Complex Graphs and Networks

Lecture 4: The rise of the giant component

Linyuan Lu

lu@math.sc.edu
University of South Carolina

BASICS2008 SUMMER SCHOOL July 27 - August 2, 2008

Overview of talks

- Lecture 1: Overview and outlines
- Lecture 2: Generative models - preferential attachment schemes
- Lecture 3: Duplication models for biological networks
- Lecture 4: The rise of the giant component
- Lecture 5: The small world phenomenon: average distance and diameter

■ Lecture 6: Spectrum of random graphs with given degrees

Random graphs

A random graph is a set of graphs together with a probability distribution on that set.

Random graphs

A random graph is a set of graphs together with a probability distribution on that set. Example: A random graph on 3 vertices and 2 edges with the uniform distribution on it.

Probability $\frac{1}{3}$

Probability $\frac{1}{3}$

Probability $\frac{1}{3}$

Random graphs

A random graph is a set of graphs together with a probability distribution on that set. Example: A random graph on 3 vertices and 2 edges with the uniform distribution on it.

Probability $\frac{1}{3}$

Probability $\frac{1}{3}$

Probability $\frac{1}{3}$

A random graph G almost surely satisfies a property P, if

$$
\operatorname{Pr}(G \text { satisfies } P)=1-o_{n}(1) .
$$

Erdős-Rényi model $G(n, p)$

- n nodes

Erdős-Rényi model $G(n, p)$

- n nodes

- For each pair of vertices, create an edge independently with probability p.

Erdős-Rényi model $G(n, p)$

- n nodes

- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^{e}(1-p)^{\binom{n}{2}-e}$.

Erdős-Rényi model $G(n, p)$

- n nodes

- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^{e}(1-p)^{\binom{n}{2}-e}$.

Erdős-Rényi model $G(n, p)$

- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^{e}(1-p)^{\binom{n}{2}-e}$.

Erdős-Rényi model $G(n, p)$

- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^{e}(1-p)^{\binom{n}{2}-e}$.

Erdős-Rényi model $G(n, p)$

- n nodes
- For each pair of vertices, create an edge independently with probability p.
- The graph with e edges has the probability $p^{e}(1-p)\binom{n}{2}-e$.

The probability of this graph is

$$
p^{4}(1-p)^{2} .
$$

A example: $G\left(3, \frac{1}{2}\right)$

$1 / 8$

$1 / 8$

1/8

1/8

1/8

1/8

1/8

1/8

The birth of random graph theory

Paul Erdős and A. Rényi, On the evolution of random graphs Magyar Tud. Akad. Mat. Kut. Int. Kozl. 5 (1960) 17-61.

The birth of random graph theory

ON THE EVOLUTION OF RANDOM GRAPHS

by

P. ERdös and A. RÉNYi
Institute of Mathematics
Hungarian Academy of Sciences, Hungary

1. Definition of a random graph

Let E_{n}, N denote the set of all graphs having n given labelled vertices V_{1}, V_{2}, \cdots, V_{n} and N edges. The graphs considered are supposed to be not oriented, without parallel edges and without slings (such graphs are sometimes called linear graphs). Thus a graph belonging to the set $E_{n, N}$ is obtained by choosing N out of the possible $\binom{n}{2}$ edges between the points $V_{1}, V_{2}, \cdots, V_{n}$, and therefore the number of elements of E_{n}, N is equal to $\left(\begin{array}{c}n \\ 2 \\ N\end{array}\right)$. A random graph $\Gamma_{n, N}$ can be defined as an element of E_{n}, N chosen at random, so that each of the elements of E_{n}, N have the same probability to be chosen, namely $1 /\left(\begin{array}{c}n \\ 2 \\ N\end{array}\right)$. There is however an other slightly

Evolution of $G(n, p)$

the empty graph. disjoint union of trees. cycles of any size. the double jumps. one giant component, others are trees. $G(n, p)$ is connected.
connected and almost regular. finite diameter. dense graphs, diameter is 2 . the complete graph.

Evolution of $G(n, p)$

Range I $p=o(1 / n)$

The random graph $G_{n, p}$ is the disjoint union of trees. In fact, trees on k vertices, for $k=3,4, \ldots$ only appear when p is of the order $n^{-k /(k-1)}$.

Evolution of $G(n, p)$

Range I $p=o(1 / n)$

The random graph $G_{n, p}$ is the disjoint union of trees. In fact, trees on k vertices, for $k=3,4, \ldots$ only appear when p is of the order $n^{-k /(k-1)}$.
Furthermore, for $p=c n^{-k /(k-1)}$ and $c>0$, let $\tau_{k}(G)$ denote the number of connected components of G formed by trees on k vertices and $\lambda=(2 c)^{k-1} k^{k-2} / k$!. Then,

$$
\operatorname{Pr}\left(\tau_{k}\left(G_{n, p}\right)=j\right) \rightarrow \frac{\lambda^{j} e^{-\lambda}}{j!}
$$

for $j=0,1, \ldots$ as $n \rightarrow \infty$.

