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Overview of talks
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■ Lecture 1: Overview and outlines

■ Lecture 2: Generative models - preferential attachment
schemes

■ Lecture 3: Duplication models for biological networks

■ Lecture 4: The rise of the giant component

■ Lecture 5: The small world phenomenon: average
distance and diameter

■ Lecture 6: Spectrum of random graphs with given
degrees
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Experiments of Stanley Milgram (1967)
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Experiments of Stanley Milgram (1967)
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Milgram: “The average distance of the social graph is at
most 6.”
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in the same connected component.



Diameter and average distance

Lecture 5: The small world phenomenon: average distance and diameter Linyuan Lu (University of South Carolina) – 4 / 47

Diameter: the maximum distance d(u, v), where u and v are
in the same connected component.
Average distance: the average among all distance d(u, v) for
pairs of u and v in the same connected component.



Diameter and average distance

Lecture 5: The small world phenomenon: average distance and diameter Linyuan Lu (University of South Carolina) – 4 / 47

Diameter: the maximum distance d(u, v), where u and v are
in the same connected component.
Average distance: the average among all distance d(u, v) for
pairs of u and v in the same connected component.

j j j j j

j

Diameter is 4. Average distance is 2.13.
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■ The Hollywood graph: n ≈ 656, 065. The average Bacon
number is 2.94. The maximum Bacon number is 9.
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■ The Hollywood graph: n ≈ 656, 065. The average Bacon
number is 2.94. The maximum Bacon number is 9.

■ The Collaboration graph: n ≈ 337, 000. The diameter is
27. The average distance is 7.73.

■ The WWW subgraph: Barabási (1999) the diameter is
19.

■ The WWW subgraph: n ≈ 203, 000, 000. Kumar et al.
(2001) The diameter is about 500 (as a directed graph).

Many real-world graphs have small diameters comparing to
its sizes.
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■ Case by case

■ Inadequate information

■ Dynamically changing

■ Prohibitively large sizes
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What is the magnitude of the diameter and the

average distance with respect to the graph size?

How to characterize these graphs?



Modelling graphs
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We will use random graphs to model real-world graphs
because

■ Data sets are too large and dynamic for exact analysis.

■ Most real-world graphs have a random or statistical
nature.
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A random graph is a set of graphs together with a
probability distribution on that set.
Example: A random graph on 3 vertices and 2 edges with
the uniform distribution on it.
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A random graph is a set of graphs together with a
probability distribution on that set.
Example: A random graph on 3 vertices and 2 edges with
the uniform distribution on it.
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A random graph G almost surely satisfies a property P , if

Pr(G satisfies P ) = 1 − on(1).
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- n nodes
- For each pair of vertices, create an edge independently

with probability p.

- The graph with e edges has the probability pe(1− p)(
n
2)−e.
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The probability of this
graph is

p4(1 − p)2.



A example: G(3, 1
2)
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Paul Erdős and A. Rényi, On the evolution of random graphs
Magyar Tud. Akad. Mat. Kut. Int. Kozl. 5 (1960) 17-61.
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Evolution of G(n, p)
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p

0 the diameter.
c
n Θ( log n

log np)

ω( 1
n) (1 + o(1)) log n

log np

ω( log n
n ) ⌊ log n

log np⌋ or ⌈ log n
log np⌉

...
...

n−3/4

3 or 4
n−2/3

2 or 3

n−1
2

2
1 1



Diameter of G(n, p)

Lecture 5: The small world phenomenon: average distance and diameter Linyuan Lu (University of South Carolina) – 15 / 47

Bollobás (1985): (denser graph)

diam(G(n, p)) = ⌊ log n

log np
⌋ or

⌈ log n

log np

⌉

if np ≫ log n.



Diameter of G(n, p)

Lecture 5: The small world phenomenon: average distance and diameter Linyuan Lu (University of South Carolina) – 15 / 47

Bollobás (1985): (denser graph)

diam(G(n, p)) = ⌊ log n

log np
⌋ or

⌈ log n

log np

⌉

if np ≫ log n.

Chung Lu, (2000) (Sparser graph)

diam(G(n, p)) =

{

(1 + o(1)) log n
log np if np → ∞

Θ( log n
log np) if ∞ > np > 1.
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probability pij = wiwjρ, where ρ = 1

∑n
i=1 wi
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Random graph model with given expected degree sequence

- n nodes with weights w1, w2, . . . , wn.

