

Complex Graphs and Networks

Lecture 5: The small world phenomenon: average distance and diameter

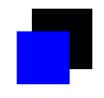
Linyuan Lu

lu@math.sc.edu

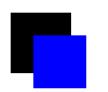
University of South Carolina

BASICS2008 SUMMER SCHOOL July 27 – August 2, 2008

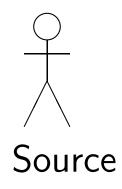
Overview of talks

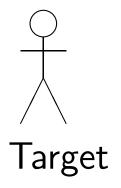


- Lecture 1: Overview and outlines
- Lecture 2: Generative models preferential attachment schemes
- Lecture 3: Duplication models for biological networks
- Lecture 4: The rise of the giant component
- Lecture 5: The small world phenomenon: average distance and diameter
- Lecture 6: Spectrum of random graphs with given degrees

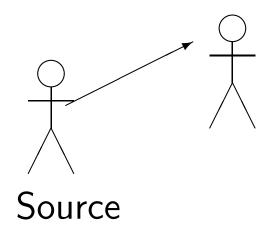


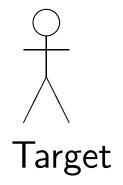
"Six degree separation"

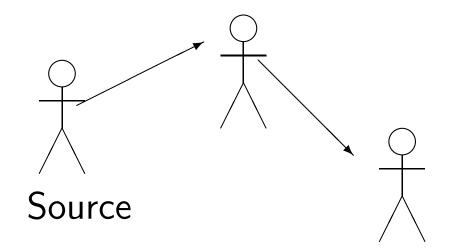


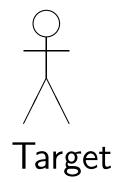


"Six degree separation"

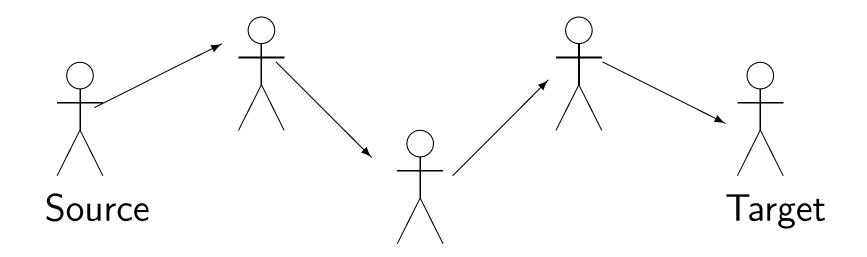






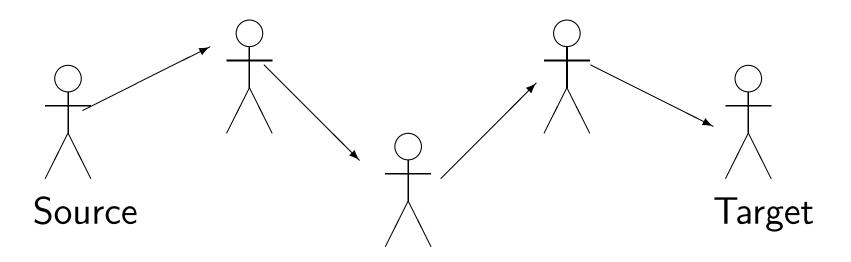


"Six degree separation"



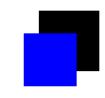
"Six degree separation"

Experiments of Stanley Milgram (1967)



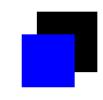
Milgram: "The average distance of the social graph is at most 6."

Diameter and average distance



Diameter: the maximum distance d(u, v), where u and v are in the same connected component.

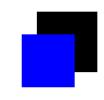
Diameter and average distance



Diameter: the maximum distance d(u, v), where u and v are in the same connected component.

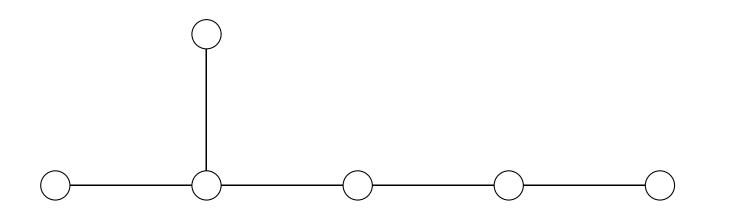
Average distance: the average among all distance d(u, v) for pairs of u and v in the same connected component.

Diameter and average distance



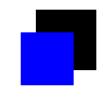
Diameter: the maximum distance d(u, v), where u and v are in the same connected component.

Average distance: the average among all distance d(u, v) for pairs of u and v in the same connected component.

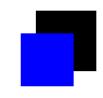


Diameter is 4. Average distance is 2.13.

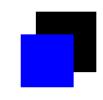
The Hollywood graph: $n \approx 656,065$. The average Bacon number is 2.94. The maximum Bacon number is 9.



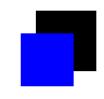
- The Hollywood graph: $n \approx 656,065$. The average Bacon number is 2.94. The maximum Bacon number is 9.
- The Collaboration graph: $n \approx 337,000$. The diameter is 27. The average distance is 7.73.



- The Hollywood graph: $n \approx 656,065$. The average Bacon number is 2.94. The maximum Bacon number is 9.
- The Collaboration graph: $n \approx 337,000$. The diameter is 27. The average distance is 7.73.
- The WWW subgraph: Barabási (1999) the diameter is 19.



- The Hollywood graph: $n \approx 656,065$. The average Bacon number is 2.94. The maximum Bacon number is 9.
- The Collaboration graph: $n \approx 337,000$. The diameter is 27. The average distance is 7.73.
- The WWW subgraph: Barabási (1999) the diameter is 19.
- The WWW subgraph: $n \approx 203,000,000$. Kumar et al. (2001) The diameter is about 500 (as a directed graph).



- The Hollywood graph: $n \approx 656,065$. The average Bacon number is 2.94. The maximum Bacon number is 9.
- The Collaboration graph: $n \approx 337,000$. The diameter is 27. The average distance is 7.73.
- The WWW subgraph: Barabási (1999) the diameter is 19.
- The WWW subgraph: $n \approx 203,000,000$. Kumar et al. (2001) The diameter is about 500 (as a directed graph).

Many real-world graphs have small diameters comparing to its sizes.

Case by case

Disadvantage of experimental methods

- Case by case
- Inadequate information

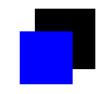
Disadvantage of experimental methods

- Case by case
- Inadequate information
- Dynamically changing

Disadvantage of experimental methods

- Case by case
- Inadequate information
- Dynamically changing
- Prohibitively large sizes

Questions



What is the magnitude of the diameter and the average distance with respect to the graph size?

Questions

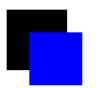
What is the magnitude of the diameter and the average distance with respect to the graph size?