Evolution of $G(n, p)$

Range II $\quad p \sim c / n$ for $0<c<1$

- In this range of $p, G_{n, p}$ contains cycles of any given size with probability tending to a positive limit.

Evolution of $G(n, p)$

Range II $p \sim c / n$ for $0<c<1$

- In this range of $p, G_{n, p}$ contains cycles of any given size with probability tending to a positive limit.
- All connected components of $G_{n, p}$ are either trees or unicyclic components. Almost all (i.e., $n-o(n)$) vertices are in components which are trees.

Evolution of $G(n, p)$

Range II $p \sim c / n$ for $0<c<1$

- In this range of $p, G_{n, p}$ contains cycles of any given size with probability tending to a positive limit.
- All connected components of $G_{n, p}$ are either trees or unicyclic components. Almost all (i.e., $n-o(n)$) vertices are in components which are trees.
- The largest connected component of $G_{n, p}$ is a tree and has about $\frac{1}{\alpha}\left(\log n-\frac{5}{2} \log \log n\right)$ vertices, where $\alpha=c-1-\log c$.

Evolution of $G(n, p)$

Range III $p \sim 1 / n+\mu / n$, the double jump

- If $\mu<0$, the largest component has size $(\mu-\log (1+\mu))^{-1} \log n+O(\log \log n)$.

Evolution of $G(n, p)$

Range III $p \sim 1 / n+\mu / n$, the double jump

- If $\mu<0$, the largest component has size $(\mu-\log (1+\mu))^{-1} \log n+O(\log \log n)$.
- If $\mu=0$, the largest component has size of order $n^{2 / 3}$.

Evolution of $G(n, p)$

Range III $p \sim 1 / n+\mu / n$, the double jump

- If $\mu<0$, the largest component has size $(\mu-\log (1+\mu))^{-1} \log n+O(\log \log n)$.
- If $\mu=0$, the largest component has size of order $n^{2 / 3}$.
- If $\mu>0$, there is a unique giant component of size αn where $\mu=-\alpha^{-1} \log (1-\alpha)-1$.

Evolution of $G(n, p)$

Range III $p \sim 1 / n+\mu / n$, the double jump

- If $\mu<0$, the largest component has size $(\mu-\log (1+\mu))^{-1} \log n+O(\log \log n)$.
- If $\mu=0$, the largest component has size of order $n^{2 / 3}$.
- If $\mu>0$, there is a unique giant component of size αn where $\mu=-\alpha^{-1} \log (1-\alpha)-1$.
■ Bollobás showed that a component of size at least $n^{2 / 3}$ in $G_{n, p}$ is almost always unique if p exceeds $1 / n+4(\log n)^{1 / 2} n^{-4 / 3}$.

Evolution of $G(n, p)$

Range IV $p \sim c / n$ for $c>1$

- Except for one "giant" component, all the other components are relatively small, and most of them are trees.

Evolution of $G(n, p)$

Range IV $p \sim c / n$ for $c>1$

- Except for one "giant" component, all the other components are relatively small, and most of them are trees.
- The total number of vertices in components which are trees is approximately $n-f(c) n+o(n)$.

Evolution of $G(n, p)$

Range IV $p \sim c / n$ for $c>1$

- Except for one "giant" component, all the other components are relatively small, and most of them are trees.
- The total number of vertices in components which are trees is approximately $n-f(c) n+o(n)$.
- The largest connected component of $G_{n, p}$ has approximately $f(c) n$ vertices, where

$$
f(c)=1-\frac{1}{c} \sum_{k=1}^{\infty} \frac{k^{k-1}}{k!}\left(c e^{-c}\right)^{k} .
$$

Evolution of $G(n, p)$

Range V $p=c \log n / n$ with $c \geq 1$

- The graph $G_{n, p}$ almost surely becomes connected.

Evolution of $G(n, p)$

Range V $p=c \log n / n$ with $c \geq 1$

- The graph $G_{n, p}$ almost surely becomes connected.

■ If

$$
p=\frac{\log n}{k n}+\frac{(k-1) \log \log n}{k n}+\frac{y}{n}+o\left(\frac{1}{n}\right),
$$

then there are only trees of size at most k except for the giant component. The distribution of the number of trees of k vertices again has a Poisson distribution with mean value $\frac{e^{-k y}}{k \cdot k!}$.

Evolution of $G(n, p)$

Range VI $\quad p \sim \omega(n) \log n / n$ where $\omega(n) \rightarrow \infty$.
In this range, $G_{n, p}$ is not only almost surely connected, but the degrees of almost all vertices are asymptotically equal.

Model $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$

Random graph model with given expected degree sequence

- n nodes with weights $w_{1}, w_{2}, \ldots, w_{n}$.

Model $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$

Random graph model with given expected degree sequence

- n nodes with weights $w_{1}, w_{2}, \ldots, w_{n}$.
- For each pair (i, j), create an edge independently with probability $p_{i j}=w_{i} w_{j} \rho$, where $\rho=\frac{1}{\sum_{i=1}^{n} w_{i}}$.

