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Overview of talks
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■ Lecture 1: Overview and outlines

■ Lecture 2: Generative models - preferential attachment
schemes

■ Lecture 3: Duplication models for biological networks

■ Lecture 4: The rise of the giant component

■ Lecture 5: The small world phenomenon: average
distance and diameter

■ Lecture 6: Spectrum of random graphs with given
degrees
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A random graph is a set of graphs together with a
probability distribution on that set.
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A random graph is a set of graphs together with a
probability distribution on that set.
Example: A random graph on 3 vertices and 2 edges with
the uniform distribution on it.
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A random graph is a set of graphs together with a
probability distribution on that set.
Example: A random graph on 3 vertices and 2 edges with
the uniform distribution on it.
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A random graph G almost surely satisfies a property P , if

Pr(G satisfies P ) = 1 − on(1).
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- n nodes
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- n nodes
- For each pair of vertices, create an edge independently

with probability p.
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- n nodes
- For each pair of vertices, create an edge independently

with probability p.

- The graph with e edges has the probability pe(1− p)(
n
2)−e.
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- n nodes
- For each pair of vertices, create an edge independently

with probability p.

- The graph with e edges has the probability pe(1− p)(
n
2)−e.
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- n nodes
- For each pair of vertices, create an edge independently

with probability p.

- The graph with e edges has the probability pe(1− p)(
n
2)−e.
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- n nodes
- For each pair of vertices, create an edge independently

with probability p.

- The graph with e edges has the probability pe(1− p)(
n
2)−e.
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- n nodes
- For each pair of vertices, create an edge independently

with probability p.

- The graph with e edges has the probability pe(1− p)(
n
2)−e.
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The probability of this
graph is

p4(1 − p)2.



A example: G(3, 1
2)
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The birth of random graph theory
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Paul Erdős and A. Rényi, On the evolution of random graphs
Magyar Tud. Akad. Mat. Kut. Int. Kozl. 5 (1960) 17-61.



The birth of random graph theory
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Evolution of G(n, p)

Lecture 4: The rise of the giant component Linyuan Lu (University of South Carolina) – 8 / 47

p

0 the empty graph.
disjoint union of trees.

c
n cycles of any size.
1
n the double jumps.
c′

n one giant component, others are trees.
log n

n G(n, p) is connected.

Ω( log n
n )

connected and almost regular.
Ω(nǫ−1) finite diameter.
Θ(1) dense graphs, diameter is 2.
1 the complete graph.



Evolution of G(n, p)
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Range I p = o(1/n)
The random graph Gn,p is the disjoint union of trees. In
fact, trees on k vertices, for k = 3, 4, . . . only appear
when p is of the order n−k/(k−1).
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Range I p = o(1/n)
The random graph Gn,p is the disjoint union of trees. In
fact, trees on k vertices, for k = 3, 4, . . . only appear
when p is of the order n−k/(k−1).

Furthermore, for p = cn−k/(k−1) and c > 0, let τk(G)
denote the number of connected components of G
formed by trees on k vertices and λ = (2c)k−1kk−2/k!.
Then,

Pr(τk(Gn,p) = j) → λje−λ

j!

for j = 0, 1, . . . as n → ∞.



Evolution of G(n, p)
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Range II p ∼ c/n for 0 < c < 1

■ In this range of p, Gn,p contains cycles of any given
size with probability tending to a positive limit.
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Range II p ∼ c/n for 0 < c < 1

■ In this range of p, Gn,p contains cycles of any given
size with probability tending to a positive limit.

■ All connected components of Gn,p are either trees or
unicyclic components. Almost all (i.e., n − o(n))
vertices are in components which are trees.
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Range II p ∼ c/n for 0 < c < 1

■ In this range of p, Gn,p contains cycles of any given
size with probability tending to a positive limit.

■ All connected components of Gn,p are either trees or
unicyclic components. Almost all (i.e., n − o(n))
vertices are in components which are trees.

■ The largest connected component of Gn,p is a tree
and has about 1

α(log n − 5
2 log log n) vertices, where

α = c − 1 − log c.



Evolution of G(n, p)
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Range III p ∼ 1/n + µ/n, the double jump

■ If µ < 0, the largest component has size
(µ − log(1 + µ))−1 log n + O(log log n).
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Range III p ∼ 1/n + µ/n, the double jump

■ If µ < 0, the largest component has size
(µ − log(1 + µ))−1 log n + O(log log n).

