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Overview of talks -

m lLecture 1: Overview and outlines

m lLecture 2: Generative models - preferential attachment
schemes

m Lecture 3: Duplication models for biological networks

m Lecture 4: The rise of the giant component

m Lecture 5: The small world phenomenon: average
distance and diameter

m Lecture 6: Spectrum of random graphs with given
degrees
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Three spectra of a graph '

A graph G: ®

O
O

(1) Adjacency matrix:

A=

o = O
_ O =
O = O

Eigenvalues are

—v2,0,V2.
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- Three spectra of a graph -

A graph G: ®

O
O

(2) Combinatorial Laplacian

D—-—A=\| -1 2 -1

Eigenvalues are
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- Three spectra of a graph -

A graph G- ® ® ®
(3) Normalized Laplacian
(1 =% 0 )
[-D'PADTV? = [ 2 1 2
V2
\ 0 ¥ 1
Eigenvalues are
0,1, 2.
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- Relations -

If G is a d-regular graph, then three spectra are related by
linear translations.

D—A = dl—A
D—A = d(I—DY2AD /%
[ — D YV2AD™1?2 = [ — éA.
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- Relations -

If G is a d-regular graph, then three spectra are related by
linear translations.

D—A = dl—A
D—A = d(I—DY2AD /%
[ — D YV2AD™1?2 = [ — éA.

But they are quite different for general graphs.
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- Laplacian Spectrum -

The (normalized) Laplacian is defined to be the matrix

L=1—D12AD 12

1. All eigenvalues of L are between 0 and 2.

0< A < A< < A\ <2

2. G is connected if and only if A\; > 0.

3. G is bipartite if and only if \,,_1 = 2.
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- Cheeger constant

The Cheeger constant hqg of a graph G is defined by

. 0(5)
he = 1%‘[" min{vol(S), vol(S)}

where O(.S) denotes the set of edges leaving S.
Cheeger's inequality states

h2
2hg > A\ > 7(;
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- Diameter

Let D(G) be the diameter of G, then

D(G)

<

log

vol(G) ]

min, d,
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- Diameter

Let D(G) be the diameter of G, then

" og YlU&) ~
D(G) S min, d,

In general, let D(X,Y) denote the distance between two
subsets X and Y. Then

D(X,Y) <
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- Wigner’'s semicircle law -

Wigner (1958)

- A is a real symmetric n X n matrix.
- Entries q;; are independent random variables.

- E(a?f“) = (.

- E(af) < M.

The distribution of eigenvalues of A converges into a
semicircle distribution of radius 2m+/n.

W(X)

R

EX 0 1

i A —h—
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- The power law -

The number of vertices of degree k is approximately
proportional to k= for some positive 3.

IEBEBB E T T L] T IIIII L] L] T L] IIIII L]
* "collabl.degree® Ea
18888

10688 |

188 |

the number of wvertices

1868468

power law graph is a graph which satisfies the power law.
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- A spectrum question -

Do the eigenvalues of a power law graph
follow the semicircle law or do the
eigenvalues have a power law distribution?
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Evidence for the semicircle law for
- power law graphs -

The eigenvalues of an Erdos-Rényi random graph

follow the semicircle law. ( Fiiredi and Komlés,
1081)

16

12 e e

density
a0
¥

M £ M
&

-18 -3 5 = 16

elgenvalues
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- Experimental results '

s Faloutsos et al. (1999) The eigenvalues of the
Internet graph do not follow the semicircle law.
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- Experimental results '

s Faloutsos et al. (1999) The eigenvalues of the
Internet graph do not follow the semicircle law.

s Farkas et. al. (2001), Goh et. al. (2001) The
spectrum of a power law graph follows a “triangular-like”

distribution.
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- Experimental results '

s Faloutsos et al. (1999) The eigenvalues of the
Internet graph do not follow the semicircle law.

s Farkas et. al. (2001), Goh et. al. (2001) The
spectrum of a power law graph follows a “triangular-like”

distribution.

= Mihail and Papadimitriou (2002) They showed that
the large eigenvalues are determined by the large
degrees. Thus, the significant part of the spectrum of a
power law graph follows the power law.