Model $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$

Random graph model with given expected degree sequence

- n nodes with weights $w_{1}, w_{2}, \ldots, w_{n}$.
- For each pair (i, j), create an edge independently with probability $p_{i j}=w_{i} w_{j} \rho$, where $\rho=\frac{1}{\sum_{i=1}^{n} w_{i}}$.
- The graph H has probability

$$
\prod_{i j \in E(H)} p_{i j} \prod_{i j \notin E(H)}\left(1-p_{i j}\right) .
$$

Model $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$

Random graph model with given expected degree sequence

- n nodes with weights $w_{1}, w_{2}, \ldots, w_{n}$.
- For each pair (i, j), create an edge independently with probability $p_{i j}=w_{i} w_{j} \rho$, where $\rho=\frac{1}{\sum_{i=1}^{n} w_{i}}$.
- The graph H has probability

$$
\prod_{i j \in E(H)} p_{i j} \prod_{i j \notin E(H)}\left(1-p_{i j}\right) .
$$

- The expected degree of vertex i is w_{i}.

Model $G\left(w_{1}, w_{2}, \ldots, w_{n}\right)$

Random graph model with given expected degree sequence

- n nodes with weights $w_{1}, w_{2}, \ldots, w_{n}$.
- For each pair (i, j), create an edge independently with probability $p_{i j}=w_{i} w_{j} \rho$, where $\rho=\frac{1}{\sum_{i=1}^{n} w_{i}}$.
- The graph H has probability

$$
\prod_{i j \in E(H)} p_{i j} \prod_{i j \notin E(H)}\left(1-p_{i j}\right) .
$$

- The expected degree of vertex i is w_{i}.

An example: $G\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$

The probability of the graph is

$$
w_{1}^{3} w_{2}^{2} w_{3}^{2} w_{4} \rho^{4}\left(1-w_{2} w_{4} \rho\right) \times\left(1-w_{3} w_{4} \rho\right) \prod_{i=1}^{4}\left(1-w_{i}^{2} \rho\right)
$$

A example: $G(1,2,1)$

1/16

3/16

3/16

3/16

1/16

1/16

1/16

3/16

Loops are omitted here.

Notations

For $G=G\left(w_{1}, \ldots, w_{n}\right)$, let

- $d=\frac{1}{n} \sum_{i=1}^{n} w_{i}$
$-\quad \tilde{d}=\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n} w_{i}}$.
- The volume of $S: \operatorname{Vol}(S)=\sum_{i \in S} w_{i}$.

Notations

For $G=G\left(w_{1}, \ldots, w_{n}\right)$, let

- $d=\frac{1}{n} \sum_{n=1}^{n} w_{i}$
- $\tilde{d}=\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n} w_{i}}$.
- The volume of $S: \operatorname{Vol}(S)=\sum_{i \in S} w_{i}$.

We have

$$
\tilde{d} \geq d
$$

" $=$ " holds if and only if $w_{1}=\cdots=w_{n}$.

Notations

For $G=G\left(w_{1}, \ldots, w_{n}\right)$, let

- $d=\frac{1}{n} \sum_{i=1}^{n} w_{i}$
- $\tilde{d}=\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n} w_{i}}$.
- The volume of $S: \operatorname{Vol}(S)=\sum_{i \in S} w_{i}$.

We have

$$
\tilde{d} \geq d
$$

" $=$ " holds if and only if $w_{1}=\cdots=w_{n}$.
A connected component S is called a giant component if

$$
\operatorname{vol}(S)=\Theta(\operatorname{vol}(G))
$$

Classical result on $G(n, p)$

- If $n p<1$, almost surely there is no giant component.

■ If $n p>1$, almost surely there is a unique giant component.

$$
\tilde{d}=d=n p .
$$

Four questions

Is it true that $G\left(w_{1}, \ldots, w_{n}\right)$ almost surely has no giant component if $d<1$?

Four questions

- Is it true that $G\left(w_{1}, \ldots, w_{n}\right)$ almost surely has no giant component if $d<1$?

■ Is it true that $G\left(w_{1}, \ldots, w_{n}\right)$ almost surely has a giant component if $\tilde{d}>1$?

Four questions

- Is it true that $G\left(w_{1}, \ldots, w_{n}\right)$ almost surely has no giant component if $d<1$?

■ Is it true that $G\left(w_{1}, \ldots, w_{n}\right)$ almost surely has a giant component if $\tilde{d}>1$?

- Is it true that $G\left(w_{1}, \ldots, w_{n}\right)$ almost surely has no giant component if $\tilde{d}<1$?

Four questions

- Is it true that $G\left(w_{1}, \ldots, w_{n}\right)$ almost surely has no giant component if $d<1$?

■ Is it true that $\underset{\tilde{d}}{ }\left(w_{1}, \ldots, w_{n}\right)$ almost surely has a giant component if $\tilde{d}>1$?

- Is it true that $G\left(w_{1}, \ldots, w_{n}\right)$ almost surely has no giant component if $\tilde{d}<1$?

Is it true that $G\left(w_{1}, \ldots, w_{n}\right)$ almost surely has a giant component if $d>1$?

Case $d<1$

Is it true that $G\left(w_{1}, \ldots, w_{n}\right)$ almost surely has no giant component if $d<1$?