■ If µ = 0, the largest component has size of order
n2/3.
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Range III p ∼ 1/n + µ/n, the double jump

■ If µ < 0, the largest component has size
(µ − log(1 + µ))−1 log n + O(log log n).

■ If µ = 0, the largest component has size of order
n2/3.

■ If µ > 0, there is a unique giant component of size
αn where µ = −α−1 log(1 − α) − 1.
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Range III p ∼ 1/n + µ/n, the double jump

■ If µ < 0, the largest component has size
(µ − log(1 + µ))−1 log n + O(log log n).

■ If µ = 0, the largest component has size of order
n2/3.

■ If µ > 0, there is a unique giant component of size
αn where µ = −α−1 log(1 − α) − 1.

■ Bollobás showed that a component of size at least
n2/3 in Gn,p is almost always unique if p exceeds
1/n + 4(log n)1/2n−4/3.
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Range IV p ∼ c/n for c > 1

■ Except for one “giant” component, all the other
components are relatively small, and most of them
are trees.
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Range IV p ∼ c/n for c > 1

■ Except for one “giant” component, all the other
components are relatively small, and most of them
are trees.

■ The total number of vertices in components which
are trees is approximately n − f(c)n + o(n).
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Range IV p ∼ c/n for c > 1

■ Except for one “giant” component, all the other
components are relatively small, and most of them
are trees.

■ The total number of vertices in components which
are trees is approximately n − f(c)n + o(n).

■ The largest connected component of Gn,p has
approximately f(c)n vertices, where

f(c) = 1 − 1

c

∞
∑

k=1

kk−1

k!
(ce−c)k.
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Range V p = c log n/n with c ≥ 1

■ The graph Gn,p almost surely becomes connected.
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Range V p = c log n/n with c ≥ 1

■ The graph Gn,p almost surely becomes connected.

■ If

p =
log n

kn
+

(k − 1) log log n

kn
+

y

n
+ o(

1

n
),

then there are only trees of size at most k except for
the giant component. The distribution of the
number of trees of k vertices again has a Poisson
distribution with mean value e−ky

k·k! .
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Range VI p ∼ ω(n) log n/n where ω(n) → ∞.
In this range, Gn,p is not only almost surely connected,
but the degrees of almost all vertices are asymptotically
equal.



Model G(w1, w2, . . . , wn)
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Random graph model with given expected degree sequence

- n nodes with weights w1, w2, . . . , wn.
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Random graph model with given expected degree sequence

- n nodes with weights w1, w2, . . . , wn.

- For each pair (i, j), create an edge independently with
probability pij = wiwjρ, where ρ = 1

∑n

i=1
wi

.
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Random graph model with given expected degree sequence

- n nodes with weights w1, w2, . . . , wn.

- For each pair (i, j), create an edge independently with
probability pij = wiwjρ, where ρ = 1

∑n

i=1
wi

.

- The graph H has probability

∏

ij∈E(H)

pij

∏

ij 6∈E(H)

(1 − pij).
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Random graph model with given expected degree sequence

- n nodes with weights w1, w2, . . . , wn.

- For each pair (i, j), create an edge independently with
probability pij = wiwjρ, where ρ = 1
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i=1
wi

.

- The graph H has probability

∏

ij∈E(H)

pij

∏

ij 6∈E(H)

(1 − pij).

- The expected degree of vertex i is wi.
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Random graph model with given expected degree sequence

- n nodes with weights w1, w2, . . . , wn.

- For each pair (i, j), create an edge independently with
probability pij = wiwjρ, where ρ = 1

∑n

i=1
wi

.

- The graph H has probability

∏

ij∈E(H)

pij

∏

ij 6∈E(H)

(1 − pij).

- The expected degree of vertex i is wi.



An example: G(w1, w2, w3, w4)
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The probability of the graph is

w3
1w

2
2w

2
3w4ρ

4(1 − w2w4ρ) × (1 − w3w4ρ)
4

∏

i=1

(1 − w2
i ρ).



A example: G(1, 2, 1)
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Loops are omitted here.