How to characterize these graphs?

Modelling graphs

We will use random graphs to model real-world graphs because

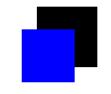
- Data sets are too large and dynamic for exact analysis.
- Most real-world graphs have a random or statistical nature.



Random graphs

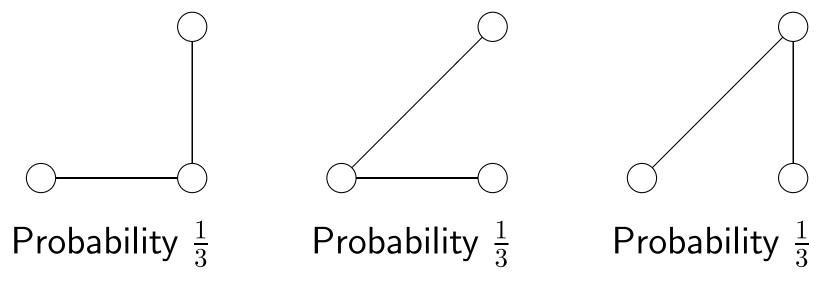
A random graph is a set of graphs together with a probability distribution on that set.

Random graphs

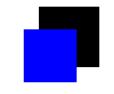


A random graph is a set of graphs together with a probability distribution on that set.

Example: A random graph on 3 vertices and 2 edges with the uniform distribution on it.

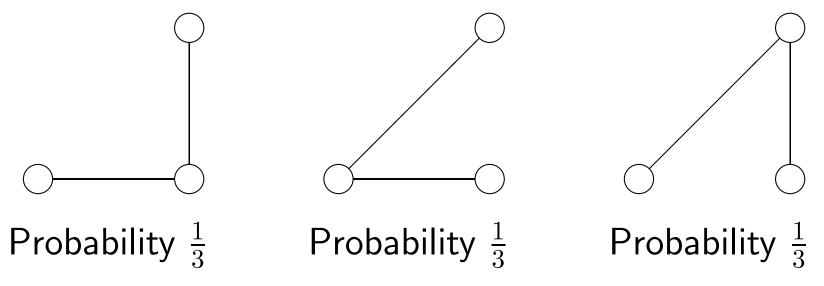


Random graphs



A random graph is a set of graphs together with a probability distribution on that set.

Example: A random graph on 3 vertices and 2 edges with the uniform distribution on it.



A random graph G almost surely satisfies a property P, if

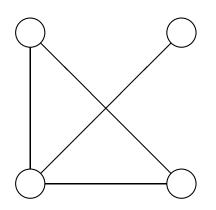
 $Pr(G \text{ satisfies } P) = 1 - o_n(1).$

n nodes

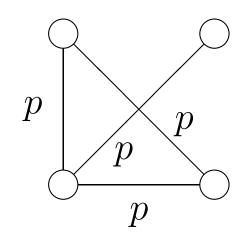
- n nodes
- For each pair of vertices, create an edge independently with probability p.

- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^e(1-p)^{\binom{n}{2}-e}$.

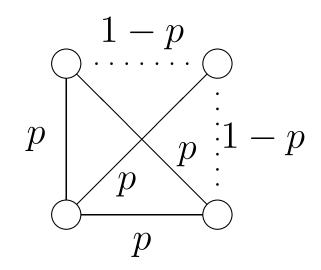
- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^e(1-p)^{\binom{n}{2}-e}$.



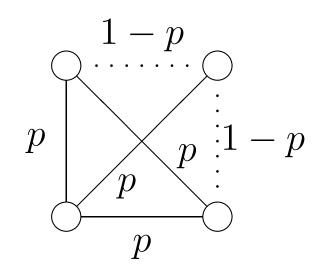
- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^e(1-p)^{\binom{n}{2}-e}$.



- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^e(1-p)^{\binom{n}{2}-e}$.

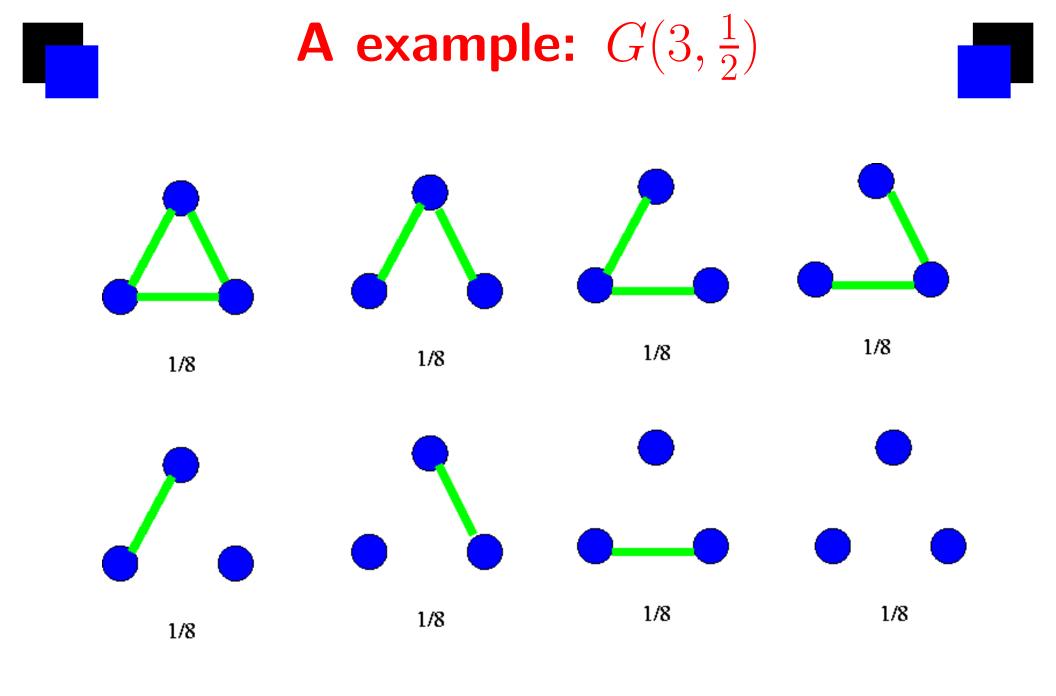


- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^e(1-p)^{\binom{n}{2}-e}$.



The probability of this graph is

$$p^4(1-p)^2.$$



The birth of random graph theory



Paul Erdős and A. Rényi, On the evolution of random graphs *Magyar Tud. Akad. Mat. Kut. Int. Kozl.* **5** (1960) 17-61.