Nz%\/dj
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B  Model Glwy,wy,...,wi)

Random graph model with given expected degree sequence

- n nodes with weights wy, wo, ..., w,.
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B  Model Glwy,wy,...,wi)

Random graph model with given expected degree sequence

- n nodes with weights wy, wo, ..., w,.

- For each pair (i, j), create an edge independently with

probability p;; = w;w;p, where p = an —.
=1 1
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B  Model Glwy,wy,...,wi)

Random graph model with given expected degree sequence

- n nodes with weights wy, wo, ..., w,.

- For each pair (i, j), create an edge independently with
probability p;; = w;w;p, where p = 5 1

1= 1rwZ

- The graph H has probability

I]: pm :[I 1'_]%7

ijelE(H ij¢E(H
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B  Model Glwy,wy,...,wi)

Random graph model with given expected degree sequence

- n nodes with weights wy, wo, ..., w,.

- For each pair (i, j), create an edge independently with
probability p;; = w;w;p, where p = 5 1

1= 1rwZ

- The graph H has probability

I]: pm :[I 1'_]%7

ijelE(H ij¢E(H

- The expected degree of vertex 7 is w;.
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- A example: G(1,2,1) '

1/16 3/16 1/16 1/16

1/16 3/16
3/16 3/16

Loops are omitted here.
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- Notations

For G = G(wq,...,w,), let

- d= 122_111]@

- d=&R
- The vqume of S: Vol(S) = > . s wi.

- The k-th volume of S: Voli(S) = >, qw?.
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- Notations

For G = G(wq,...,w,), let

- d_lzZ—lwz
D 1w
- d= S

- The vqume of S: Vol(S) = > . s wi.
- The k-th volume of S: Voli(S) = >, qw?.

We have )
d>d

=" holds if and only if w; =--- = w,,.
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- Eigenvalues of G(wy, ..., w,) -

Chung, Vu, and Lu (2003)

Suppose wy > wy > ... > w,. Let u; be i-th largest
eigenvalue of G(wy,wy, ..., wy,). Let m = w; and
d=>"",w?p. Almost surely we have:

s (1—o(1)) max{y/m,d} < < 7\/Iogn - max{y/m,d}.
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- Eigenvalues of G(wy, ..., w,) -

Chung, Vu, and Lu (2003)

Suppose wy > wy > ... > w,. Let u; be i-th largest
eigenvalue of G(wy,wy, ..., wy,). Let m = w; and
d=>"",w?p. Almost surely we have:

s (1—o(1)) max{y/m,d} < < 7\/Iogn - max{y/m,d}.
s 1y = (1+0(1))d, if d > /mlogn.
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- Eigenvalues of G(wy, ..., w,) -

Chung, Vu, and Lu (2003)

Suppose wy > wy > ... > w,. Let u; be i-th largest
eigenvalue of G(wy,wy, ..., wy,). Let m = w; and
d=>"",w?p. Almost surely we have:

s (1—o(1)) max{y/m,d} < < 7\/Iogn - max{y/m,d}.
s 1y = (1+0(1))d, if d > /mlogn.

s 1y = (14 0(1))/m, if /m > dlog®n.
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- Eigenvalues of G(wy, ..., w,) -

Chung, Vu, and Lu (2003)

Suppose wy > wy > ... > w,. Let u; be i-th largest
eigenvalue of G(wy,wy, ..., wy,). Let m = w; and
d=>"",w?p. Almost surely we have:

s (1—o(1)) max{y/m,d} < < 7\/Iogn - max{y/m,d}.
s 1y = (1+0(1))d, if d > /mlogn.
s 1y = (14 0(1))/m, if /m > dlog®n.

n U R Jw and ppa1op & — Wy, 1f Jwp > cilvlog2 n.
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- Random power law graphs '

The first & and last k eigenvalues of the random power law
graph with 3 > 2.5 follows the power law distribution with
exponent 2(3 — 1. It results a “triangular-like” shape.