Case $d<1$

Is it true that $G\left(w_{1}, \ldots, w_{n}\right)$ almost surely has no giant component if $d<1$?

No.

Case $d<1$

Is it true that $G\left(w_{1}, \ldots, w_{n}\right)$ almost surely has no giant component if $d<1$?
No. A counter-example: $G\left(\frac{n}{2}, 0\right)+G\left(\frac{n}{2}, \frac{3}{n}\right)$.
Since $G\left(\frac{n}{2}, \frac{3}{n}\right)$ has

$$
n^{\prime} p^{\prime}=\frac{n}{2} \frac{3}{n}=\frac{3}{2}>1
$$

It has a giant component. But as the whole graph, the average degree is $d=\frac{3}{4}<1$.

Case $\tilde{d}>1$

Is it true that $G\left(w_{1}, \ldots, w_{n}\right)$ almost surely has a giant component if $\tilde{d}>1$?

Case $\tilde{d}>1$

Is it true that $\underset{\tilde{d}}{ }\left(w_{1}, \ldots, w_{n}\right)$ almost surely has a giant component if $\tilde{d}>1$?
No.

Case $\tilde{d}>1$

Is it true that $G\left(w_{1}, \ldots, w_{n}\right)$ almost surely has a giant component if $\tilde{d}>1$?

No. A counter-example: $V=S \cup T$ (with $|S|=\log n$), weights are defined as follows.

$$
w_{i}= \begin{cases}\sqrt{n} & \text { if } v_{i} \in S \\ 1-\epsilon & \text { otherwise }\end{cases}
$$

Case $\tilde{d}>1$

Is it true that $G\left(w_{1}, \ldots, w_{n}\right)$ almost surely has a giant component if $\tilde{d}>1$?
No. A counter-example: $V=S \cup T$ (with $|S|=\log n$), weights are defined as follows.

$$
w_{i}= \begin{cases}\sqrt{n} & \text { if } v_{i} \in S \\ 1-\epsilon & \text { otherwise }\end{cases}
$$

Every component in $\left.G\right|_{T}$ has size at most $O(\log n)$. Adding S can join at most $O\left(\sqrt{n} \log ^{2} n\right)$ vertices in T. The volume of maximum component is at most $O\left(\sqrt{n} \log ^{2} n\right)$.

Case $\tilde{d}>1$

Is it true that $G\left(w_{1}, \ldots, w_{n}\right)$ almost surely has a giant component if $\tilde{d}>1$?

No. A counter-example: $V=S \cup T$ (with $|S|=\log n$), weights are defined as follows.

$$
w_{i}= \begin{cases}\sqrt{n} & \text { if } v_{i} \in S \\ 1-\epsilon & \text { otherwise }\end{cases}
$$

Every component in $\left.G\right|_{T}$ has size at most $O(\log n)$. Adding S can join at most $O\left(\sqrt{n} \log ^{2} n\right)$ vertices in T. The volume of maximum component is at most $O\left(\sqrt{n} \log ^{2} n\right)$.

$$
\tilde{d}=\frac{n \log n+(1-\epsilon)(n-\log n)}{\sqrt{n} \log n+\sqrt{(1-\epsilon)}(n-\log n)}>\log n .
$$

Case $\tilde{d}<1$

Is it true that $G\left(w_{1}, \ldots, w_{n}\right)$ almost surely has no giant component if $\tilde{d}<1$?

Case $\tilde{d}<1$

Is it true that $G\left(w_{1}, \ldots, w_{n}\right)$ almost surely has no giant component if $\tilde{d}<1$?
Yes. Chung and Lu (2001) Suppose that $\tilde{d}<1-\delta$. For any $\alpha>0$, with probability at least $1-\frac{d \tilde{d}^{2}}{\alpha^{2}(1-\tilde{d})}$, a random graph G in $G\left(w_{1}, \ldots, w_{n}\right)$ has all connected components with volume at most $\alpha \sqrt{n}$.

Proof

Let $x=\operatorname{Pr}(\exists$ a component $S, \operatorname{vol}(S) \geq \alpha \sqrt{n})$.

Proof

Let $x=\operatorname{Pr}(\exists$ a component $S, \operatorname{vol}(S) \geq \alpha \sqrt{n})$.
Choose two vertices u and v randomly with probability proportional to their weights.

Proof

$$
\text { Let } x=\operatorname{Pr}(\exists \text { a component } S, \operatorname{vol}(S) \geq \alpha \sqrt{n}) \text {. }
$$

Choose two vertices u and v randomly with probability proportional to their weights.

Two ways to estimate $z=\operatorname{Pr}(u \sim v)$ the probability that u and v are connected by a path.

Proof

$$
\text { Let } x=\operatorname{Pr}(\exists \text { a component } S, \operatorname{vol}(S) \geq \alpha \sqrt{n}) \text {. }
$$

Choose two vertices u and v randomly with probability proportional to their weights.

Two ways to estimate $z=\operatorname{Pr}(u \sim v)$ the probability that u and v are connected by a path.