The birth of random graph theory

ON THE EVOLUTION OF RANDOM GRAPHS

by

P. ERDÖS and A. RÉNYI

Institute of Mathematics Hungarian Academy of Sciences, Hungary

1. Definition of a random graph

Let $E_{n,N}$ denote the set of all graphs having *n* given labelled vertices V_1, V_2, \cdots , V_n and *N* edges. The graphs considered are supposed to be not oriented, without parallel edges and without slings (such graphs are sometimes called linear graphs). Thus a graph belonging to the set $E_{n,N}$ is obtained by choosing *N* out of the possible $\binom{n}{2}$ edges between the points V_1, V_2, \cdots, V_n , and therefore the number of elements of $E_{n,N}$ is equal to $\binom{\binom{n}{2}}{N}$. A random graph $\Gamma_{n,N}$ can be defined as an element of $E_{n,N}$ chosen at random, so that each of the elements of $E_{n,N}$ have the same probability to be chosen, namely $1/\binom{\binom{n}{2}}{N}$. There is however an other slightly

Evolution of G(n, p)



Lecture 5: The small world phenomenon: average distance and diameter

Diameter of G(n, p)

Bollobás (1985): (denser graph)

$$diam(G(n,p)) = \lfloor \frac{\log n}{\log np} \rfloor \text{ or } \lceil \frac{\log n}{\log np} \rceil \text{ if } np \gg \log n.$$

Diameter of G(n, p)

Bollobás (1985): (denser graph)

$$diam(G(n,p)) = \lfloor \frac{\log n}{\log np} \rfloor \text{ or } \lceil \frac{\log n}{\log np} \rceil \text{ if } np \gg \log n.$$

Chung Lu, (2000) (Sparser graph)

$$diam(G(n,p)) = \begin{cases} (1+o(1))\frac{\log n}{\log np} & \text{ if } np \to \infty \\ \Theta(\frac{\log n}{\log np}) & \text{ if } \infty > np > 1. \end{cases}$$

Model $G(w_1, w_2, ..., w_n)$

Random graph model with given expected degree sequence

- n nodes with weights w_1, w_2, \ldots, w_n .

Random graph model with given expected degree sequence

- n nodes with weights w_1, w_2, \ldots, w_n .
- For each pair (i, j), create an edge independently with probability $p_{ij} = w_i w_j \rho$, where $\rho = \frac{1}{\sum_{i=1}^n w_i}$.

Random graph model with given expected degree sequence

- n nodes with weights w_1, w_2, \ldots, w_n .
- For each pair (i, j), create an edge independently with probability $p_{ij} = w_i w_j \rho$, where $\rho = \frac{1}{\sum_{i=1}^n w_i}$.
- The graph H has probability

$$\prod_{ij\in E(H)} p_{ij} \prod_{ij\notin E(H)} (1-p_{ij}).$$

Random graph model with given expected degree sequence

- n nodes with weights w_1, w_2, \ldots, w_n .
- For each pair (i, j), create an edge independently with probability $p_{ij} = w_i w_j \rho$, where $\rho = \frac{1}{\sum_{i=1}^n w_i}$.
- The graph H has probability

$$\prod_{ij\in E(H)} p_{ij} \prod_{ij\notin E(H)} (1-p_{ij}).$$

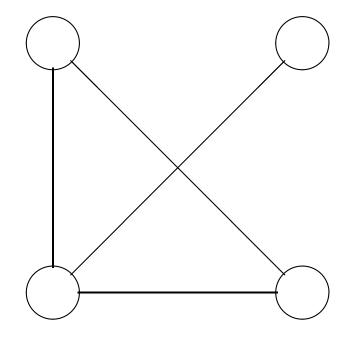
- The expected degree of vertex i is w_i .

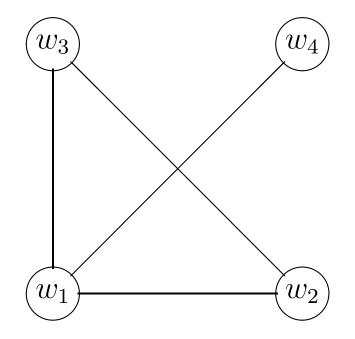
Random graph model with given expected degree sequence

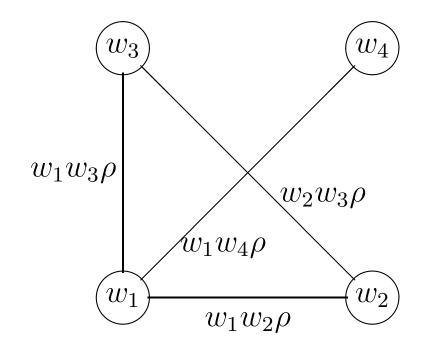
- n nodes with weights w_1, w_2, \ldots, w_n .
- For each pair (i, j), create an edge independently with probability $p_{ij} = w_i w_j \rho$, where $\rho = \frac{1}{\sum_{i=1}^n w_i}$.
- The graph H has probability

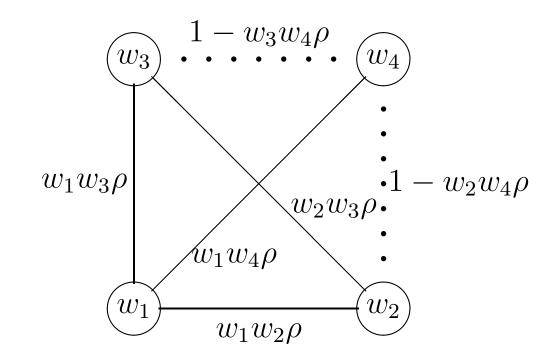
$$\prod_{ij\in E(H)} p_{ij} \prod_{ij\notin E(H)} (1-p_{ij}).$$

- The expected degree of vertex i is w_i .