14 =iml.=p, &

12 F g -
T e
+ 1@ L -
‘- g d S
Iy = e * -
o & L
i & | & & &
L e &

4 b e =

Sl L
E I-'- ] ] ] ] ] I

"

-18 -2 B 3 18

elgenvalues
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- Proof of Theorem 1: -

1. First we prove 1 > (1 + o(1))y/m.
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- Proof of Theorem 1: -

1. First we prove pq > (1 + o(1))y/m.

We observe

s It contains a star of size (1 + o(1))m.
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- Proof of Theorem 1: -

1. First we prove pq > (1 + o(1))y/m.

We observe

s It contains a star of size (1 + o(1))m.

s The largest eigenvalue of a star of size m is v/m — 1.
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- Proof of Theorem 1: -

1. First we prove pq > (1 + o(1))y/m.

We observe

s It contains a star of size (1 + o(1))m.

s The largest eigenvalue of a star of size m is v/m — 1.

s 1(G) > pi(H) for any subgraph H of G.
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- Proof of Theorem 1:

I_ ‘

1. First we prove 1 > (1 + o(1))y/m.

We observe

m |t contains a star of size (1 + o(1))m

s The largest eigenvalue of a star of size m is v/m — 1.

s 1(G) > pi(H) for any subgraph H of G.

Hence iy > (1 + o(1))y/m.

e 6: Spectrum of random graphs with given degrees Linyuan Lu (University of South Carolina
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- Proof continues -

Now we will prove 1 > (1 + o(1))d.
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- Proof continues

~

Now we will prove 11 > (1 + o(1))d.

Let X = a*Aa, where a = \/Zi — (W, wa, ..., w,)" is a
=1 "1

unit vector.

u ,ulzX

Lecture 6: Spectrum of random graphs with given degrees Linyuan Lu (University of South Carolina) — 21 / 39



- Proof continues -

~

Now we will prove 1y > (1 + (1))d
Let X = a*Aa, where a =
\/Zz 1

* []

IS 4

(wl, wg, c e wn)
unit vector.

u ,ulzX

s X can be written as a sum of independent random
variables. X = Zz - D ij wiw; X ;, where X;; is the

0-1 random variable with Pr(X;; =1) = wwjp.
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- Proof continues -

~

Now we will prove 1y > (1 + (1))d
Let X = a*Aa, where a = (wl, W, ..., Wy)

\/Zz 1

* []

IS 4

unit vector.

u ,ulzX

s X can be written as a sum of independent random
variables. X = Zz - D ij wiw; X ;, where X;; is the

0-1 random variable with Pr(X;; =1) = wwjp.

» F(X)=d.
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- Proof continues -

~

Now we will prove 1y > (1 + (1))d
Let X = a*Aa, where a = —(wy, wa, ..., w,)* is a

\/Zzl wy

unit vector.

u ,ulzX

s X can be written as a sum of independent random
variables. X = Zz - D ij wiw; X ;, where X;; is the

0-1 random variable with Pr(X;; = 1) = ww,p.

» F(X)=d.

X concentrates on E(X).
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- Lemma A: -

Let X;,...,.X,, be independent random variables with

Pr(X;=1) = pi, Pr(X;=0)=1-p,

For X = > 1", a;X;, we have E(X) =>_"_, a;p; and we
define v = >, a?p;. Then we have

Pr( X < E(X)—1)
Pr(X > E(X)+t) < e VarXtap;

[

®|
7|
<

where a the maximum coefficient among
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- Lemma B: -

1y < d+ \/6\/mlogn(dv+logn) + 3v/mlogn.
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- Lemma B: -

1y < d+ \/6\/mlogn(dv+logn) + 3v/mlogn.

Proof of Lemma B: For a fixed value x (to be chosen
later), we define C' = diag(ci, o, ..., c,) as follows:

) W if w;, > x
1 x  otherwise.

Lecture 6: Spectrum of random graphs with given degrees Linyuan Lu (University of South Carolina) — 23 / 39



- Lemma B:

1y < d+ \/6\/mlogn(dv+logn) + 3v/mlogn.

Proof of Lemma B: For a fixed value x (to be chosen
later), we define C' = diag(ci, o, ..., c,) as follows:

) W if w;, > x
1 x  otherwise.

111 is bounded by the maximum row sum of C~1AC.

Lecture 6: Spectrum of random graphs with given degrees Linyuan Lu (University of South Carolina) — 23 / 39



- Lemma B: -

1y < d+ \/6\/mlogn(dv+logn) + 3v/mlogn.