One the one hand,

$$
\begin{aligned}
z & \geq \operatorname{Pr}(u \sim v, \exists \text { a component } S \operatorname{vol}(S) \geq \alpha \sqrt{n}) \\
& =\operatorname{Pr}(u \sim v \mid \exists \text { a component } S \operatorname{vol}(S) \geq \alpha \sqrt{n}) x \\
& \geq \operatorname{Pr}(u, v \in S \mid \exists \text { a component } S \operatorname{vol}(S) \geq \alpha \sqrt{n}) x \\
& \geq \alpha^{2} n \rho^{2} x
\end{aligned}
$$

Proof

On the other hand, the probability $P_{k}(u, v)$ of u and v being connected by a path of length $k+1$ is at most

$$
\begin{aligned}
P_{k}(u, v) & \leq \sum_{i_{1}, i_{2}, \ldots, i_{k}}\left(w_{u} w_{i_{1}} \rho\right)\left(w_{i_{1}} w_{i_{2}} \rho\right) \cdots\left(w_{i_{k}} w_{v} \rho\right) \\
& =w_{u} w_{v} \rho \tilde{d}^{k} .
\end{aligned}
$$

Proof

On the other hand, the probability $P_{k}(u, v)$ of u and v being connected by a path of length $k+1$ is at most

$$
\begin{aligned}
P_{k}(u, v) & \leq \sum_{i_{1}, i_{2}, \ldots, i_{k}}\left(w_{u} w_{i_{1}} \rho\right)\left(w_{i_{1}} w_{i_{2}} \rho\right) \cdots\left(w_{i_{k}} w_{v} \rho\right) \\
& =w_{u} w_{v} \rho \tilde{d}^{k} .
\end{aligned}
$$

The probability that u and v are connected is at most

$$
\sum_{k=0}^{n} P_{k}(u, v) \leq \sum_{k \geq 0} w_{u} w_{v} \rho \tilde{d}^{k}=\frac{1}{1-\tilde{d}} w_{u} w_{v} \rho .
$$

Proof

$$
z \leq \sum_{u, v} w_{u} \rho w_{v} \rho \frac{1}{1-\tilde{w}} w_{u} w_{v} \rho=\frac{\tilde{d}^{2}}{1-\tilde{d}} \rho .
$$

Combining this with $z \geq x \alpha^{2} n \rho^{2}$ we have

$$
\alpha^{2} x n \rho^{2} \leq \frac{\tilde{d}^{2}}{1-\tilde{d}} \rho
$$

which implies that

$$
x \leq \frac{d \tilde{d}^{2}}{\alpha^{2}(1-\tilde{d})}
$$

The proof is finished.

Case $d>1$

Gap theorem:

- Almost surely G has a unique giant component (GCC).

$$
\operatorname{vol}(G C C) \geq\left\{\begin{array}{cl}
\left(1-\frac{2}{\sqrt{d e}}+o(1)\right) \operatorname{Vol}(G) & \text { if } d \geq \frac{4}{e} \\
\left(1-\frac{1+\log d}{d}+o(1)\right) \operatorname{Vol}(G) & \text { if } d<2
\end{array}\right.
$$

The second largest component almost surely has size at most $(1+o(1)) \mu(d) \log n$, where

$$
\mu(d)= \begin{cases}\frac{1}{1+\log d-\log 4} & \text { if } d>4 / e ; \\ \frac{1}{d-1-\log d} & \text { if } 1<d<2 .\end{cases}
$$

Matrix-tree theorem

Kirchhofff (1847) The number of spanning trees in a graph G is equal to any cofactor of $L=D-A$, where $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ is the diagonal degree matrix and A is the adjacency matrix.

Matrix-tree theorem

Kirchhofff (1847) The number of spanning trees in a graph G is equal to any cofactor of $L=D-A$, where $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ is the diagonal degree matrix and A is the adjacency matrix.

The matrix-tree theorem holds for weighted graphs.

$$
\sum_{T} \prod_{f \in E(T)} w_{e}=|\operatorname{det} M| .
$$

Here M is obtained by deleting one row and one column from $D-A$.

A set S as component

Let $S=\left\{v_{i_{1}}, v_{i_{2}} \ldots, v_{i_{k}}\right\}$ with weights $w_{i_{1}}, w_{i_{2}}, \ldots, w_{i_{k}}$. The probability that there is no edge leaving S is

$$
\begin{array}{cl}
\prod_{v_{i} \in S, v_{j} \notin S} & \left(1-w_{i} w_{j} \rho\right) \\
\quad \approx & e^{-\rho \sum_{v_{i} \in S, v_{j} \notin S} w_{i} w_{j}} \\
= & e^{-\rho \operatorname{vol}(S)(\operatorname{vol}(G)-\operatorname{vol}(S))}
\end{array}
$$

A set S as component

Let $S=\left\{v_{i_{1}}, v_{i_{2}} \ldots, v_{i_{k}}\right\}$ with weights $w_{i_{1}}, w_{i_{2}}, \ldots, w_{i_{k}}$. The probability that there is no edge leaving S is

$$
\begin{array}{cl}
\prod_{v_{i} \in S, v_{j} \notin S} & \left(1-w_{i} w_{j} \rho\right) \\
\quad \approx & e^{-\rho \sum_{v_{i} \in S, v_{j} \notin S} w_{i} w_{j}} \\
= & e^{-\rho \operatorname{vol}(S)(\operatorname{vol}(G)-\operatorname{vol}(S))} .
\end{array}
$$

The probability $\left.G\right|_{S}$ is connected is at most

Computation is done by matrix-tree theorem.

