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Overview of talks -

m lLecture 1: Overview and outlines

m lLecture 2: Generative models - preferential attachment
schemes

m Lecture 3: Duplication models for biological networks

m Lecture 4: The rise of the giant component

m Lecture 5: The small world phenomenon: average
distance and diameter

m Lecture 6: Spectrum of random graphs with given
degrees
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- Random graphs -

A random graph is a set of graphs together with a
probability distribution on that set.
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Random graphs -

A random graph is a set of graphs together with a
probability distribution on that set.

Example: A random graph on 3 vertices and 2 edges with
the uniform distribution on it.
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Probability %
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- Random graphs -

A random graph is a set of graphs together with a
probability distribution on that set.

Example: A random graph on 3 vertices and 2 edges with
the uniform distribution on it.

O
O O O ®
Probability % Probability % Probability %

A random graph GG almost surely satisties a property P, if

Pr(G satisfies P) =1 — 0,(1).

L
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- Erd6s-Rényi model G(n, p) -

- n nodes
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- Erd6s-Rényi model G(n, p) -

- n nodes
- For each pair of vertices, create an edge independently
with probability p.
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- Erd6s-Rényi model G(n, p) -

- n nodes
- For each pair of vertices, create an edge independently
with probability p.

- The graph with e edges has the probability p®(1 — p) (3)-e
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Erd6s-Rényi model G(n, p) -

- n nodes
- For each pair of vertices, create an edge independently
with probability p.

- The graph with e edges has the probability p®(1 — p) (3)-e

The probability of this
graph is

p*(1—p)°.
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- A example: G(3,2)

1R 1R 1/8 1/8

1/8

Lecture 4: The rise of the giant component Linyuan Lu (University of South Carolina) — 5 / 47



- The birth of random graph theory -

o
o

Paul Erdds and A. Rényi, On the evolution of random graphs
Magyar Tud. Akad. Mat. Kut. Int. Kozl. 5 (1960) 17-61.
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- The birth of random graph theory

ON THE EVOLUTION OF RANDOM GRAPHS

by

P. ErDOs and A. RENYI

Institute of Mathematics
Hungarian Academy of Sciences, Hungary

1. Definition of a random graph

Let E., v denote the set of all graphs having n given labelled vertices Vi, Vs, -,
Vn and N edges. The graphs considered are supposed to be not oriented, without
parallel edges and without slings (such graphs are sometimes called linear graphs).
Thus a graph belonging to the set En,» is obtained by choosing N out of the
possible (#) edges between the points Vi, Vi, -, Vi, and therefore the number of

elements of Ea, x is equal to ({;2;:]) A random graph 'y, v can be defined as an

element of E., v chosen at random, so that each of the elements of E., » have the

same probability to be chosen, namely 1/((?) There is however an other slightly
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- Evolution of G(n, p) -

0 the empty graph.
disjoint union of trees.
m cycles of any size.
% the double jumps.
% one giant component, others are trees.
p == G(n,p) is connected.
logn
Q=)
connected and almost regular.

(nc"!)  finite diameter.
O(1) dense graphs, diameter is 2.
1 the complete graph.
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- Evolution of G(n, p) -

Range | p=o0(1/n)
The random graph G, is the disjoint union of trees. In
fact, trees on k vertices, for kK = 3,4, ... only appear

when p is of the order n~*/(A=1).
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- Evolution of G(n, p) -

Range | p=o0(1/n)
The random graph G, is the disjoint union of trees. In
fact, trees on k vertices, for kK = 3,4, ... only appear

when p is of the order n~*/(A=1).