Proof of Lemma B: For a fixed value x (to be chosen
later), we define C' = diag(ci, o, ..., c,) as follows:

) W if w;, > x
1 x  otherwise.

111 is bounded by the maximum row sum of C~1AC.
The i-th row sum X; of C~1AC is X; = %Z?ﬂ Cij.
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- Lemma B: -

1y < d+ \/6\/mlogn(dv+logn) + 3v/mlogn.

Proof of Lemma B: For a fixed value x (to be chosen
later), we define C' = diag(ci, o, ..., c,) as follows:

) W if w;, > x
1 x  otherwise.

111 is bounded by the maximum row sum of C~1AC.
The i-th row sum X; of C71AC is X, = %Z?ﬂ c;a;;. We
have

B(X)) <

7

d -+
Var(X;) < e
T
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- Proof continues

By Lemma A, we have

2

Pr(|X; — BE(X;)| > t) < ¢ TVargmmis)
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- Proof continues -

By Lemma A, we have

2

Pr(|X; — BE(X;)| > t) < ¢ TVargmmis)

We choose = = v/mlogn, t = \/6Var(X;)logn + 277” logn.
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- Proof continues -

By Lemma A, we have

2

Pr(|X; — BE(X;)| > t) < ¢ TVargmmis)

We choose = = v/mlogn, t = \/6Var(X;)logn + 27"” logn.
With probability at least 1 — n™!, we have

pr < max{X;}
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- Proof continues -

By Lemma A, we have

2

Pr(|X; — BE(X;)| > t) < ¢ TVargmmis)

We choose = = v/mlogn, t = \/6Var(X;)logn + 27"” logn.
With probability at least 1 — n™!, we have

pr < max{X;}

< m?X{E(Xi) +t}
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- Proof continues -

By Lemma A, we have

2

Pr(|X; — BE(X;)| > t) < ¢ TVargmmis)

We choose = = v/mlogn, t = \/6Var(X;)logn + 27"” logn.
With probability at least 1 — n™!, we have

VAN

pr < max{X;}

mZaX{E(XZ-) +t}

AN

d + \/6\/mlogn(07+logn) + 3v/mlogn.

VAN
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- Sketch proof -

The outline for proving px = (1 + o(1))/w.
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- Sketch proof -

The outline for proving px = (1 + o(1))/w.

T
1—|-6/2n};

log
T = {ilw; < dlog™?n}.

= S and 7' are disjoint.
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- Sketch proof

The outline for proving px = (1 + o(1))/w.

T
1—|-6/2n};

log
T = {ijw; < dlog't*n}.

= S and 7' are disjoint.

s G=GS)UG(TYUG(S,T).

Lecture 6: Spectrum of random graphs with given degrees Linyuan Lu (University of South Carolina) — 25 / 39



- Sketch proof

The outline for proving px = (1 + o(1))/w.

T
1—|-6/2n};

log
T = {ilw; < dlog™?n}.

= S and 7' are disjoint.

s G=GS)UG(TYUG(S,T).

= Apply Lemma B to G(S) and G(T'), we have
u1(G(9)) = o(y/wy) and i (G(T)) = o(y/w)
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- Sketch proof '

s G(S,T) contains a subgraph GG; which is a disjoint union
of stars with sizes (1 + o(1))wy, ..., (1 + o(1))wy.
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- Sketch proof '

s G(S,T) contains a subgraph GG; which is a disjoint union
of stars with sizes (1 + o(1))wy, ..., (1 + o(1))wy.

s [he maximum degrees mg and my of
Gy = G(S,T) \ Gy are small. We have

p(Ge) < vmsmr = o(y/wk).

Lecture 6: Spectrum of random graphs with given degrees Linyuan Lu (University of South Carolina) — 26 / 39



- Sketch proof -

s G(S,T) contains a subgraph GG; which is a disjoint union
of stars with sizes (1 + o(1))wy, ..., (1 + o(1))wy.

s [he maximum degrees mg and my of
Gy = G(S,T) \ Gy are small. We have

p(Ge) < vmsmr = o(y/wk).

Putting together, for 1 < ¢ < k, we have

1i(G) — Vwi| 14i(G) - 1i(Gh)| + ?(\/Ez)
11 (G(S)) + 1 (G(T)) + 1 (Ga) + o(y/wy)
o).