Notations
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For G = G(w1, . . . , wn), let

- d = 1
n

∑n
i=1 wi

- d̃ =
∑n

i=1
w2

i
∑n

i=1
wi

.

- The volume of S: Vol(S) =
∑

i∈S wi.
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∑n

i=1
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i
∑n
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.

- The volume of S: Vol(S) =
∑

i∈S wi.

We have
d̃ ≥ d

“=” holds if and only if w1 = · · · = wn.
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For G = G(w1, . . . , wn), let

- d = 1
n

∑n
i=1 wi

- d̃ =
∑n

i=1
w2

i
∑n

i=1
wi

.

- The volume of S: Vol(S) =
∑

i∈S wi.

We have
d̃ ≥ d

“=” holds if and only if w1 = · · · = wn.

A connected component S is called a giant component if

vol(S) = Θ(vol(G)).



Classical result on G(n, p)
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■ If np < 1, almost surely there is no giant component.

■ If np > 1, almost surely there is a unique giant
component.

d̃ = d = np.



Four questions
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■ Is it true that G(w1, . . . , wn) almost surely has no giant
component if d < 1?
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component if d̃ > 1?
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■ Is it true that G(w1, . . . , wn) almost surely has no giant
component if d < 1?

■ Is it true that G(w1, . . . , wn) almost surely has a giant
component if d̃ > 1?

■ Is it true that G(w1, . . . , wn) almost surely has no giant
component if d̃ < 1?

■ Is it true that G(w1, . . . , wn) almost surely has a giant
component if d > 1?
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Is it true that G(w1, . . . , wn) almost surely has no giant
component if d < 1?

No.



Case d < 1
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Is it true that G(w1, . . . , wn) almost surely has no giant
component if d < 1?

No. A counter-example: G(n
2 , 0) + G(n

2 ,
3
n).

Since G(n
2 ,

3
n) has

n′p′ =
n

2

3

n
=

3

2
> 1.

It has a giant component. But as the whole graph, the
average degree is d = 3

4 < 1.
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Is it true that G(w1, . . . , wn) almost surely has a giant
component if d̃ > 1?
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Is it true that G(w1, . . . , wn) almost surely has a giant
component if d̃ > 1?

No.
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Is it true that G(w1, . . . , wn) almost surely has a giant
component if d̃ > 1?

No. A counter-example: V = S ∪ T (with |S| = log n),
weights are defined as follows.

wi =

{ √
n if vi ∈ S

1 − ǫ otherwise.
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Is it true that G(w1, . . . , wn) almost surely has a giant
component if d̃ > 1?

No. A counter-example: V = S ∪ T (with |S| = log n),
weights are defined as follows.

wi =

{ √
n if vi ∈ S

1 − ǫ otherwise.
Every component in G|T has size at most O(log n). Adding
S can join at most O(

√
n log2 n) vertices in T . The volume

of maximum component is at most O(
√

n log2 n).
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Is it true that G(w1, . . . , wn) almost surely has a giant
component if d̃ > 1?

No. A counter-example: V = S ∪ T (with |S| = log n),
weights are defined as follows.

wi =

{ √
n if vi ∈ S

1 − ǫ otherwise.
Every component in G|T has size at most O(log n). Adding
S can join at most O(

√
n log2 n) vertices in T . The volume

of maximum component is at most O(
√

n log2 n).

d̃ =
n log n + (1 − ǫ)(n − log n)

√
n log n +

√

(1 − ǫ)(n − log n)
> log n.
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Is it true that G(w1, . . . , wn) almost surely has no giant
component if d̃ < 1?
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Is it true that G(w1, . . . , wn) almost surely has no giant
component if d̃ < 1?

Yes. Chung and Lu (2001) Suppose that d̃ < 1 − δ. For

any α > 0, with probability at least 1 − dd̃2

α2(1−d̃)
, a random

graph G in G(w1, . . . , wn) has all connected components
with volume at most α

√
n.



Proof
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Let x = Pr(∃ a component S, vol(S) ≥ α
√

n).
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Let x = Pr(∃ a component S, vol(S) ≥ α
√

n).

Choose two vertices u and v randomly with probability
proportional to their weights.
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Let x = Pr(∃ a component S, vol(S) ≥ α
√

n).

Choose two vertices u and v randomly with probability
proportional to their weights.