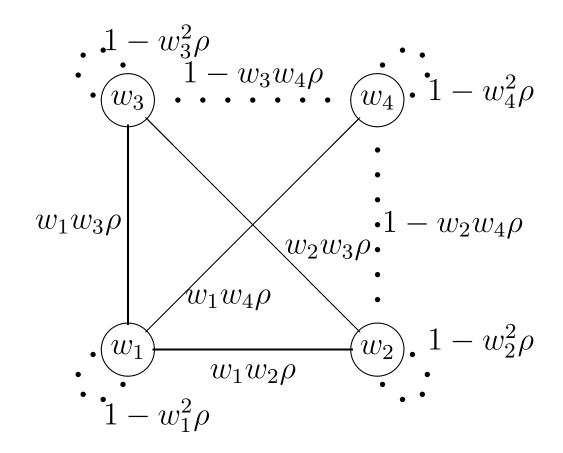




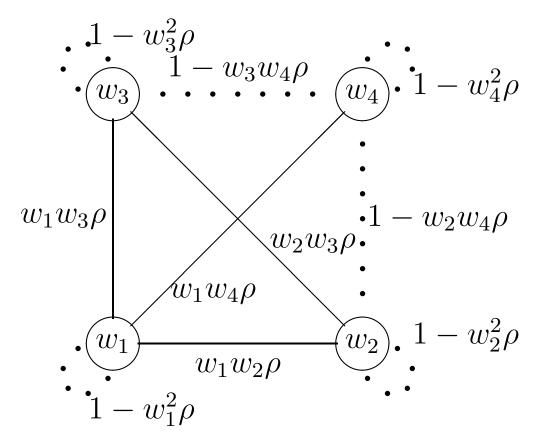




An example: $G(w_1, w_2, w_3, w_4)$



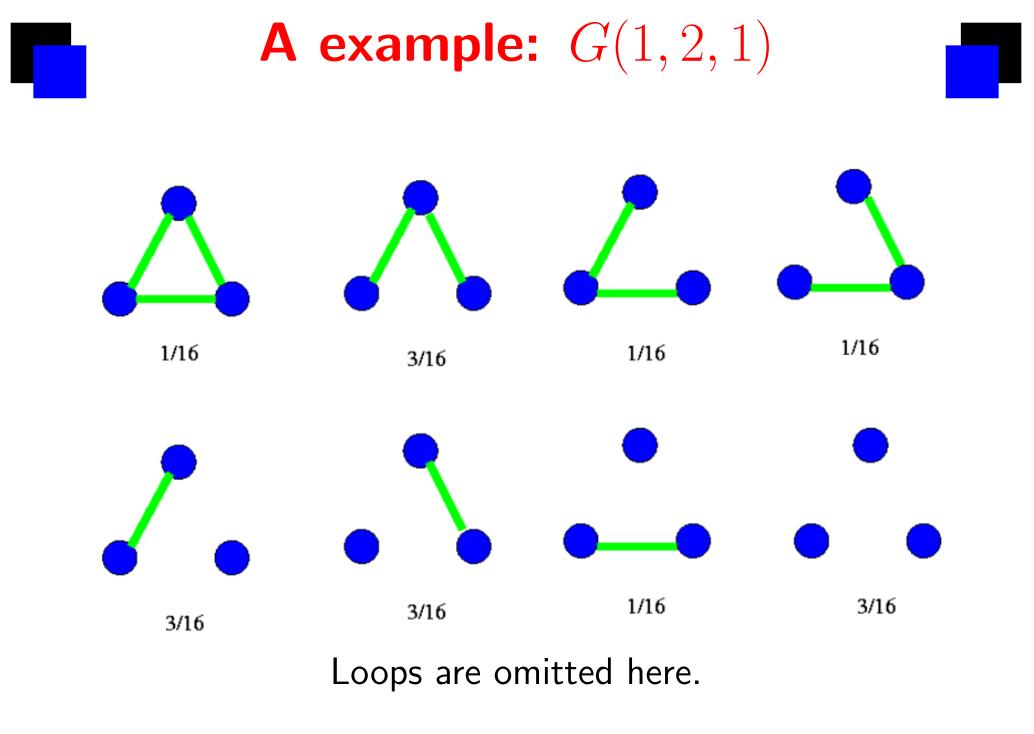
An example: $G(w_1, w_2, w_3, w_4)$

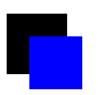


The probability of the graph is

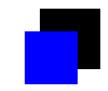
$$w_1^3 w_2^2 w_3^2 w_4 \rho^4 (1 - w_2 w_4 \rho) \times (1 - w_3 w_4 \rho) \prod_{i=1}^4 (1 - w_i^2 \rho).$$

Lecture 5: The small world phenomenon: average distance and diameter



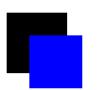


Notations

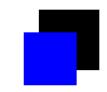


For $G = G(w_1, \ldots, w_n)$, let

- $d = \frac{1}{n} \sum_{i=1}^{n} w_i$ - $\tilde{d} = \frac{\sum_{i=1}^{n} w_i^2}{\sum_{i=1}^{n} w_i}$.
- The volume of S: $\operatorname{Vol}(S) = \sum_{i \in S} w_i$.
- The k-th volume of S: $\operatorname{Vol}_k(\overline{S}) = \sum_{i \in S} w_i^k$.



Notations



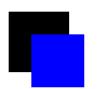
For
$$G = G(w_1, \ldots, w_n)$$
, let

- $d = \frac{1}{n} \sum_{i=1}^{n} w_i$ - $\tilde{d} = \frac{\sum_{i=1}^{n} w_i^2}{\sum_{i=1}^{n} w_i}$.
- The volume of S: $\operatorname{Vol}(S) = \sum_{i \in S} w_i$.
- The k-th volume of S: $\operatorname{Vol}_k(\overline{S}) = \sum_{i \in S} w_i^k$.

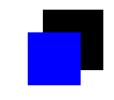
We have

$$\tilde{d} \ge d$$

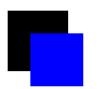
"=" holds if and only if $w_1 = \cdots = w_n$.



Results



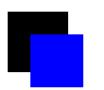
Chung, Lu, 2002 For a random graph G with admissible expected degree sequence (w_1, \ldots, w_n) , the average distance is almost surely $(1 + o(1)) \frac{\log n}{\log \tilde{d}}$.



Results

Chung, Lu, 2002 For a random graph G with admissible expected degree sequence (w_1, \ldots, w_n) , the average distance is almost surely $(1 + o(1)) \frac{\log n}{\log \tilde{d}}$.

For a random graph G with strongly admissible expected degree sequence (w_1, \ldots, w_n) , the diameter is almost surely $\Theta(\frac{\log n}{\log \tilde{d}})$.



Results

Chung, Lu, 2002 For a random graph G with admissible expected degree sequence (w_1, \ldots, w_n) , the average distance is almost surely $(1 + o(1)) \frac{\log n}{\log \tilde{d}}$.

For a random graph G with strongly admissible expected degree sequence (w_1, \ldots, w_n) , the diameter is almost surely $\Theta(\frac{\log n}{\log \tilde{d}})$.

For G(n,p), $\tilde{d} = d = np$. These results are consistent to results for G(n,p).

Admissible condition

(i) $\log \tilde{d} \ll \log n$. (ii) $d > 1 + \epsilon$. $w_i > \epsilon$ for all but o(n) vertices. (iii) \exists a subset U:

 $\operatorname{vol}_2(U) = (1 + o(1))\operatorname{vol}_2(G) \gg \operatorname{vol}_3(U) \frac{\log \tilde{d} \log \log n}{\tilde{d} \log n}.$

Admissible condition

(i)
$$\log \tilde{d} \ll \log n$$
.
(ii) $d > 1 + \epsilon$. $w_i > \epsilon$ for all but $o(n)$ vertices.
(iii) \exists a subset U :

$$\operatorname{vol}_2(U) = (1 + o(1))\operatorname{vol}_2(G) \gg \operatorname{vol}_3(U) \frac{\log \tilde{d} \log \log n}{\tilde{d} \log n}.$$

Roughly speaking, G is close to $G(n,p). \label{eq:general}$ No dense subgraphs.