IA A
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- Laplacian spectrum

Random walks on a graph G-

Tl — AD_17T]€.
AD 1~ D V2AD1/2

S
O

SH
S

Lecture 6: Spectrum of random graphs with given degrees Linyuan Lu (University of South Carolina) — 27 / 39



- Laplacian spectrum -

Random walks on a graph G-

Tl — AD_17T]{;.
AD 1~ D V2AD1/2

S
O

Laplacian spectrum
O0=A <A << A1 <2

are the eigenvalues of L = — D 1/24D~1/2
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Laplacian spectrum

Random walks on a graph G-

Tl — AD_17T]{;.
AD 1~ D V2AD1/2

Laplacian spectrum

O=X<AM << A1 <2

are the eigenvalues of L = — D 1/24D~1/2
The eigenvalues of AD tare 1,1 —\,...,1—\,_;.
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Spectral Radius -

Let
= Wmin — mln{wla 7wn}
- d=13" .

T n 1=1 1

- ¢g(n) — a function tending to infinity arbitrarily slowly.

Chung, Vu, and Lu (2003)

If wWpin > log2 n, then almost surely the Laplacian spectrum
A\i's of G(wy, ..., w,) satisfy

4 g(n)log*n
max |1 — \;| < (1+ ol | .
L~ A < (14 o(1) o+ X"
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Approximation

M = D Y2AD™Y? — ¢,

where

b0 =

Vi

(Vi )

where

X

O _ W—l/QAw—l/Q . XX/

1

::‘V/EZZ;llvi

(0L, /)
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- Approximation -

M _ D—l/QAD—l/Q . ¢0¢6 O _ W—l/QAw—l/Q . XX/

where where

1 1
\/dl,...,\/dn /. — Wiy y/Wp /.
\/2?21 di( | * \/2?21 wi( |

- (' can be viewed as the “expectation” of M.

b0 =
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- Approximation -

M = D Y2AD™Y? — ¢,

where

1
0 = Vi, ...\ dy).
(b \/2?21 di( )

O _ W—l/QAw—l/Q . XX/

where

(Vi)

X

N \/2?21 Wi

- (' can be viewed as the “expectation” of M. We have

2

M = Cl < (1+0(1))—=.

Vd
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- Approximation -

M _ D—l/QAD—l/Q . ¢0¢6 O _ W—l/QAw—l/Q . XX/
where where
1 1
Qb(): — (\/dl,...,\/ dn)/ X = - (\/wl,...,\/wn)’.
\/Zz‘:1 d; \/Zizl Wi

- (' can be viewed as the “expectation” of M. We have

M —c| <@ +0<1>>%

- M has eigenvalues 0,1 — A\q,...,1 — \,_1, since
M =1—L — ¢y0p9 and Log = 0.
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- Results on spectrum of -

Chung, Vu, and Lu (2003)
We have

U wyy > \/Elog2 n, then

I = (1 4 o(1))

SIE
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- Results on spectrum of -

Chung, Vu, and Lu (2003)
We have

U wyy > \/Elog2 n, then

o]l = (1+ o<1>>%.

s Ifwy, > Vd, the eigenvalues of C follow the

semi-circle distribution with radius r ~ %.
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- Proof

Wigner's high moment method:

|C|| < [Trace(C?)]zr.
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- Proof

Wigner's high moment method:

|C|| < [Trace(C?*)]z.

First we will bound E(Trace(C?)).

E(Trace(c%)) — Z E 621226’6223 o Ci2k—1i2kci2ki1)
- > HE
[>1 I} h=1

I, = { closed walks of length 2k which use [ different edges
e1,...,e with corresponding multiplicities mq, ..., m;.}
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- Proof continues -
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- Proof continues -
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Proof continues -

T
—~
@)
=
~—
|
\’O

Cgh) ~ 107
P
E(c'") <
) =
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Proof continues -

>

N——"
|

=

)
oM D
>

N———"
X
s

T
Q.
A

min

We have
l

2k—=21"
=1 min

z
E(Trace(C*)) < Z m’kw P

Here W i denotes the set of closed good walks on K, of
length 2k using exactly [ different edges.
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- Proof continues

Wikl <n(n—1)...(n—1) (22];) (20 L4 gy,

If w0, > \/Elog2 n, Wk,kpk ~ n(%)% Is the main term in
the previous sum.
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- Proof continues

L

Wikl <n(n—1)...(n—1) (22];) (20 z +1 (14 1)HED,

If w0, > \/Elog2 n, Wk,kpk ~ n(%)% Is the main term in
the previous sum.