Two ways to estimate z = Pr(u ∼ v) the probability that u
and v are connected by a path.
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Let x = Pr(∃ a component S, vol(S) ≥ α
√

n).

Choose two vertices u and v randomly with probability
proportional to their weights.

Two ways to estimate z = Pr(u ∼ v) the probability that u
and v are connected by a path.

One the one hand,

z ≥ Pr(u ∼ v, ∃ a component S vol(S) ≥ α
√

n)

= Pr(u ∼ v | ∃ a component S vol(S) ≥ α
√

n)x

≥ Pr(u, v ∈ S | ∃ a component S vol(S) ≥ α
√

n)x

≥ α2nρ2x.



Proof

Lecture 4: The rise of the giant component Linyuan Lu (University of South Carolina) – 25 / 47

On the other hand, the probability Pk(u, v) of u and v being
connected by a path of length k + 1 is at most

Pk(u, v) ≤
∑

i1,i2,...,ik

(wuwi1ρ) (wi1wi2ρ) · · · (wikwvρ)

= wuwvρd̃k.
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On the other hand, the probability Pk(u, v) of u and v being
connected by a path of length k + 1 is at most

Pk(u, v) ≤
∑

i1,i2,...,ik

(wuwi1ρ) (wi1wi2ρ) · · · (wikwvρ)

= wuwvρd̃k.

The probability that u and v are connected is at most

n
∑

k=0

Pk(u, v) ≤
∑

k≥0

wuwvρd̃k =
1

1 − d̃
wuwvρ.
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z ≤
∑

u,v

wuρ wvρ
1

1 − w̃
wuwvρ =

d̃2

1 − d̃
ρ.

Combining this with z ≥ xα2nρ2

we have

α2xnρ2 ≤ d̃2

1 − d̃
ρ

which implies that

x ≤ dd̃2

α2(1 − d̃)
.

The proof is finished. �



Case d > 1
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Gap theorem:

■ Almost surely G has a unique giant component (GCC).

vol(GCC) ≥
{

(1 − 2√
de

+ o(1))Vol(G) if d ≥ 4
e .

(1 − 1+log d
d + o(1))Vol(G) if d < 2.

■ The second largest component almost surely has size at
most (1 + o(1))µ(d) log n, where

µ(d) =

{ 1
1+log d−log 4 if d > 4/e;

1
d−1−log d if 1 < d < 2.
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Kirchhofff (1847) The number of spanning trees in a
graph G is equal to any cofactor of L = D − A, where
D = diag(d1, . . . , dn) is the diagonal degree matrix and A is
the adjacency matrix.
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Kirchhofff (1847) The number of spanning trees in a
graph G is equal to any cofactor of L = D − A, where
D = diag(d1, . . . , dn) is the diagonal degree matrix and A is
the adjacency matrix.

The matrix-tree theorem holds for weighted graphs.

∑

T

∏

f∈E(T )

we = | det M |.

Here M is obtained by deleting one row and one column
from D − A.



A set S as component
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Let S = {vi1, vi2 . . . , vik} with weights wi1, wi2, . . . , wik . The
probability that there is no edge leaving S is

∏

vi∈S,vj 6∈S (1 − wiwjρ)

≈ e
−ρ

∑

vi∈S,vj 6∈S wiwj

= e−ρvol(S)(vol(G)−vol(S)).
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Let S = {vi1, vi2 . . . , vik} with weights wi1, wi2, . . . , wik . The
probability that there is no edge leaving S is

∏

vi∈S,vj 6∈S (1 − wiwjρ)

≈ e
−ρ

∑

vi∈S,vj 6∈S wiwj

= e−ρvol(S)(vol(G)−vol(S)).

The probability G |S is connected is at most

∑

T

∏

(vij
vil

)∈E(T )

wijwilρ = wi1wi2 · · ·wikvol(S)k−2ρk−1.

Computation is done by matrix-tree theorem.



Detail computation
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Let

A =









0 wi1wi2ρ · · · wi1wikρ
wi2wi1ρ 0 · · · wi2wikρ

...
... . . . ...

wikwi1ρ wikwi2ρ · · · 0









and D is the diagonal matrix
diag(wi1(vol(S) − wi1)ρ, . . . , wik(vol(S)wik − wik)ρ).
Then compute the determinant of any k − 1 × k − 1
sub-matrix.
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The probability that S is a component is at most

∑

S

wi1wi2 · · ·wikvol(S)k−2ρk−1e−vol(S)(1−vol(S)/vol(G)).