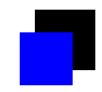
Admissible condition

(i)
$$\log \tilde{d} \ll \log n$$
.
(ii) $d > 1 + \epsilon$. $w_i > \epsilon$ for all but $o(n)$ vertices.
(iii) \exists a subset U :

$$\operatorname{vol}_2(U) = (1 + o(1))\operatorname{vol}_2(G) \gg \operatorname{vol}_3(U) \frac{\log \tilde{d} \log \log n}{\tilde{d} \log n}$$

Roughly speaking, G is close to G(n, p). No dense subgraphs. Example: Power law graphs with $\beta > 3$ and G(n, p).

Strongly admissible condition



(i') $\log \tilde{d} = O(\log d)$. (ii) $d > 1 + \epsilon$. $w_i > \epsilon$ for all but o(n) vertices. (iii') \exists a subset U: $\operatorname{Vol}_3(U) = O(\operatorname{Vol}_2(G)) \frac{\tilde{d}}{\log \tilde{d}}$, and $\operatorname{Vol}_2(U) > d\operatorname{Vol}_2(G)/\tilde{d}$.

Example: Power law graphs with $\beta > 3$ and G(n, p).

Lower bound

- Random graph $G(w_1, \ldots, w_n)$
- u, v: two vertices

With probability at least $1 - \frac{w_u w_v}{\tilde{d}(\tilde{d}-1)} e^{-c}$,

$$d(u, v) \ge \lfloor \frac{\log \operatorname{vol}(G) - c}{\log \tilde{d}} \rfloor$$

Lower bound

- u, v: two vertices

With probability at least $1 - \frac{w_u w_v}{\tilde{d}(\tilde{d}-1)} e^{-c}$,

$$d(u, v) \ge \lfloor \frac{\log \operatorname{vol}(G) - c}{\log \tilde{d}} \rfloor.$$

It implies the average distance is at least

$$(1 - o(1))\frac{\log n}{\log \tilde{d}}.$$

- P_j : the set of all possible pathes from u to v with length j in K_n .
- For any $\pi = uv_{i_1} \dots v_{i_{j-1}} v \in P_j$, the probability that π is not a path of G is exactly

$$1 - w_u w_v w_{i_1}^2 \cdots w_{i_{j-1}}^2 \rho^j.$$

- For any $\pi \in P_j$, " π is not a path of G" is a monotone decreasing graph property. FKG inequality applies. (You can treat them as independent events).

$$Pr(d(u,v) \ge k) \ge \prod_{j=1}^{k-1} \prod_{i_1 \dots i_{j-1}} (1 - w_u w_v w_{i_1}^2 \cdots w_{i_{j-1}}^2 \rho^j)$$

$$Pr(d(u,v) \ge k) \ge \prod_{j=1}^{k-1} \prod_{i_1...i_{j-1}} (1 - w_u w_v w_{i_1}^2 \cdots w_{i_{j-1}}^2 \rho^j)$$

$$\approx \prod_{j=1}^{k-1} e^{-w_u w_v \rho^j \sum_{w_1,...,w_{j-1}} w_1^2 \cdots w_{j-1}^2}$$

$$Pr(d(u,v) \ge k) \ge \prod_{j=1}^{k-1} \prod_{i_1...i_{j-1}} (1 - w_u w_v w_{i_1}^2 \cdots w_{i_{j-1}}^2 \rho^j)$$

$$\approx \prod_{j=1}^{k-1} e^{-w_u w_v \rho^j \sum_{w_1,...,w_{j-1}} w_1^2 \cdots w_{j-1}^2}$$

$$\approx e^{-w_u w_v \sum_{j=1}^{k-1} \rho^j (\sum_{i=1}^n w_i^2)^{j-1}}$$

$$Pr(d(u,v) \ge k) \ge \prod_{j=1}^{k-1} \prod_{i_1...i_{j-1}} (1 - w_u w_v w_{i_1}^2 \cdots w_{i_{j-1}}^2 \rho^j)$$

$$\approx \prod_{j=1}^{k-1} e^{-w_u w_v \rho^j \sum_{w_1,...,w_{j-1}} w_1^2 \cdots w_{j-1}^2}$$

$$\approx e^{-w_u w_v \sum_{j=1}^{k-1} \rho^j (\sum_{i=1}^n w_i^2)^{j-1}}$$

$$\approx e^{-w_u w_v \rho((\sum_i w_i^2 \rho)^k - 1)/(\sum_i w_i^2 \rho - 1)}$$

$$Pr(d(u,v) \ge k) \ge \prod_{j=1}^{k-1} \prod_{i_1...i_{j-1}} (1 - w_u w_v w_{i_1}^2 \cdots w_{i_{j-1}}^2 \rho^j)$$

$$\approx \prod_{j=1}^{k-1} e^{-w_u w_v \rho^j \sum_{w_1,...,w_{j-1}} w_1^2 \cdots w_{j-1}^2}$$

$$\approx e^{-w_u w_v \sum_{j=1}^{k-1} \rho^j (\sum_{i=1}^n w_i^2)^{j-1}}$$

$$\approx e^{-w_u w_v \rho((\sum_i w_i^2 \rho)^k - 1)/(\sum_i w_i^2 \rho - 1)}$$

$$\ge 1 - \frac{w_u w_v}{\tilde{d}(\tilde{d} - 1)} e^{-c}$$

$$Pr(d(u,v) \ge k) \ge \prod_{j=1}^{k-1} \prod_{i_1...i_{j-1}} (1 - w_u w_v w_{i_1}^2 \cdots w_{i_{j-1}}^2 \rho^j)$$

$$\approx \prod_{j=1}^{k-1} e^{-w_u w_v \rho^j \sum_{w_1,...,w_{j-1}} w_1^2 \cdots w_{j-1}^2}$$

$$\approx e^{-w_u w_v \sum_{j=1}^{k-1} \rho^j (\sum_{i=1}^n w_i^2)^{j-1}}$$

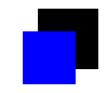
$$\approx e^{-w_u w_v \rho((\sum_i w_i^2 \rho)^k - 1)/(\sum_i w_i^2 \rho - 1)}$$

$$\ge 1 - \frac{w_u w_v}{\tilde{d}(\tilde{d} - 1)} e^{-c}$$

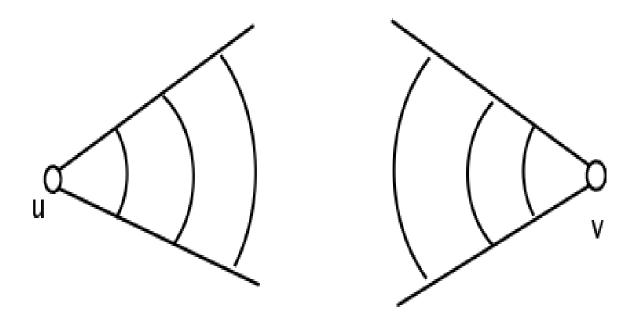
Lecture 5: The small world phenomenon: average distance and diameter

Here we choose $k = \lfloor \frac{\log \operatorname{vol}(G) - c}{\log \tilde{d}} \rfloor$.