- For each pair (i, j), create an edge independently with
probability pij = wiwjρ, where ρ = 1

∑n
i=1 wi

.

- The graph H has probability

∏

ij∈E(H)

pij

∏

ij 6∈E(H)

(1 − pij).

- The expected degree of vertex i is wi.
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The probability of the graph is

w3
1w

2
2w

2
3w4ρ

4(1 − w2w4ρ) × (1 − w3w4ρ)
4

∏

i=1

(1 − w2
i ρ).



A example: G(1, 2, 1)
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Loops are omitted here.
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For G = G(w1, . . . , wn), let

- d = 1
n

∑n
i=1 wi

- d̃ =
∑n

i=1 w2
i

∑n
i=1 wi

.

- The volume of S: Vol(S) =
∑

i∈S wi.
- The k-th volume of S: Volk(S) =

∑

i∈S wk
i .
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For G = G(w1, . . . , wn), let

- d = 1
n

∑n
i=1 wi

- d̃ =
∑n

i=1 w2
i

∑n
i=1 wi

.

- The volume of S: Vol(S) =
∑

i∈S wi.
- The k-th volume of S: Volk(S) =

∑

i∈S wk
i .

We have
d̃ ≥ d

“=” holds if and only if w1 = · · · = wn.
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Chung, Lu, 2002 For a random graph G with admissible
expected degree sequence (w1, . . . , wn), the average distance
is almost surely (1 + o(1)) log n

log d̃
.
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Chung, Lu, 2002 For a random graph G with admissible
expected degree sequence (w1, . . . , wn), the average distance
is almost surely (1 + o(1)) log n

log d̃
.

For a random graph G with strongly admissible expected
degree sequence (w1, . . . , wn), the diameter is almost surely
Θ( log n

log d̃
).

For G(n, p), d̃ = d = np. These results are consistent to
results for G(n, p).
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(i) log d̃ ≪ log n.
(ii) d > 1 + ǫ. wi > ǫ for all but o(n) vertices.
(iii) ∃ a subset U :

vol2(U) = (1 + o(1))vol2(G) ≫ vol3(U)
log d̃ loglog n

d̃ log n
.
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(i) log d̃ ≪ log n.
(ii) d > 1 + ǫ. wi > ǫ for all but o(n) vertices.
(iii) ∃ a subset U :

vol2(U) = (1 + o(1))vol2(G) ≫ vol3(U)
log d̃ loglog n

d̃ log n
.

Roughly speaking, G is close to G(n, p). No dense
subgraphs.
Example: Power law graphs with β > 3 and G(n, p).



Strongly admissible condition
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(i’) log d̃ = O(log d).
(ii) d > 1 + ǫ. wi > ǫ for all but o(n) vertices.

(iii’) ∃ a subset U : Vol3(U) = O(Vol2(G)) d̃
log d̃

, and

Vol2(U) > dVol2(G)/d̃.

Example: Power law graphs with β > 3 and G(n, p).
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- Random graph G(w1, . . . , wn)
- u, v: two vertices

With probability at least 1 − wuwv

d̃(d̃−1)
e−c,

d(u, v) ≥ ⌊ log vol(G) − c

log d̃
⌋.
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- Random graph G(w1, . . . , wn)
- u, v: two vertices

With probability at least 1 − wuwv

d̃(d̃−1)
e−c,

d(u, v) ≥ ⌊ log vol(G) − c

log d̃
⌋.

It implies the average distance is at least

(1 − o(1))
log n

log d̃
.
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- Pj: the set of all possible pathes from u to v with length
j in Kn.

- For any π = uvi1 . . . vij−1
v ∈ Pj, the probability that π is

not a path of G is exactly

1 − wuwvw
2
i1
· · ·w2

ij−1
ρj.

- For any π ∈ Pj, “π is not a path of G” is a monotone
decreasing graph property. FKG inequality applies. (You
can treat them as independent events).
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Pr(d(u, v) ≥ k) ≥
k−1
∏

j=1

∏

i1...ij−1

(1 − wuwvw
2
i1
· · ·w2

ij−1
ρj)



Proof of lower bound

Lecture 5: The small world phenomenon: average distance and diameter Linyuan Lu (University of South Carolina) – 25 / 47
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k−1
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∏
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2
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· · ·w2

ij−1
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≈
k−1
∏

j=1

e
−wuwvρj

∑

w1,...,wj−1
w2

1···w2
j−1
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Pr(d(u, v) ≥ k) ≥
k−1
∏

j=1

∏

i1...ij−1

(1 − wuwvw
2
i1
· · ·w2

ij−1
ρj)