Furthermore, for p = en™*/*=1) and ¢ > 0, let 7,(G)
denote the number of connected components of G
formed by trees on k vertices and A = (2¢)*1k*2/k!.
Then,

MNeA

Pr(Tk(Gn,p) — ]) ]|

fory =0,1,... as n — 0.
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- Evolution of G(n, p) -

Range ll p~c¢/nfor0<c<1

= In this range of p, G, , contains cycles of any given
size with probability tending to a positive limit.
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Evolution of G(n,p)

Range ll p~c¢/nfor0<c<1

= In this range of p, G, , contains cycles of any given
size with probability tending to a positive limit.

s All connected components of G, , are either trees or
unicyclic components. Almost all (i.e., n — o(n))
vertices are in components which are trees.
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- Evolution of G(n, p) -

Range ll p~c¢/nfor0<c<1

= In this range of p, G, , contains cycles of any given
size with probability tending to a positive limit.

s All connected components of G, , are either trees or
unicyclic components. Almost all (i.e., n — o(n))
vertices are in components which are trees.

= The largest connected component of G, , is a tree
and has about é(logn — %log logn) vertices, where
a=c—1—logec.
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- Evolution of G(n, p)

Range Il p ~ 1/n+ p/n, the double jump

s If © <0, the largest component has size
(u —log(1+ p)) tlogn + O(loglogn).

L
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- Evolution of G(n, p) -

Range Il p ~ 1/n+ p/n, the double jump

s If © <0, the largest component has size
(u —log(1+ p)) tlogn + O(loglogn).

s If 4 =0, the largest component has size of order
2/3
n=/?.
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- Evolution of G(n, p) -

Range Il p ~ 1/n+ p/n, the double jump

s If © <0, the largest component has size
(u —log(1+ p)) tlogn + O(loglogn).

s If 4 =0, the largest component has size of order
2/3
n=/?.

s If 4> 0, there is a unique giant component of size
an where ;1 = —a 'log(l —a) — 1.
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Evolution of G(n,p) '

Range Il p ~ 1/n+ p/n, the double jump

If 1w < 0, the largest component has size
(u —log(1+ p)) tlogn + O(loglogn).

If =0, the largest component has size of order

n2/3

If 1w > 0, there is a unique giant component of size
an where ;1 = —a 'log(l —a) — 1.

Bollobds showed that a component of size at least
n*? in G, is almost always unique if p exceeds

1/n+ 4(logn)1/2 —4/3,

I_ ‘

e 4. The rise

of the giant component Linyuan Lu (University of South Carolina) — 11 / 47



- Evolution of G(n, p) -

Range IV p~ ¢/n for ¢ > 1

s Except for one “giant” component, all the other
components are relatively small, and most of them
are trees.
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Evolution of G(n,p)

Range IV p~ ¢/n for ¢ > 1

s Except for one “giant” component, all the other
components are relatively small, and most of them

are trees.

m [ he total number of vertices in components which
are trees is approximately n — f(c)n + o(n).
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- Evolution of G(n, p) -

Range IV p~ ¢/n for ¢ > 1

s Except for one “giant” component, all the other
components are relatively small, and most of them

are trees.

m [ he total number of vertices in components which
are trees is approximately n — f(c)n + o(n).

= The largest connected component of G, , has
approximately f(c)n vertices, where
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- Evolution of G(n, p) '

Range V p = clogn/n with ¢ > 1

= The graph G, almost surely becomes connected.
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- Evolution of G(n, p) '

Range V p = clogn/n with ¢ > 1

= The graph G, almost surely becomes connected.
n If

logn

kn kn

(k—1)loglogn vy 1
p= L 2
n

+ o(—),

)

then there are only trees of size at most k£ except for
the giant component. The distribution of the
number of trees of k vertices a%aln has a Poisson

distribution with mean value &

k-k! -
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- Evolution of G(n, p) -

Range VI p ~ w(n)logn/n where w(n) — oo.
In this range, G, iIs not only almost surely connected,
but the degrees of almost all vertices are asymptotically
equal.
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B  Model Glwy,wy,...,wi)

Random graph model with given expected degree sequence

- n nodes with weights wy, wo, ..., w,.
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B  Model Glwy,wy,...,wi)

Random graph model with given expected degree sequence

- n nodes with weights wy, wo, ..., w,.

- For each pair (i, j), create an edge independently with

probability p;; = w;w;p, where p = an —.
=1 1
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B  Model Glwy,wy,...,wi)

Random graph model with given expected degree sequence

- n nodes with weights wy, wo, ..., w,.