Upper bound



To construct a path from u to v, expand u and v's neighborhoods simultaneously.



The neighborhood of S:

$$\Gamma(S) = \{ v : v \sim u \in S \text{ and } v \notin S \}.$$

Neighborhood expansion

Lemma 1: In a random graph $G(w_1, \ldots, w_n)$, for any two subsets S and T of vertices, we have

$$\operatorname{vol}(\Gamma(S) \cap T) \ge (1 - 2\epsilon)\operatorname{vol}(S) \frac{\operatorname{vol}_2(T)}{\operatorname{vol}(G)}$$

with probability at least $1 - e^{-c}$, provided vol(S) satisfies

$$\frac{2c\mathrm{vol}_3(T)\mathrm{vol}(G)}{\epsilon^2\mathrm{vol}_2^2(T)} \le \mathrm{vol}(S) \le \frac{\epsilon\mathrm{vol}_2(T)\mathrm{vol}(G)}{\mathrm{vol}_3(T)}$$

Early neighborhood expansion

Lemma 2: Suppose that G is admissible. For any fixed vertex v in the giant component, if $\tau = o(\sqrt{n})$, then there is an index $i_0 \leq c_0 \tau$ so that with probability at least $1 - \frac{c_1 \tau^{3/2}}{e^{c_2 \tau}}$, we have

 $\operatorname{vol}(\Gamma_{i_0}(v)) \ge \tau$

where c_i 's are constants depending only on c and d. Proof will be omitted.

Time to stop neighborhood expansion

Lemma 3: For any two disjoint subsets S and T with vol(S)vol(T) > cvol(G), we have

 $Pr(d(S,T) > 1) < e^{-c}$

where d(S,T) denotes the distance between S and T.

Lemma 3: For any two disjoint subsets S and T with vol(S)vol(T) > cvol(G), we have

 $Pr(d(S,T) > 1) < e^{-c}$

where d(S,T) denotes the distance between S and T. **Proof:**

$$Pr(d(S,T) > 1) = \prod_{v_i \in S, v_j \in T} (1 - w_i w_j \rho)$$

$$\leq e^{-\operatorname{vol}(S)\operatorname{vol}(T)\rho}$$

$$< e^{-c}.$$

Lecture 5: The small world phenomenon: average distance and diameter

Sketched proof of the theorem



It is sufficient to construct a path from u to v with target length $(1+o(1))\frac{\log n}{\log \tilde{d}}.$

Sketched proof of the theorem

It is sufficient to construct a path from u to v with target length $(1 + o(1)) \frac{\log n}{\log \tilde{d}}$.

- By lemma 2, there is a $i_0 \leq C \epsilon \frac{\log n}{\log \tilde{d}}$ satisfying almost surely

$$\operatorname{vol}(\Gamma_{i_0}(v)) \ge \epsilon \frac{\log n}{\log \tilde{d}}.$$

Sketched proof of the theorem

It is sufficient to construct a path from u to v with target length $(1 + o(1)) \frac{\log n}{\log \tilde{d}}$.

- By lemma 2, there is a $i_0 \leq C \epsilon \frac{\log n}{\log \tilde{d}}$ satisfying almost surely

$$\operatorname{vol}(\Gamma_{i_0}(v)) \ge \epsilon \frac{\log n}{\log \tilde{d}}.$$

- By lemma 1, almost surely $vol(\Gamma_i(u))$ grows roughly by a factor of $(1 - 2\epsilon)\tilde{d}$.

Proof continues

- Therefore, almost surely, for some $i = (\frac{1}{2} + o(1)) \frac{\log n}{\log \tilde{d}}$,

$$\operatorname{vol}(\Gamma_i(u)) \ge \sqrt{\operatorname{vol}(G)\log n}$$

Proof continues

- Therefore, almost surely, for some $i = (\frac{1}{2} + o(1)) \frac{\log n}{\log \tilde{d}}$,

$$\operatorname{vol}(\Gamma_i(u)) \ge \sqrt{\operatorname{vol}(G)\log n}.$$

- Similarly, with probability 1-o(1), for some $j=(\frac{1}{2}+o(1))\frac{\log n}{\log \tilde{d}}$,

$$\operatorname{vol}(\Gamma_j(v)) \ge \sqrt{\operatorname{vol}(G) \log n}.$$

Proof continues

- Therefore, almost surely, for some $i = (\frac{1}{2} + o(1)) \frac{\log n}{\log \tilde{d}}$,

$$\operatorname{vol}(\Gamma_i(u)) \ge \sqrt{\operatorname{vol}(G)\log n}.$$

- Similarly, with probability 1-o(1), for some $j=(\frac{1}{2}+o(1))\frac{\log n}{\log \tilde{d}}$,

$$\operatorname{vol}(\Gamma_j(v)) \ge \sqrt{\operatorname{vol}(G) \log n}.$$

- Almost surely $\Gamma_i(u)$ and $\Gamma_j(v)$ are connected. Thus

$$d(u, v) \le i + j + 1 = (1 + o(1)) \frac{\log n}{\log \tilde{d}}$$

A large deviation inequality

Lemma 4: Let X_1, \ldots, X_n be independent random variables with

$$Pr(X_i = 1) = p_i, \qquad Pr(X_i = 0) = 1 - p_i$$

For $X = \sum_{i=1}^{n} a_i X_i$, we have $E(X) = \sum_{i=1}^{n} a_i p_i$ and we define $\nu = \sum_{i=1}^{n} a_i^2 p_i$. Then we have

$$Pr(X < E(X) - \lambda) \leq e^{-\lambda^2/2\nu}$$

A large deviation inequality

Lemma 4: Let X_1, \ldots, X_n be independent random variables with

$$Pr(X_i = 1) = p_i, \qquad Pr(X_i = 0) = 1 - p_i$$

For $X = \sum_{i=1}^{n} a_i X_i$, we have $E(X) = \sum_{i=1}^{n} a_i p_i$ and we define $\nu = \sum_{i=1}^{n} a_i^2 p_i$. Then we have

$$Pr(X < E(X) - \lambda) \leq e^{-\lambda^2/2\nu}$$

With probability $1 - e^{-c}$,

$$X > E(X) - \sqrt{2c\nu}.$$

 X_j : the indicated random variable for $v_j \in T \cap \Gamma(S)$.

$$Pr(X_j = 1) = 1 - \prod_{v_i \in S} (1 - w_i w_j \rho)$$

$$\geq \operatorname{vol}(S) w_j \rho - \operatorname{vol}(S)^2 w_j^2 \rho^2$$

 X_j : the indicated random variable for $v_j \in T \cap \Gamma(S)$.

$$Pr(X_j = 1) = 1 - \prod_{v_i \in S} (1 - w_i w_j \rho)$$

$$\geq \operatorname{vol}(S) w_j \rho - \operatorname{vol}(S)^2 w_j^2 \rho^2$$

Since $\operatorname{vol}(\Gamma(S) \cap T) = \sum_{v_j \in T} w_j X_j$, the expected value of $\operatorname{vol}(\Gamma(S) \cap T)$ is at least $\operatorname{vol}(S) \operatorname{vol}_2(T) \rho - \operatorname{vol}(S)^2 \operatorname{vol}_3(T) \rho^2$.