Detail computation

Let

$$
A=\left(\begin{array}{cccc}
0 & w_{i_{1}} w_{i_{2}} \rho & \cdots & w_{i_{1}} w_{i_{k}} \rho \\
w_{i_{2}} w_{i_{1}} \rho & 0 & \cdots & w_{i_{2}} w_{i_{k}} \rho \\
\vdots & \vdots & \ddots & \vdots \\
w_{i_{k}} w_{i_{1}} \rho & w_{i_{k}} w_{i_{2}} \rho & \cdots & 0
\end{array}\right)
$$

and D is the diagonal matrix
$\operatorname{diag}\left(w_{i_{1}}\left(\operatorname{vol}(S)-w_{i_{1}}\right) \rho, \ldots, w_{i_{k}}\left(\operatorname{vol}(S) w_{i_{k}}-w_{i_{k}}\right) \rho\right)$.
Then compute the determinant of any $k-1 \times k-1$ sub-matrix.

A set S as component

The probability that S is a component is at most

$$
\sum_{S} w_{i_{1}} w_{i_{2}} \cdots w_{i_{k}} \operatorname{vol}(S)^{k-2} \rho^{k-1} e^{-\operatorname{vol}(S)(1-\operatorname{vol}(S) / \operatorname{vol}(G))}
$$

The probability that there exists a connected component on size k with volume less than $\epsilon \operatorname{vol}(G)$ is at most

$$
f(k, \epsilon)=\sum_{|S|=k} w_{i_{1}} w_{i_{2}} \cdots w_{i_{k}} \operatorname{vol}(S)^{k-2} \rho^{k-1} e^{-\operatorname{vol}(S)(1-\epsilon)}
$$

Case $d>\frac{4}{e(1-\epsilon)^{2}}$

$$
\begin{aligned}
f(k, \epsilon) & =\sum_{S} w_{i_{1}} w_{i_{2}} \cdots w_{i_{k}} \operatorname{vol}(S)^{k-2} \rho^{k-1} e^{-\operatorname{vol}(S)(1-\epsilon)} \\
& \leq \sum_{S} \frac{\rho^{k-1}}{k^{k}} \operatorname{vol}(S)^{2 k-2} e^{-\operatorname{vol}(S)(1-\epsilon)} \\
& \leq \sum_{S} \frac{\rho^{k-1}}{k^{k}}\left(\frac{2 k-2}{1-\epsilon}\right)^{2 k-2} e^{-(2 k-2)} \\
& \leq \frac{n^{k}}{k!} \frac{\rho^{k-1}}{k^{k}}\left(\frac{2 k-2}{1-\epsilon}\right)^{2 k-2} e^{-(2 k-2)} \\
& \leq \frac{1}{4 \rho(k-1)^{2}}\left(\frac{4}{d e(1-\epsilon)^{2}}\right)^{k}
\end{aligned}
$$

Case $\frac{1}{1-\epsilon}<d<\frac{2}{1-\epsilon}$

First, we split $f(k, \epsilon)$ into two parts as follows:

$$
f(k, \epsilon)=f_{1}(k, \epsilon)+f_{2}(k, \epsilon)
$$

where

$$
\begin{aligned}
f_{1}(k, \epsilon) & =\sum_{\operatorname{vol}(S)<d k} w_{i_{1}} w_{i_{2}} \cdots w_{i_{k}} \operatorname{vol}(S)^{k-2} \rho^{k-1} e^{-\operatorname{vol}(S)(1-\epsilon)} \\
f_{2}(k, \epsilon) & =\sum_{\operatorname{vol}(S) \geq d k} w_{i_{1}} w_{i_{2}} \cdots w_{i_{k}} \operatorname{vol}(S)^{k-2} \rho^{k-1} e^{-\operatorname{vol}(S)(1-\epsilon)}
\end{aligned}
$$

Bounding $f_{1}(k, \epsilon)$

$$
\begin{aligned}
f_{1}(k, \epsilon) & =\sum_{\operatorname{vol}(S)<d k} w_{i_{1}} \cdots w_{i_{k}} \operatorname{vol}(S)^{k-2} \rho^{k-1} e^{-\operatorname{vol}(S)(1-\epsilon)} \\
& \leq \sum_{\operatorname{vol}(S)<d k} \frac{\rho^{k-1}}{k^{k}} \operatorname{vol}(S)^{2 k-2} e^{-\operatorname{vol}(S)(1-\epsilon)} \\
& \leq \sum_{\operatorname{vol}(S)<d k} \frac{\rho^{k-1}}{k^{k}}(d k)^{2 k-2} e^{-d k(1-\epsilon)} \\
& \leq\binom{ n}{k} \frac{\rho^{k-1}}{k^{k}}(d k)^{2 k-2} e^{-d k(1-\epsilon)} \\
& \leq \frac{n}{d k^{2}}\left(\frac{d}{\left.e^{d(1-\epsilon)-1}\right)^{k}}\right.
\end{aligned}
$$