The probability that there exists a connected component on
size k with volume less than ǫvol(G) is at most

f(k, ǫ) =
∑

|S|=k

wi1wi2 · · ·wikvol(S)k−2ρk−1e−vol(S)(1−ǫ).



Case d > 4
e(1−ǫ)2
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f(k, ǫ) =
∑

S

wi1wi2 · · ·wikvol(S)k−2ρk−1e−vol(S)(1−ǫ)

≤
∑

S

ρk−1

kk
vol(S)2k−2e−vol(S)(1−ǫ)

≤
∑

S

ρk−1

kk
(
2k − 2

1 − ǫ
)2k−2e−(2k−2)

≤ nk

k!

ρk−1

kk
(
2k − 2

1 − ǫ
)2k−2e−(2k−2)

≤ 1

4ρ(k − 1)2
(

4

de(1 − ǫ)2
)k



Case 1
1−ǫ < d < 2

1−ǫ

Lecture 4: The rise of the giant component Linyuan Lu (University of South Carolina) – 33 / 47

First, we split f(k, ǫ) into two parts as follows:

f(k, ǫ) = f1(k, ǫ) + f2(k, ǫ)

where

f1(k, ǫ) =
∑

vol(S)<dk

wi1wi2 · · ·wikvol(S)k−2ρk−1e−vol(S)(1−ǫ)

f2(k, ǫ) =
∑

vol(S)≥dk

wi1wi2 · · ·wikvol(S)k−2ρk−1e−vol(S)(1−ǫ)
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f1(k, ǫ) =
∑

vol(S)<dk

wi1 · · ·wikvol(S)k−2ρk−1e−vol(S)(1−ǫ)

≤
∑

vol(S)<dk

ρk−1

kk
vol(S)2k−2e−vol(S)(1−ǫ)

≤
∑

vol(S)<dk

ρk−1

kk
(dk)2k−2e−dk(1−ǫ)

≤
(

n

k

)

ρk−1

kk
(dk)2k−2e−dk(1−ǫ)

≤ n

dk2
(

d

ed(1−ǫ)−1
)k



Bounding f2(k, ǫ)
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f2(k, ǫ) =
∑

vol(S)≥dk

wi1wi2 · · ·wikvol(S)k−2ρk−1e−vol(S)(1−ǫ)

≤
∑

vol(S)≥dk

wi1 · · ·wikρ
k−1(dk)k−2e−dk(1−ǫ)

≤
∑

S

wi1wi2 · · ·wikρ
k−1(dk)k−2e−dk(1−ǫ)

<
vol(G)k

k!
ρk−1(dk)k−2e−dk(1−ǫ)

≤ n

dk2
(

d

e(d(1−ǫ)−1)
)k



Put together
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If d > 4
e(1−ǫ)2 , then

f(k, ǫ) ≤ 1

4ρ(k − 1)2
(

4

de(1 − ǫ)2
)k.

If 1
1−ǫ < d < 2

1−ǫ , then

f(k, ǫ) ≤ 2
n

dk2
(

d

e(d(1−ǫ)−1)
)k.

Choose k = µ(d) log n, then f(k, ǫ) = o(1). The gap
theorem is proved.



Volume of Giant Component
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Chung and Lu (2004)
If the average degree is strictly greater than 1, then almost
surely the giant component in a graph G in G(w) has

volume (λ0 + O
(√

n log3.5 n
Vol(G) )

)

Vol(G), where λ0 is the unique

positive root of the following equation:

n
∑

i=1

wie
−wiλ = (1 − λ)

n
∑

i=1

wi.



Sketch proof
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■ With probability at least 1 − 2n−k, a vertex with weight
greater than max{8k, 2(k + 1 + o(1))µ(d)} log n is in
the GCC.
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■ With probability at least 1 − 2n−k, a vertex with weight
greater than max{8k, 2(k + 1 + o(1))µ(d)} log n is in
the GCC.