- For each pair (i, j), create an edge independently with
probability p;; = w;w;p, where p = 5 1

1= 1rwZ

- The graph H has probability

I]: pm :[I 1'_]%7

ijelE(H ij¢E(H
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- An example: G(whwz,w&w@ '
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- An example: G(whwz,w&w@ '
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- An example: G(w1,w2,w3,w4) '
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- An example: G(w1,w2,w3,w4) '

I — wswyp

w1ws P -] — WoWy P
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- An example: G(wy, wo, w3, wy)
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An example: G(W17w27w37w4> -

The probability of the graph is

4

wiwswiwsp (1 — wowyp) X (1 — wswyp) H(l — w?ip).
i=1
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- A example: G(1,2,1) '

1/16 3/16 1/16 1/16

1/16 3/16
3/16 3/16

Loops are omitted here.
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- Notations

For G = G(wy,...,w,), let

- d= L ZZ—l W
— Zz 1w
- d= S
- The volume of S Vol(S) = > . qw;.
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- Notations

For G = G(wy,...,w,), let

- d= 122_111]@

- d=&R
- The vqumZe of S: Vol(S) = > . s wi.

We have

d>d

=" holds if and only if w; =--- = w,,.
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Notations

D i 1w%’
- The volume of S: Vol(S) = > _._.cw;.

We have -
d>d
=" holds if and only if w; =--- = w,,.

A connected component S is called a giant component if

vol(.S) = O(vol(G)).
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- Classical result on G(n,p) '

s |f np <1, almost surely there is no giant component.

s |f np > 1, almost surely there is a unique giant
component.

d=d=np.
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- Four questions -

m s it true that G(wy,...,w,) almost surely has no giant
component if d < 17
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- Four questions -

m s it true that G(wy,...,w,) almost surely has no giant
component if d < 17

= Isit true that G(wy, ..., w,) almost surely has a giant
component if d > 17
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- Four questions -

m s it true that G(wy,...,w,) almost surely has no giant
component if d < 17
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component if d < 17
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Four questions -

Is it true that G(wy, ...

component if d < 17

Is it true that G(wy, . ..

component if d > 17

Is it true that G(wy, ...

component if d < 17

Is it true that G(wy, ...

component if d > 17

wy,) almost surely has no giant

A

,wy) almost surely has a giant

,wy) almost surely has no giant

,wy) almost surely has a giant
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- Case d < 1 -

Is it true that G(wq, ..., w,) almost surely has no giant
component if d < 17
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- Case d < 1 -

Is it true that G(wq, ..., w,) almost surely has no giant
component if d < 17

No.
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- Case d < 1 -

Is it true that G(wq, ..., w,) almost surely has no giant
component if d < 17

No. A counter-example: G(%,0) + G(%,2).
Since G(%,2) has

,, n3d3 3
= ——==> 1.
TN T
It has a giant component. But as the whole graph, the

average degree Is d = % < 1.
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- Case d > 1 -

Is it true that G(w1, ..., w,) almost surely has a giant
component if d > 17
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- Case d > 1 -

Is it true that G(w1, ..., w,) almost surely has a giant
component if d > 17

No.
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Case d > 1

Is it true that G(w1, ..., w,) almost surely has a giant
component if d > 17

No. A counter-example: V = SUT (with |S| = logn),
weights are defined as follows.

wl:{\/ﬁ if v, € 5

1 — e otherwise.
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Case d > 1

Is it true that G(w1, ..., w,) almost surely has a giant
component if d > 17

No. A counter-example: V = SUT (with |S| =logn),
weights are defined as follows.

wzz{\/ﬁ if v, € 5

1 — € otherwise.
Every component in GG|r has size at most O(logn). Adding
S can join at most O(y/n log”n) vertices in T. The volume
of maximum component is at most O(y/nlog”n).
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Case d > 1

Is it true that G(w1, ..., w,) almost surely has a giant
component if d > 17

No. A counter-example: V = SUT (with |S| =logn),
weights are defined as follows.