By Lemma 4, with probability at least $1 - e^{-c}$, we have

$$\operatorname{vol}(\Gamma(S) \cap T) = \sum_{v_j \in T} w_j X_j$$

By Lemma 4, with probability at least $1 - e^{-c}$, we have

$$\operatorname{vol}(\Gamma(S) \cap T) = \sum_{v_j \in T} w_j X_j$$

 $\geq \operatorname{vol}(S)\operatorname{vol}_2(T)\rho - \operatorname{vol}(S)^2\operatorname{vol}_3(T)\rho^2 - \sqrt{2c\operatorname{vol}(S)\operatorname{vol}_3(T)\rho}$

By Lemma 4, with probability at least $1 - e^{-c}$, we have

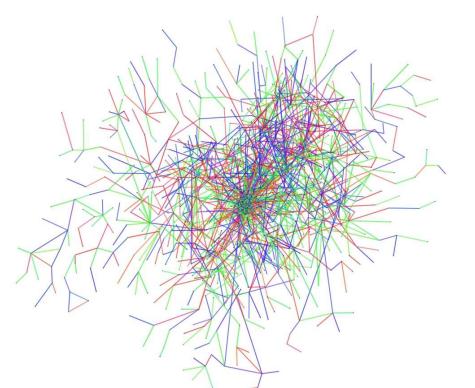
$$\operatorname{vol}(\Gamma(S) \cap T) = \sum_{v_j \in T} w_j X_j$$

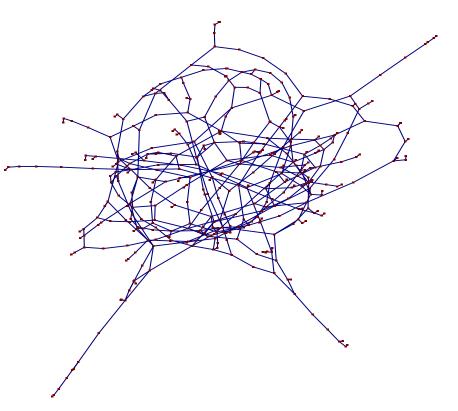
$$\geq \operatorname{vol}(S)\operatorname{vol}_2(T)\rho - \operatorname{vol}(S)^2\operatorname{vol}_3(T)\rho^2 - \sqrt{2c\operatorname{vol}(S)\operatorname{vol}_3(T)\rho}$$

$$\geq (1 - 2\epsilon)\operatorname{vol}(S)\operatorname{vol}_2(T)\rho$$

by the assumption.

Non-admissible graph versus admissible graph





A random subgraph of the Collaboration Graph.

A Connected component of G(n, p) with n = 500 and p = 0.002.

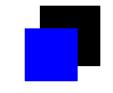
A random power law graph

For $\beta > 2$, d > 1, and m >> d, a random power law graph with the exponent β , the average degree d, and the maximum degree m is defined as $G(w_{i_0}, \ldots, w_{n+i_0-1})$ where

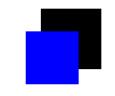
$$c = \frac{\beta - 2}{\beta - 1} dn^{\frac{1}{\beta - 1}}$$

$$i_0 = n(\frac{d(\beta - 2)}{m(\beta - 1)})^{\beta - 1}$$

$$w_i = ci^{-\frac{1}{\beta - 1}}, \text{ for } i_0 \le i < n + i_0.$$



- Examples: the WWW graph, Collaboration graph, etc.



- Examples: the WWW graph, Collaboration graph, etc.
- Non-admissible.

- Examples: the WWW graph, Collaboration graph, etc.
- Non-admissible.
- Containing a dense core, with diameter $\log \log n$.

- Examples: the WWW graph, Collaboration graph, etc.
- Non-admissible.
- Containing a dense core, with diameter $\log \log n$.
- Mostly vertices are within the distance of O(log log n) from the core.

Power law graphs with β in (2,3)

- Examples: the WWW graph, Collaboration graph, etc.
- Non-admissible.
- Containing a dense core, with diameter $\log \log n$.
- Mostly vertices are within the distance of $O(\log \log n)$ from the core.
- There are some vertices at the distance of $O(\log n)$.

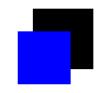
Power law graphs with β in (2,3)

Chung, Lu (2002)

- Examples: the WWW graph, Collaboration graph, etc.
- Non-admissible.
- Containing a dense core, with diameter $\log \log n$.
- Mostly vertices are within the distance of O(log log n) from the core.
- There are some vertices at the distance of $O(\log n)$.

The diameter is $\Theta(\log n)$, while the average distance is $O(\log \log n)$.

The small world phenomenon



Small distance Between any pair of nodes, there is a short path.

Clustering effect Two nodes are more likely to be adjacent if they share a common neighbor.

The small world phenomenon

Small distance Between any pair of nodes, there is a short path.

Clustering effect Two nodes are more likely to be adjacent if they share a common neighbor.

A hybrid model = a local graph + a random power law graph

For two fixed integers $k \ge 2$ and $l \ge 2$, a graph L is said to be "locally (k, l)-connected" if for any edge uv, there are at least k edge-disjoint paths with length at most l joining u to v (including the edge uv).

For two fixed integers $k \ge 2$ and $l \ge 2$, a graph L is said to be "locally (k, l)-connected" if for any edge uv, there are at least k edge-disjoint paths with length at most l joining u to v (including the edge uv).

For example, the grid graph $C_n \Box C_n$ is locally (3,3)-connected as well as locally (4,9)-connected.

For two fixed integers $k \ge 2$ and $l \ge 2$, a graph L is said to be "locally (k, l)-connected" if for any edge uv, there are at least k edge-disjoint paths with length at most l joining u to v (including the edge uv).

For example, the grid graph $C_n \Box C_n$ is locally (3,3)-connected as well as locally (4,9)-connected.

By this definition, the union of two locally (k, l)-connected graphs is locally (k, l)-connected.