Bounding $f_{2}(k, \epsilon)$

$$
\begin{aligned}
f_{2}(k, \epsilon) & =\sum_{\operatorname{vol}(S) \geq d k} w_{i_{1}} w_{i_{2}} \cdots w_{i_{k}} \operatorname{vol}(S)^{k-2} \rho^{k-1} e^{-\operatorname{vol}(S)(1-\epsilon)} \\
& \leq \sum_{\operatorname{vol}(S) \geq d k} w_{i_{1}} \cdots w_{i_{k}} \rho^{k-1}(d k)^{k-2} e^{-d k(1-\epsilon)} \\
& \leq \sum_{S} w_{i_{1}} w_{i_{2}} \cdots w_{i_{k}} \rho^{k-1}(d k)^{k-2} e^{-d k(1-\epsilon)} \\
& <\frac{\operatorname{vol}(G)^{k}}{k!} \rho^{k-1}(d k)^{k-2} e^{-d k(1-\epsilon)} \\
& \leq \frac{n}{d k^{2}}\left(\frac{d}{e^{(d(1-\epsilon)-1)}}\right)^{k}
\end{aligned}
$$

Put together

If $d>\frac{4}{e(1-\epsilon)^{2}}$, then

$$
f(k, \epsilon) \leq \frac{1}{4 \rho(k-1)^{2}}\left(\frac{4}{d e(1-\epsilon)^{2}}\right)^{k}
$$

If $\frac{1}{1-\epsilon}<d<\frac{2}{1-\epsilon}$, then

$$
f(k, \epsilon) \leq 2 \frac{n}{d k^{2}}\left(\frac{d}{e^{(d(1-\epsilon)-1)}}\right)^{k}
$$

Choose $k=\mu(d) \log n$, then $f(k, \epsilon)=o(1)$. The gap theorem is proved.

Volume of Giant Component

Chung and Lu (2004)

If the average degree is strictly greater than 1 , then almost surely the giant component in a graph G in $G(\mathbf{w})$ has volume $\left(\lambda_{0}+O\left(\sqrt{n} \frac{\log ^{3.5} n}{\operatorname{Vol}(G)}\right)\right) \operatorname{Vol}(G)$, where λ_{0} is the unique positive root of the following equation:

$$
\sum_{i=1}^{n} w_{i} e^{-w_{i} \lambda}=(1-\lambda) \sum_{i=1}^{n} w_{i} .
$$

Sketch proof

With probability at least $1-2 n^{-k}$, a vertex with weight greater than $\max \{8 k, 2(k+1+o(1)) \mu(d)\} \log n$ is in the GCC.

Sketch proof

- With probability at least $1-2 n^{-k}$, a vertex with weight greater than $\max \{8 k, 2(k+1+o(1)) \mu(d)\} \log n$ is in the GCC.
■ For any $k>2$, with probability at least $1-6 n^{-k+2}$, we have $|\operatorname{Vol}(G C C)-\mathrm{E}(\operatorname{Vol}(G C C))| \leq$
$2 C_{1}(k+1)^{2} \sqrt{k-2} \sqrt{n} \log ^{2.5} n$, where $C_{1}=10 \mu(d)+2 \mu(d)^{2}$.

Sketch proof

- With probability at least $1-2 n^{-k}$, a vertex with weight greater than $\max \{8 k, 2(k+1+o(1)) \mu(d)\} \log n$ is in the GCC.
- For any $k>2$, with probability at least $1-6 n^{-k+2}$, we have $|\operatorname{Vol}(G C C)-\mathrm{E}(\operatorname{Vol}(G C C))| \leq$
$2 C_{1}(k+1)^{2} \sqrt{k-2} \sqrt{n} \log ^{2.5} n$, where $C_{1}=10 \mu(d)+2 \mu(d)^{2}$.
- $\operatorname{Vol}(G)-\mathrm{E}(\operatorname{vol}(G C C))=$
$\sum_{w_{v}<C_{k} \log n} w_{v} e^{-w_{v} \mathrm{E}(\operatorname{Vol}(G C C)) \rho}+O\left(k^{3} \sqrt{n} \log ^{3.5} n\right)$.

Lagrange inversion formula

Suppose that z is a function of x and y in terms of another analytic function ϕ as follows:

$$
z=x+y \phi(z) .
$$

Then z can be written as a power series in y as follows:

$$
z=x+\sum_{k=1}^{\infty} \frac{y^{k}}{k!} D^{(k-1)} \phi^{k}(x)
$$

where $D^{(t)}$ denotes the t-th derivative.

Apply it to $G(n, p)$

For the $G(n, p)$, the equation is simply $e^{-d \lambda}=(1-\lambda)$. Let $\lambda=1-\frac{z}{d}$. We have $z=d e^{-d} e^{z}$.