wzz{\/ﬁ if v, € 5

1 — € otherwise.
Every component in GG|r has size at most O(logn). Adding
S can join at most O(y/n log”n) vertices in T. The volume
of maximum component is at most O(y/nlog”n).

nlogn + (1 —€)(n —logn)
vnlogn + /(1 —¢)(n —logn)

Linyuan Lu (University of South Carolina) — 22 / 47
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- Case d < 1 -

Is it true that G(wy, ..., w,) almost surely has no giant
component if d < 17
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- Case d < 1 -

Is it true that G(wy, ..., w,) almost surely has no giant
component if d < 17

Yes. Chung and Lu (2001) Suppose that d < 1 — §. For

any o > 0, with probability at least 1 — a2?fici)' a random

graph G in G(wq, ..., w,) has all connected components
with volume at most a/n.
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- Proof '

Let x = Pr(3 a component S, vol(S) > a/n).
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- Proof '

Let x = Pr(3 a component S, vol(S) > a/n).

Choose two vertices u and v randomly with probability
proportional to their weights.
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- Proof -

Let x = Pr(3 a component S, vol(S) > a/n).

Choose two vertices u and v randomly with probability
proportional to their weights.

Two ways to estimate z = Pr(u ~ v) the probability that u
and v are connected by a path.
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- Proof '

Let x = Pr(3 a component S, vol(S) > a/n).

Choose two vertices u and v randomly with probability
proportional to their weights.

Two ways to estimate z = Pr(u ~ v) the probability that u
and v are connected by a path.

One the one hand,

|V

Pr(u ~ v,3 a component S vol(S) > av/n)
Pr(u ~ v | 3 a component S vol(S) > av/n)x
Pr(u,v € S | 3 a component S vol(S) > ay/n)x

o’np’e.

<

AVARAVS
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- Proof '

On the other hand, the probability P(u,v) of u and v being
connected by a path of length £ + 1 is at most

Pilu,w) < ) (wawi,p) (wiwiyp) -+ (wiwp)

7;17i27°“7ik

Wy Wy pdk.
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- Proof '

On the other hand, the probability P(u,v) of u and v being
connected by a path of length £ + 1 is at most

Pilu,w) < ) (wawi,p) (wiwiyp) -+ (wiwp)

i17i27°“7ik

Wy Wy pdk.

The probability that © and v are connected is at most

1
Pi(u,v) < wuvadk ——— Wy, Wy P.
Z ;; —
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- Proof

1 d?

z < Zwup Wy P mwuva — 1 _ d"’IO'

U,V

Combining this with 2z > za*np?

we have N
d2
o’rnp? < =0
1—d
which implies that
dd?
r < —.
a2(1 — d)

The proof is finished.
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- Case d > 1 -

Gap theorem:

s Almost surely G has a unique giant component (GCC).

vol(GCC') > { (1(1 |

+0o(1))Vol(G) ifd>2.
? 4 o(1))Vol(G) ifd < 2.

_|_
&Eéw
o M

m [he second largest component almost surely has size at
most (1 + o(1))u(d) logn, where

L if d > 4/e;

,LL(CZ) :{ 1+10%d—10g4 _ Y
T T Togd if 1l <d<?2.
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Matrix-tree theorem

Kirchhofff (1847) The number of spanning trees in a
graph G is equal to any cofactor of L = D — A, where

D = diag(dy,...,d,) is the diagonal degree matrix and A is
the adjacency matrix.
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Matrix-tree theorem

Kirchhofff (1847) The number of spanning trees in a
graph G is equal to any cofactor of L = D — A, where

D = diag(dy,...,d,) is the diagonal degree matrix and A is
the adjacency matrix.

The matrix-tree theorem holds for weighted graphs.

Z H w, = | det M|.

T feE(T

Here M is obtained by deletlng one row and one column
from D — A.
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- A set S as component '

Let S = {v’h? (2P ,Uz'k} with Weights Wiy Wigy v ooy Wiy The
probability that there is no edge leaving S is

HvieS,vaS (1 o wlep)
—p ZviES,Uj g5 WilW;

—pvol(S)(vol(G)—vol(S5)) .