For two fixed integers $k \ge 2$ and $l \ge 2$, a graph L is said to be "locally (k, l)-connected" if for any edge uv, there are at least k edge-disjoint paths with length at most l joining u to v (including the edge uv).

For example, the grid graph $C_n \Box C_n$ is locally (3,3)-connected as well as locally (4,9)-connected.

By this definition, the union of two locally (k, l)-connected graphs is locally (k, l)-connected.

The maximum locally (k, l)-connected subgraph H is the union of all locally (k, l)-connected subgraphs of G.

$\operatorname{Algorithm}(k, l)$:

For each edge e = uv, check whether there are kedge-disjoint paths with length at most l connecting u and vin the current graph G. If not, delete the edge e from G. Then iterate the procedure until no edge can be removed.

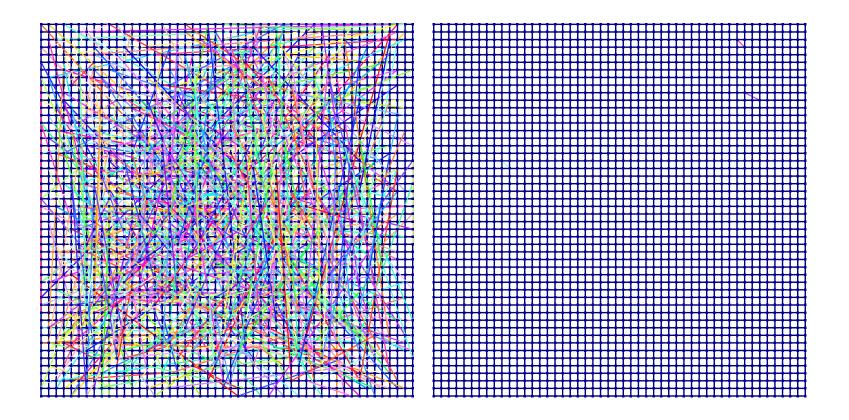
Algorithm(k,l):

For each edge e = uv, check whether there are kedge-disjoint paths with length at most l connecting u and vin the current graph G. If not, delete the edge e from G. Then iterate the procedure until no edge can be removed.

Theorem: For any graph G, Algorithm(k, l) finds the unique maximum locally (k, l)-connected subgraph regardless of the order of edges chosen.

Recovering the local graph

A hybrid graph, which contains the grid graph $C_{50}\square C_{50}$ as the local graph, and 528 additional random edges.



The local graph is almost perfect recoverd after applying the algorithm with k = l = 3.

n: the number of vertices.

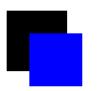
- n: the number of vertices.
- L: a locally (k, l)-connected graph with bounded degrees.

- n: the number of vertices.
- L: a locally (k, l)-connected graph with bounded degrees.
 - eta: the target power law exponent.

- n: the number of vertices.
- L: a locally (k, l)-connected graph with bounded degrees.
- \blacksquare β : the target power law exponent.
 - d : the target average degree.

- n: the number of vertices.
- L: a locally (k, l)-connected graph with bounded degrees.
- \blacksquare β : the target power law exponent.
- d: the target average degree.

The hybrid graph is the union of the local graph L and the random power law graph with parameter n, β , d, and m.



Result 1

Chung Lu For any fixed constants $M, k \ge 3$, and $l \ge 2$, suppose L is a connected and locally (k, l)-connected graph with degrees bounded by M. Let L' be the maximum locally (k, l)-connected subgraph in the hybrid graph $H(n, \beta, d, m, L)$ with the maximum degree m satisfying $m = o(n^{\frac{1-1/(2k)}{l+1}})$. Then the following holds: **1.** $L \subset L'$. The expected number of edges in $L' \setminus L$ is

small, i.e., $e(L') - e(L) = O(m) = o(n^{\frac{1-1/(2k)}{l+1}}).$

Continue

2. Almost surely, for all vertices v, the degree of v in L' can increase at most by 1 if $l \ge 3$ (and by 2 if l = 2).

$$d_{L'}(v) \leq \begin{cases} d_L(v) + 2 & \text{if } l = 2; \\ d_L(v) + 1 & \text{if } l \ge 3. \end{cases}$$

Continue

2. Almost surely, for all vertices v, the degree of v in L' can increase at most by 1 if $l \ge 3$ (and by 2 if l = 2).

$$d_{L'}(v) \leq \begin{cases} d_L(v) + 2 & \text{if } l = 2; \\ d_L(v) + 1 & \text{if } l \ge 3. \end{cases}$$

3. The diameter D(L') of L' is almost surely (1+o(1))D(L) if the diameter D(L) is sufficiently large.

Diameter and average distance

Chung Lu (2004) For a hybrid graph $H(n, \beta, d, m, L)$, almost surely, we have

Case $\beta > 3$, the average distance is $(1 + o(1)) \frac{\log n}{\log \tilde{d}}$ and the diameter is $O(\log n)$.

Diameter and average distance

Chung Lu (2004) For a hybrid graph $H(n, \beta, d, m, L)$, almost surely, we have

Case $\beta > 3$, the average distance is $(1 + o(1))\frac{\log n}{\log \tilde{d}}$ and the diameter is $O(\log n)$.

Case $2 < \beta < 3$, the average distance is $O(\log \log n)$ and the diameter is $O(\log n)$.

Diameter and average distance

Chung Lu (2004) For a hybrid graph $H(n, \beta, d, m, L)$, almost surely, we have

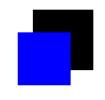
Case $\beta > 3$, the average distance is $(1 + o(1))\frac{\log n}{\log \tilde{d}}$ and the diameter is $O(\log n)$.

- Case $2 < \beta < 3$, the average distance is $O(\log \log n)$ and the diameter is $O(\log n)$.
- **Case** $\beta = 3$, the average distance is $O(\log n / \log \log n)$ and the diameter is $O(\log n)$.

References

- Fan Chung and Linyuan Lu. The average distances in random graphs with given expected degrees, *Proc. Natl. Acad. Sci.* **99** (2002), 15879–15882. Full version is in *Internet Mathematics* **1**, No. 1, (2003), 91–114.
- Fan Chung and Linyuan Lu, The small world phenomenon in hybrid power law graphs, *Lect. Notes Phys.* **650** (2004), 89-104.
- Reid Andersen, Fan Chung, and Linyuan Lu, Modeling the small-world phenomenon with local network flow, *Internet Mathematics*, **2** No. 3, (2005),

Overview of talks



- Lecture 1: Overview and outlines
- Lecture 2: Generative models preferential attachment schemes
- Lecture 3: Duplication models for biological networks
- Lecture 4: The rise of the giant component
- Lecture 5: The small world phenomenon: average distance and diameter
- Lecture 6: Spectrum of random graphs with given degrees