≈
k−1
∏

j=1

e
−wuwvρj

∑

w1,...,wj−1
w2

1···w2
j−1

≈ e−wuwv

∑k−1
j=1 ρj(

∑n
i=1 w2

i )j−1
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∏
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· · ·w2
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−wuwvρj

∑

w1,...,wj−1
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1···w2
j−1

≈ e−wuwv

∑k−1
j=1 ρj(

∑n
i=1 w2

i )j−1

≈ e−wuwvρ((
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i w2
i ρ)k−1)/(

∑

i w2
i ρ−1)

≥ 1 − wuwv

d̃(d̃ − 1)
e−c
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Pr(d(u, v) ≥ k) ≥
k−1
∏

j=1

∏

i1...ij−1

(1 − wuwvw
2
i1
· · ·w2

ij−1
ρj)

≈
k−1
∏

j=1

e
−wuwvρj

∑

w1,...,wj−1
w2

1···w2
j−1

≈ e−wuwv

∑k−1
j=1 ρj(

∑n
i=1 w2

i )j−1

≈ e−wuwvρ((
∑

i w2
i ρ)k−1)/(

∑

i w2
i ρ−1)

≥ 1 − wuwv

d̃(d̃ − 1)
e−c

Here we choose k = ⌊ log vol(G)−c

log d̃
⌋. �
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To construct a path from u to v, expand u and v’s
neighborhoods simultaneously.

The neighborhood of S:

Γ(S) = {v : v ∼ u ∈ S and v 6∈ S}.
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Lemma 1: In a random graph G(w1, . . . , wn), for any two
subsets S and T of vertices, we have

vol(Γ(S) ∩ T ) ≥ (1 − 2ǫ)vol(S)
vol2(T )

vol(G)

with probability at least 1 − e−c, provided vol(S) satisfies

2cvol3(T )vol(G)

ǫ2vol22(T )
≤ vol(S) ≤ ǫvol2(T )vol(G)

vol3(T )



Early neighborhood expansion
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Lemma 2: Suppose that G is admissible. For any fixed
vertex v in the giant component, if τ = o(

√
n), then there is

an index i0 ≤ c0τ so that with probability at least 1 − c1τ
3/2

ec2τ ,
we have

vol(Γi0(v)) ≥ τ

where ci’s are constants depending only on c and d.
Proof will be omitted.



Time to stop neighborhood expansion
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Lemma 3: For any two disjoint subsets S and T with
vol(S)vol(T ) > cvol(G), we have

Pr(d(S, T ) > 1) < e−c

where d(S, T ) denotes the distance between S and T .
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Lemma 3: For any two disjoint subsets S and T with
vol(S)vol(T ) > cvol(G), we have

Pr(d(S, T ) > 1) < e−c

where d(S, T ) denotes the distance between S and T .
Proof:

Pr(d(S, T ) > 1) =
∏

vi∈S,vj∈T

(1 − wiwjρ)

≤ e−vol(S)vol(T )ρ

< e−c.
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It is sufficient to construct a path from u to v with target
length (1 + o(1)) log n

log d̃
.
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It is sufficient to construct a path from u to v with target
length (1 + o(1)) log n

log d̃
.

- By lemma 2, there is a i0 ≤ Cǫ log n

log d̃
satisfying almost

surely

vol(Γi0(v)) ≥ ǫ
log n

log d̃
.
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It is sufficient to construct a path from u to v with target
length (1 + o(1)) log n

log d̃
.

- By lemma 2, there is a i0 ≤ Cǫ log n

log d̃
satisfying almost

surely

vol(Γi0(v)) ≥ ǫ
log n

log d̃
.

- By lemma 1, almost surely vol(Γi(u)) grows roughly by a
factor of (1 − 2ǫ)d̃.
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- Therefore, almost surely, for some i = (1
2 + o(1)) log n

log d̃
,

vol(Γi(u)) ≥
√

vol(G) log n.
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- Therefore, almost surely, for some i = (1
2 + o(1)) log n

log d̃
,

vol(Γi(u)) ≥
√

vol(G) log n.