Apply it to $G(n, p)$

For the $G(n, p)$, the equation is simply $e^{-d \lambda}=(1-\lambda)$. Let $\lambda=1-\frac{z}{d}$. We have $z=d e^{-d} e^{z}$. We apply Lagrange inversion formula with $x=0, y=d e^{-d}$, and $\phi(z)=e^{z}$.
Then we have

$$
\begin{aligned}
z & =\left.\sum_{k=1}^{\infty} \frac{y^{k}}{k!} D^{(k-1)} e^{k x}\right|_{x=0} \\
& =\sum_{k=1}^{\infty} \frac{k^{k-1}}{k!}\left(d e^{-d}\right)^{k}
\end{aligned}
$$

This is exactly Erdős and Rényi's result on $G(n, p)$.

$G(n, p)$ verse $G\left(w_{1}, \ldots, w_{n}\right)$

Question: Does the random graph with equal expected degrees generates the smallest giant component among all possible degree distribution with the same volume?

$G(n, p)$ verse $G\left(w_{1}, \ldots, w_{n}\right)$

Question: Does the random graph with equal expected degrees generates the smallest giant component among all possible degree distribution with the same volume? Chung Lu (2004)

- Yes, for $1<d \leq \frac{e}{e-1}$.

$G(n, p)$ verse $G\left(w_{1}, \ldots, w_{n}\right)$

Question: Does the random graph with equal expected degrees generates the smallest giant component among all possible degree distribution with the same volume? Chung Lu (2004)

- Yes, for $1<d \leq \frac{e}{e-1}$.
- No, for sufficiently large d.

$G(n, p)$ verse $G\left(w_{1}, \ldots, w_{n}\right)$

Question: Does the random graph with equal expected degrees generates the smallest giant component among all possible degree distribution with the same volume?
Chung Lu (2004)

- Yes, for $1<d \leq \frac{e}{e-1}$.
- No, for sufficiently large d.
- When $d \geq \frac{4}{e}$, almost surely the giant component of $G\left(w_{1}, \ldots, w_{n}\right)$ has volume at least

$$
\left(\frac{1}{2}\left(1+\sqrt{1-\frac{4}{d e}}\right)+o(1)\right) \operatorname{Vol}(G)
$$

This is asymptotically best possible.

Sizes and edges in GCC

Chung, Lu (2004) If the expected average degree is strictly greater than 1, then almost surely the giant component in a random graph of given expected degrees $w_{i}, i=1, \ldots, n$, has $n-\sum_{i=1}^{n} e^{-w_{i} \lambda_{0}}+O\left(\sqrt{n} \log ^{3.5} n\right)$ vertices and $\left(\lambda_{0}-\frac{1}{2} \lambda_{0}^{2}\right) \operatorname{Vol}(G)+O\left(\sqrt{\operatorname{Vol}(G)} \log ^{3.5} n\right)$ edges.

In the collaboration graph

$$
\lambda_{0}\left(2-\lambda_{0}\right) \approx \frac{\operatorname{Vol}(G C C)}{\operatorname{Vol}(G)} \approx \frac{248000}{284000} .
$$

We have $\lambda_{0} \approx 0.644$.
Let n_{k} denote the number of vertices of degree k. We have

$$
n_{k} \approx \mathrm{E}\left(n_{k}\right) \approx \sum_{i \geq 0} \frac{w_{i}^{k}}{k!} e^{-w_{i}} .
$$

n_{0}	n_{1}	n_{2}	n_{3}	n_{4}	n_{5}	n_{6}	n_{7}	n_{8}	n_{9}
166381	145872	34227	16426	9913	6670	4643	3529	2611	203

Compute $|G C C|$

$$
\begin{aligned}
|G C C| & \approx n-\sum_{i=1}^{n} e^{-\lambda_{0} w_{i}} \\
& =n-\sum_{i=1}^{n} e^{\left(1-\lambda_{0}\right) w_{i}} e^{-w_{i}} \\
& =\sum_{k \geq 0} n_{k}-\sum_{i=1}^{n} \sum_{k=0}^{\infty} \frac{\left(1-\lambda_{0}\right)^{k}}{k!} w_{i}^{k} e^{-w_{i}} \\
& \approx \sum_{k \geq 0} n_{k}\left(1-\left(1-\lambda_{0}\right)^{k}\right) \\
& =\sum_{k \geq 1} n_{k}\left(1-\left(1-\lambda_{0}\right)^{k}\right) .
\end{aligned}
$$

Conclusion

The size of giant component is predicted to be about 177,400 by our theory. This is rather close to the actual value 176,000 , within an error bound of less than 1%.

References

- Fan Chung and Linyuan Lu. Connected components in a random graph with given degree sequences, Annals of Combinatorics, 6 (2002), 125-145.
- Fan Chung and Linyuan Lu, The volume of the giant component for a random graph with given expected degrees, SIAM J. Discrete Math., 20 (2006), No. 2, 395-411.

Overview of talks

- Lecture 1: Overview and outlines
- Lecture 2: Generative models - preferential attachment schemes
- Lecture 3: Duplication models for biological networks
- Lecture 4: The rise of the giant component
- Lecture 5: The small world phenomenon: average distance and diameter

■ Lecture 6: Spectrum of random graphs with given degrees