E(Trace(C?*)) = (1 + o(1))n(—=)*".
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- Proof continues -

By Markov's inequality, we have

) = Pr(|CIP* > (14 P (—=)?)

Pr(lCl = (1 +¢) 7

2
Vd
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- Proof continues -

By Markov's inequality, we have

Pr(|CI% > (1 + )% (—=)?)

Pr(lCl = (1 +¢) 7

)

2
Vd
_ E(Trace(C?%))
= Wron G
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- Proof continues

By Markov's inequality, we have

Pr(lCl = (1 +¢)

|

s
=
Q

V

)
/i

VAN

AN
Sl
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- Proof continues

By Markov's inequality, we have

Pr(lCl = (1 +¢)

|

s
=
Q

V

)
/i

VAN

VAN
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- Proof continues

By Markov's inequality, we have

Pr(lCl = (1 +¢)

|

s
=
Q

V

)
/i

VAN

VAN

= o(1), if &> logn.
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- The proof of the semicircle law -

Let W (x) be the cumulative distribution function of the unit
semicircle.

W(x)
-1 0 1
/1x2de($) — (2k)"
i - 22REN(k 4 1)!
1
/x%HdW(az) = 0
—1
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- The proof of the semicircle law -

Let Chor = (%)_10. Let N(z) be the number of

eigenvalues of Chor less than z and W,(z) = n ' N(z) be
the cumulative distribution function.
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The proof of the semicircle law

Let Chor = (%)_10. Let N(z) be the number of

eigenvalues of Chor less than z and W,(z) = n ' N(z) be
the cumulative distribution function.
For every k < logn,

/OO AW, (z) = lE(Trace(Oﬁlg)r)) _ (;Q—zk(')éli)i(zl})g')v’

50 (0

(i

/ e AW, (x) = lE(Trace(C’rQ,]gFl)) = o(1).

®@)

Thus, W,,(z) — W (x) (in probability) as n — oo.
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- Summary -

For the random graph with given expected degree sequence
G(wyi,ws, ..., w,), we proved that

s The largest eigenvalue 11 Is essentially the maximum of
vm and d, if they are apart by at least a factor of
log* n.
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For the random graph with given expected degree sequence
G(wyi,ws, ..., w,), we proved that

s The largest eigenvalue 11 Is essentially the maximum of
vm and d, if they are apart by at least a factor of
log* n.

» If dis small enough (< YA ), the k-th largest eigenvalue

log2n
Is about the square root of k-th largest weight wy.
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For the random graph with given expected degree sequence
G(wyi,ws, ..., w,), we proved that

s The largest eigenvalue 11 Is essentially the maximum of
vm and d, if they are apart by at least a factor of

log* n.

» If dis small enough (< YA ), the k-th largest eigenvalue

log2n
Is about the square root of k-th largest weight wy.

s [ he non-zero Laplacian eigenvalues concentrate on 1
with spectral radius at most %, it W, > \/Elog2 n.
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- Summary -

For the random graph with given expected degree sequence
G(wyi,ws, ..., w,), we proved that

s The largest eigenvalue 11 Is essentially the maximum of
vm and d, if they are apart by at least a factor of

log* n.

» If dis small enough (< YA ), the k-th largest eigenvalue

log2n
Is about the square root of k-th largest weight wy.

s [ he non-zero Laplacian eigenvalues concentrate on 1
with spectral radius at most %, it W, > \/Elog2 n.
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Overview of talks -

m lLecture 1: Overview and outlines

m lLecture 2: Generative models - preferential attachment
schemes

m Lecture 3: Duplication models for biological networks

m Lecture 4: The rise of the giant component

m Lecture 5: The small world phenomenon: average
distance and diameter

m Lecture 6: Spectrum of random graphs with given
degrees
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