~ €

= €
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- A set S as component '

Let S = {%» (2P ,?)Z'k} with Weights Wiy Wigy v ooy Wiy The
probability that there is no edge leaving S is

HvieS,vaS (1 o wlw]p)
—p ZviES,vj g5 WilW;

—pvol(S)(vol(G)—vol(S5)) .

~ €

= €

The probability G |g is connected is at most

Z H wijwilp = w;, w;, - - w;, vol(S) 2 pF L

(v;. vzl )eE(T

Computation is done by matrix-tree theorem.
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- Detail computation -

( 0 Wiy Wi, Q-+ Wi Wi P \
Wi, Wi, P 0 T Wi Wy P

A =

and D is the diagonal matrix

diag(w;, (vol(S) — wy, )p, ..., w;, (vol(S)w;, — w;,)p).
Then compute the determinant of any £ — 1 X k — 1
sub-matrix.
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- A set S as component '

The probability that S is a component is at most

Z TRV wikVOI(S)k_ka_le_VOI(S)(1_V01(S)/V01(G)).
S

The probability that there exists a connected component on
size k with volume less than evol(G) is at most

f(k,e) = Z Wi, Wi, * - wikvol(S)k_ka_le_VOI(S)(l_e).
S|=k
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4

Case d > o '

f(ka E) — Z Wi Wiy + = wikVOI(S)k_QIOk_le_VOl(S)(l_E)
S
prt 2k—2 _—vol(S)(1
< ZFVOI(S) —2vol(S)(1—¢)
S
k—1
P 2k — 2 915 _(2k-2)
= Z kFk ( 1 —¢ )" e
S
k

—(2k—2)

n pk_l 2k — 2)2k—2

<
- k! kk(l—e
1 4

dp(k — 1)2(de(1 — E)Q)k

€

I

L
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- Case —— < d < = '

First, we split f(k,€) into two parts as follows:

f(kve) — fl(kve) + f2(kv€)

where

filkye) = 3 wywy, - wyvol(§)F2pFlemvelS)1-0
vol(S)<dk

fQ(kae) — Z Wi, Wi, - - -wikVOI(S)k_ka_le—vol(S)(1—6)
vol(S)>dk
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- Bounding fi(k,¢) '

fulkye) = ) wi-wvol(8)F 2 e el
vol(S)<dk
k—1
< Z IOk_kvol(S)Zk—Ze—VOI(S)(l—e)
vol(S)<dk
pk—l
< Z o (dk)Qk—Qe—dk(l—e)
vol(S)<dk
n\ pt! 2k—2 —dk(1—
: <k> i (k) e
n d

k
< d k2 (ed(l—e)—l )

I_ ‘
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r Bounding f>(k, ¢) b

S wiwy, - wivol(S)F 2 el
vol(S)>dk

fz(k, 6)

(dk) —2 —dk(l €)

A
Mg
=
£
%

vol(S)>dk
S szlww w;, P _1(dk)k_2€_dk(l_€)
k
< VOI'Z(C'C:) (dk) —2 —dk(l €)
n | d i
= dk2(e( (1—6)—1))
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- Put together

If d > ——5, then

( €)*’

1 4
~ 4dp(k — 1)2(de(1 — 6)2) |

flk,e) <

If = < d < =, then
—€ —€

d
Fk,€) < 205 ()"

Choose k = u(d)logn, then f(k,e) = o(1). The gap
theorem is proved.
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- Volume of Giant Component -

Chung and Lu (2004)

If the average degree is strictly greater than 1, then almost
surely the giant component in a graph G in G(w) has

volume (Ao + O( nl\‘}giz;))\/ol(G), where )\ is the unique

positive root of the following equation:

iwiewi)‘ = (1—-\) i w;.
i=1 1=1
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- Sketch proof -

s With probability at least 1 — 2n =", a vertex with weight
greater than max{8k,2(k + 1+ o(1))u(d)} logn is in
the GCC.
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- Sketch proof -

s With probability at least 1 — 2n =", a vertex with weight
greater than max{8k,2(k + 1+ o(1))u(d)} logn is in
the GCC.