■ For any k > 2, with probability at least 1 − 6n−k+2, we
have |Vol(GCC) − E(Vol(GCC))| ≤
2C1(k + 1)2

√
k − 2

√
n log2.5 n, where

C1 = 10µ(d) + 2µ(d)2.



Sketch proof

Lecture 4: The rise of the giant component Linyuan Lu (University of South Carolina) – 38 / 47

■ With probability at least 1 − 2n−k, a vertex with weight
greater than max{8k, 2(k + 1 + o(1))µ(d)} log n is in
the GCC.

■ For any k > 2, with probability at least 1 − 6n−k+2, we
have |Vol(GCC) − E(Vol(GCC))| ≤
2C1(k + 1)2

√
k − 2

√
n log2.5 n, where

C1 = 10µ(d) + 2µ(d)2.

■ Vol(G) − E(vol(GCC)) =
∑

wv<Ck log n wve
−wvE(Vol(GCC))ρ + O(k3

√
n log3.5 n).



Lagrange inversion formula
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Suppose that z is a function of x and y in terms of another

analytic function φ as follows:

z = x + yφ(z).

Then z can be written as a power series in y as follows:

z = x +
∞

∑

k=1

yk

k!
D(k−1)φk(x)

where D(t) denotes the t-th derivative.



Apply it to G(n, p)
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For the G(n, p), the equation is simply e−dλ = (1 − λ). Let
λ = 1 − z

d . We have z = de−dez.
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For the G(n, p), the equation is simply e−dλ = (1 − λ). Let
λ = 1 − z

d . We have z = de−dez. We apply Lagrange

inversion formula with x = 0, y = de−d, and φ(z) = ez.
Then we have

z =
∞

∑

k=1

yk

k!
D(k−1)ekx |x=0

=
∞

∑

k=1

kk−1

k!
(de−d)k

This is exactly Erdős and Rényi’s result on G(n, p).



G(n, p) verse G(w1, . . . , wn)
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Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?
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Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?
Chung Lu (2004)

■ Yes, for 1 < d ≤ e
e−1 .
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Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?
Chung Lu (2004)

■ Yes, for 1 < d ≤ e
e−1 .

■ No, for sufficiently large d.
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Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?
Chung Lu (2004)

■ Yes, for 1 < d ≤ e
e−1 .

■ No, for sufficiently large d.
■ When d ≥ 4

e , almost surely the giant component of
G(w1, . . . , wn) has volume at least

(

1

2

(

1 +

√

1 − 4

de

)

+ o(1)

)

Vol(G).

This is asymptotically best possible.



Sizes and edges in GCC
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Chung, Lu (2004) If the expected average degree is strictly

greater than 1, then almost surely the giant component in a

random graph of given expected degrees wi, i = 1, . . . , n,

has n − ∑n
i=1 e−wiλ0 + O(

√
n log3.5 n) vertices and

(λ0 − 1
2λ

2
0)Vol(G) + O(

√

Vol(G) log3.5 n) edges.



In the collaboration graph
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λ0(2 − λ0) ≈
Vol(GCC)

Vol(G)
≈ 248000

284000
.

We have λ0 ≈ 0.644.
Let nk denote the number of vertices of degree k. We have

nk ≈ E(nk) ≈
∑

i≥0

wk
i

k!
e−wi.

n0 n1 n2 n3 n4 n5 n6 n7 n8 n9

166381 145872 34227 16426 9913 6670 4643 3529 2611 2032



Compute |GCC|
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|GCC| ≈ n −
n

∑

i=1

e−λ0wi

= n −
n

∑

i=1

e(1−λ0)wie−wi

=
∑

k≥0

nk −
n

∑

i=1

∞
∑

k=0

(1 − λ0)
k

k!
wk

i e
−wi

≈
∑

k≥0

nk(1 − (1 − λ0)
k)

=
∑

k≥1

nk(1 − (1 − λ0)
k).
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The size of giant component is predicted to be about
177, 400 by our theory. This is rather close to the actual
value 176, 000, within an error bound of less than 1%.
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■ Lecture 1: Overview and outlines

■ Lecture 2: Generative models - preferential attachment
schemes

■ Lecture 3: Duplication models for biological networks

■ Lecture 4: The rise of the giant component

■ Lecture 5: The small world phenomenon: average
distance and diameter

■ Lecture 6: Spectrum of random graphs with given
degrees
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