- Similarly, with probability 1 − o(1), for some
j = (1

2 + o(1)) log n

log d̃
,

vol(Γj(v)) ≥
√

vol(G) log n.
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- Therefore, almost surely, for some i = (1
2 + o(1)) log n

log d̃
,

vol(Γi(u)) ≥
√

vol(G) log n.

- Similarly, with probability 1 − o(1), for some
j = (1

2 + o(1)) log n

log d̃
,

vol(Γj(v)) ≥
√

vol(G) log n.

- Almost surely Γi(u) and Γj(v) are connected. Thus

d(u, v) ≤ i + j + 1 = (1 + o(1))
log n

log d̃
. �



A large deviation inequality
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Lemma 4: Let X1, . . . , Xn be independent random
variables with

Pr(Xi = 1) = pi, P r(Xi = 0) = 1 − pi

For X =
∑n

i=1 aiXi, we have E(X) =
∑n

i=1 aipi and we
define ν =

∑n
i=1 a2

ipi. Then we have

Pr(X < E(X) − λ) ≤ e−λ2/2ν
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Lemma 4: Let X1, . . . , Xn be independent random
variables with

Pr(Xi = 1) = pi, P r(Xi = 0) = 1 − pi

For X =
∑n

i=1 aiXi, we have E(X) =
∑n

i=1 aipi and we
define ν =

∑n
i=1 a2

ipi. Then we have

Pr(X < E(X) − λ) ≤ e−λ2/2ν

With probability 1 − e−c,

X > E(X) −
√

2cν.
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Xj: the indicated random variable for vj ∈ T ∩ Γ(S).

Pr(Xj = 1) = 1 −
∏

vi∈S

(1 − wiwjρ)

≥ vol(S)wjρ − vol(S)2w2
jρ

2.
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Xj: the indicated random variable for vj ∈ T ∩ Γ(S).

Pr(Xj = 1) = 1 −
∏

vi∈S

(1 − wiwjρ)

≥ vol(S)wjρ − vol(S)2w2
jρ

2.

Since vol(Γ(S) ∩ T ) =
∑

vj∈T wjXj, the expected value of

vol(Γ(S)∩T ) is at least vol(S)vol2(T )ρ−vol(S)2vol3(T )ρ2.
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By Lemma 4, with probability at least 1 − e−c, we have

vol(Γ(S) ∩ T ) =
∑

vj∈T

wjXj
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By Lemma 4, with probability at least 1 − e−c, we have

vol(Γ(S) ∩ T ) =
∑

vj∈T

wjXj

≥ vol(S)vol2(T )ρ − vol(S)2vol3(T )ρ2 −
√

2cvol(S)vol3(T )ρ
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By Lemma 4, with probability at least 1 − e−c, we have

vol(Γ(S) ∩ T ) =
∑

vj∈T

wjXj

≥ vol(S)vol2(T )ρ − vol(S)2vol3(T )ρ2 −
√

2cvol(S)vol3(T )ρ

≥ (1 − 2ǫ)vol(S)vol2(T )ρ

by the assumption. �
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versus admissible graph
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A random subgraph of the
Collaboration Graph.

A Connected component of
G(n, p) with n = 500 and
p = 0.002.
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For β > 2, d > 1, and m >> d, a random power law graph
with the exponent β, the average degree d, and the
maximum degree m is defined as G(wi0, . . . , wn+i0−1) where

■ c = β−2
β−1dn

1
β−1

■ i0 = n( d(β−2)
m(β−1))

β−1

■ wi = ci−
1

β−1 , for i0 ≤ i < n + i0.



Power law graphs with β in (2, 3)
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Chung, Lu (2002)

- Examples: the WWW graph, Collaboration graph, etc.
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Power law graphs with β in (2, 3)
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Chung, Lu (2002)

- Examples: the WWW graph, Collaboration graph, etc.
- Non-admissible.
- Containing a dense core, with diameter log log n.
- Mostly vertices are within the distance of O(log log n)

from the core.
- There are some vertices at the distance of O(log n).

The diameter is Θ(log n), while the average distance is
O(log log n).



The small world phenomenon
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Small distance Between any pair of nodes, there is a
short path.

Clustering effect Two nodes are more likely to be
adjacent if they share a common neighbor.
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Small distance Between any pair of nodes, there is a
short path.

Clustering effect Two nodes are more likely to be
adjacent if they share a common neighbor.

