{\infty} x^{2k} dW_n(x) = \frac{1}{n} E(\operatorname{Trace}(C_{\operatorname{nor}}^{2k})) = \frac{(1+o(1))(2k)!}{2^{2k}k!(k+1)!},$$

$$\int_{-\infty}^{\infty} x^{2k+1} dW_n(x) = \frac{1}{n} E(\operatorname{Trace}(C_{\operatorname{nor}}^{2k+1})) = o(1).$$

Thus, $W_n(x) \longrightarrow W(x)$ (in probability) as $n \to \infty$.

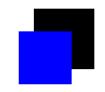
For the random graph with given expected degree sequence $G(w_1, w_2, \ldots, w_n)$, we proved that

The largest eigenvalue μ_1 is essentially the maximum of \sqrt{m} and \tilde{d} , if they are apart by at least a factor of $\log^2 n$.



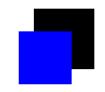
For the random graph with given expected degree sequence $G(w_1, w_2, \ldots, w_n)$, we proved that

- The largest eigenvalue μ_1 is essentially the maximum of \sqrt{m} and \tilde{d} , if they are apart by at least a factor of $\log^2 n$.
- If \tilde{d} is small enough $(<\frac{\sqrt{w_k}}{\log^2 n})$, the k-th largest eigenvalue is about the square root of k-th largest weight w_k .



For the random graph with given expected degree sequence $G(w_1, w_2, \ldots, w_n)$, we proved that

- The largest eigenvalue μ_1 is essentially the maximum of \sqrt{m} and \tilde{d} , if they are apart by at least a factor of $\log^2 n$.
- If \tilde{d} is small enough $(<\frac{\sqrt{w_k}}{\log^2 n})$, the k-th largest eigenvalue is about the square root of k-th largest weight w_k .
- The non-zero Laplacian eigenvalues concentrate on 1 with spectral radius at most $\frac{4}{\sqrt{d}}$, if $w_{min} \gg \sqrt{d} \log^2 n$.



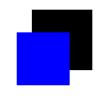
For the random graph with given expected degree sequence $G(w_1, w_2, \ldots, w_n)$, we proved that

- The largest eigenvalue μ_1 is essentially the maximum of \sqrt{m} and \tilde{d} , if they are apart by at least a factor of $\log^2 n$.
- If \tilde{d} is small enough $(<\frac{\sqrt{w_k}}{\log^2 n})$, the k-th largest eigenvalue is about the square root of k-th largest weight w_k .
- The non-zero Laplacian eigenvalues concentrate on 1 with spectral radius at most $\frac{4}{\sqrt{d}}$, if $w_{min} \gg \sqrt{d} \log^2 n$.

References

- Fan Chung, Linyuan Lu and Van Vu, The spectra of random graphs with given expected degrees, *Proceedings of National Academy of Sciences*, **100**, No. 11, (2003), 6313-6318.
- Fan Chung, Linyuan Lu, and Van Vu, Eigenvalues of random power law graphs, Annals of Combinatorics, 7 (2003), 21–33.

Overview of talks



- Lecture 1: Overview and outlines
- Lecture 2: Generative models preferential attachment schemes
- Lecture 3: Duplication models for biological networks
- Lecture 4: The rise of the giant component
- Lecture 5: The small world phenomenon: average distance and diameter
- Lecture 6: Spectrum of random graphs with given degrees