m  For any £ > 2, with probability at least 1 — 6n 2 we
have |Vol(GCC) — E(Vol(GC ()| <
2C1(k 4+ 1)>VEk — 2¢/nlog*® n, where
C1 = 10u(d) + 2u(d)*.
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- Sketch proof -

s With probability at least 1 — 2n =", a vertex with weight
greater than max{8k,2(k + 1+ o(1))u(d)} logn is in
the GCC.

m  For any £ > 2, with probability at least 1 — 6n 2 we
have |Vol(GCC) — E(Vol(GC ()| <
2C1(k 4+ 1)>VEk — 2¢/nlog*® n, where
C1 = 10u(d) + 2u(d)*.
s Vol(G) — E(vol(GCC)) =
S < togn e VO 1 O3 log® )
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- Lagrange inversion formula -

Suppose that z is a function of x and y in terms of another
analytic function ¢ as follows:

z=x+yo(z).

Then z can be written as a power series in y as follows:
— '

v+ P @)

k:

where DU denotes the t-th derivative.
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- Apply it to G(n, p) -

For the G(n, p), the equation is simply e~ = (1 — \). Let
A=1-—2. We have z = de %e”.
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- Apply it to G(n, p) -

For the G(n, p), the equation is simply e~ = (1 — \). Let
A=1-—2. We have z = de~%*. We apply Lagrange
inversion formula with x = 0, y = de™?, and ¢(z) = €*.
Then we have

k
%D(k—l)ekaz oo
kk—l
e

M TP

i

1

This is exactly Erdés and Rényi's result on G(n, p).
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- G(n,p) verse G(wy,...,w,) -

Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?
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- G(n,p) verse G(wy,...,w,) -

Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?

Chung Lu (2004)

m Yes, forl <d< .
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- G(n,p) verse G(wy,...,w,) -

Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?

Chung Lu (2004)

m Yes, forl <d< .
s No, for sufficiently large d.
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- G(n,p) verse G(wy,...,w,) -

Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?

Chung Lu (2004)

m Yes, forl <d< .

s No, for sufficiently large d.

m Whend> %, almost surely the giant component of
G(wi,...,w,) has volume at least

(%(1 + \/1 - %) + 0(1))V01(G)-

This is asymptotically best possible.
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- Sizes and edges in GCC '

Chung, Lu (2004) /f the expected average degree is strictly
greater than 1, then almost surely the giant component in a
random graph of given expected degrees w;, 1 =1,....,n,
hasn — > " e Wit 4+ O(y/nlog® n) vertices and

(Mo — 3A3)Vol(G) + O(1/Vol(G) log™ n) edges.
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- In the collaboration graph -

Vol(GCC) 248000
Vol(G) 284000

)\0(2 — )\0) ~

We have A\ =~ 0.644.
Let n; denote the number of vertices of degree k. We have

w; _
ng ~ E(ny) ~ g —e
k!
120
o (3] % T3 Ty (125 Ng n- ns Ng

166381 | 145872 | 34227 | 16426 | 9913 | 6670 | 4643 | 3529 | 2611 | 203
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Compute |GCC]|

GCC| ~ n—) et
1=1
— n — Z 6(1—)\0)21)@'6—21)@'
1=1
k>0 1=1 k=0
~> an(l — (1 — )\O)k)
k>0
= (1= (1= )"
k>1
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- Conclusion '

The size of giant component is predicted to be about
177,400 by our theory. This is rather close to the actual
value 176,000, within an error bound of less than 1%.

Humbar ol companenis

1 10 100 1000 000l 00000 e
CompTent sike
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Overview of talks -

m lLecture 1: Overview and outlines

m lLecture 2: Generative models - preferential attachment
schemes

m Lecture 3: Duplication models for biological networks

m Lecture 4: The rise of the giant component

m Lecture 5: The small world phenomenon: average
distance and diameter

m Lecture 6: Spectrum of random graphs with given
degrees
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