A hybrid model = a local graph
+ a random power law graph
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For two fixed integers k ≥ 2 and l ≥ 2, a graph L is said to
be “locally (k, l)-connected” if for any edge uv, there are at
least k edge-disjoint paths with length at most l joining u to
v (including the edge uv).
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For two fixed integers k ≥ 2 and l ≥ 2, a graph L is said to
be “locally (k, l)-connected” if for any edge uv, there are at
least k edge-disjoint paths with length at most l joining u to
v (including the edge uv).

For example, the grid graph Cn�Cn is locally
(3, 3)-connected as well as locally (4, 9)-connected.

By this definition, the union of two locally (k, l)-connected
graphs is locally (k, l)-connected.

The maximum locally (k, l)-connected subgraph H is the
union of all locally (k, l)-connected subgraphs of G.



Algorithm(k, l):
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For each edge e = uv, check whether there are k
edge-disjoint paths with length at most l connecting u and v
in the current graph G. If not, delete the edge e from G.
Then iterate the procedure until no edge can be removed.
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For each edge e = uv, check whether there are k
edge-disjoint paths with length at most l connecting u and v
in the current graph G. If not, delete the edge e from G.
Then iterate the procedure until no edge can be removed.

Theorem:For any graph G, Algorithm(k, l) finds the unique
maximum locally (k, l)-connected subgraph regardless of the
order of edges chosen.



Recovering the local graph
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A hybrid graph, which contains the grid graph C50�C50 as
the local graph, and 528 additional random edges.

The local graph is almost perfect recoverd after applying the
algorithm with k = l = 3.



Hybrid graph model H(n, β, d, m, L)
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■ n: the number of vertices.
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■ n: the number of vertices.

■ L: a locally (k, l)-connected graph with bounded
degrees.
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■ L: a locally (k, l)-connected graph with bounded
degrees.

■ β: the target power law exponent.
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■ n: the number of vertices.

■ L: a locally (k, l)-connected graph with bounded
degrees.

■ β: the target power law exponent.

■ d : the target average degree.

The hybrid graph is the union of the local graph L and the
random power law graph with parameter n, β, d, and m.
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Chung Lu For any fixed constants M , k ≥ 3, and l ≥ 2,
suppose L is a connected and locally (k, l)-connected graph
with degrees bounded by M . Let L′ be the maximum locally
(k, l)-connected subgraph in the hybrid graph
H(n, β, d, m, L) with the maximum degree m satisfying

m = o(n
1−1/(2k)

l+1 ). Then the following holds:

1. L ⊂ L′. The expected number of edges in L′ \ L is

small, i.e., e(L′) − e(L) = O(m) = o(n
1−1/(2k)

l+1 ).



Continue
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2. Almost surely, for all vertices v, the degree of v in L′

can increase at most by 1 if l ≥ 3 (and by 2 if l = 2).

dL′(v) ≤
{

dL(v) + 2 if l = 2;
dL(v) + 1 if l ≥ 3.
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2. Almost surely, for all vertices v, the degree of v in L′

can increase at most by 1 if l ≥ 3 (and by 2 if l = 2).

dL′(v) ≤
{

dL(v) + 2 if l = 2;
dL(v) + 1 if l ≥ 3.

3. The diameter D(L′) of L′ is almost surely
(1+ o(1))D(L) if the diameter D(L) is sufficiently large.



Diameter and average distance
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Chung Lu (2004) For a hybrid graph H(n, β, d, m, L),
almost surely, we have

Case β > 3, the average distance is (1 + o(1)) log n

log d̃
and the

diameter is O(log n).
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Chung Lu (2004) For a hybrid graph H(n, β, d, m, L),
almost surely, we have

Case β > 3, the average distance is (1 + o(1)) log n

log d̃
and the

diameter is O(log n).

Case 2 < β < 3, the average distance is O(log log n) and
the diameter is O(log n).
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Chung Lu (2004) For a hybrid graph H(n, β, d, m, L),
almost surely, we have

Case β > 3, the average distance is (1 + o(1)) log n

log d̃
and the

diameter is O(log n).

Case 2 < β < 3, the average distance is O(log log n) and
the diameter is O(log n).

Case β = 3, the average distance is O(log n/ log log n)
and the diameter is O(log n).
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■ Lecture 1: Overview and outlines

■ Lecture 2: Generative models - preferential attachment
schemes

■ Lecture 3: Duplication models for biological networks

■ Lecture 4: The rise of the giant component

■ Lecture 5: The small world phenomenon: average
distance and diameter

■ Lecture 6: Spectrum of random graphs with given
degrees
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