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Overview of talks
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■ Lecture 1: Overview and outlines

■ Lecture 2: Generative models - preferential attachment
schemes

■ Lecture 3: Duplication models for biological networks

■ Lecture 4: The rise of the giant component

■ Lecture 5: The small world phenomenon: average
distance and diameter

■ Lecture 6: Spectrum of random graphs with given
degrees



The power law
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The number of vertices of degree k is approximately
proportional to k−β for some positive β.
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The number of vertices of degree k is approximately
proportional to k−β for some positive β.

A power law graph is a graph whose degree sequence
satisfies the power law.



Power law distribution
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Left: The collaboration
graph follows the power
law degree distribution
with exponent β ≈ 3.0

Right: An IP graph
follows the power law de-
gree distribution with ex-
ponent β ≈ 2.4



Power law in ecological networks
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P (k) ∼ k−β Jordan and Scheuring, Oikos, 2002



Ecological networks
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Functional associations of proteins
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P (k) ∼ k−1.6 Snel, Bork & Huynen, PNAS 99, (2002)



A map of protein-protein interactions in

saccharomyces cerevisiae
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Jeong, Mason, Barabasi, Oltwai, Nature, 2001



Biological networks versus non-biological networks

Lecture 3: Duplication models for biological networks Linyuan Lu (University of South Carolina) – 9 / 47

Biological Networks β
Yeast Gene Expression 1.5
Yeast Protein-Protein Maps 1.5, 1.7, 2.1
E. Coli Metabolic Map 1.7, 2.1
Ecology 1.7, 2.1

Other Networks β
WWW Graphs 2.1 (in), 2.5 (out)
Collaboration Graphs 3
Call Graphs 2.2
Costars Graph of Actors 2.3



A critical threshold β = 2
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Range 1 < β < 2 2 < β

Average degree Unbounded Bounded

Examples Biological
networks

Non-biological
networks

Known evolution
models

None Many



The reference
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[1.] Fan Chung and Linyuan Lu, T. Gregory Dewey, and
David J. Galas. Duplication models for biological networks,
Journal of Computational Biology, 10, No. 5, (2003),
677-688.



Genome evolution
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Susumu Ohno’s insight

■ The best source of new genes is old genes, and
that’s where they come from!

■ Gene duplication can include the duplication of regulatory
regions - both nodes and edges are duplicated.

■ This may not be the only way to use old information for
new purposes, but it’s a major one.



Genomic duplications in saccharomyces cerevisiae
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Gene regulatory graphs
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Genes ⇒ Nodes, cis regulatory sites ⇒ Edges.



Partial duplication
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Continue
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Partial-duplication model
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Evolution of graphs

· · · ⊂ Gt−1 ⊂ Gt ⊂ Gt+1 ⊂ · · ·

Construct Gt+1 from Gt,

- Select a random vertex u of Gt uniformly.
- Add a new vertex v and the edge uv.
- For each neighbor w of u, with probability p, add an edge

wv independently.



Full duplication verse partial duplication
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Full duplication verse partial duplication
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Recurrence formula
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f(i, t)— the number of vertices with degree i at time t.

Type Probability Value

dt
u = i → dt+1

u = i + 1 1+pi

t
-1

dt
u = i − 1 → dt+1

u = i 1+(i−1)p
t

1

dt
u = j → dt+1

v = i
(

j

i−1

)

pi−1(1 − p)j−i+1 1
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f(i, t)— the number of vertices with degree i at time t.

Type Probability Value

dt
u = i → dt+1

u = i + 1 1+pi

t
-1

dt
u = i − 1 → dt+1

u = i 1+(i−1)p
t

1

dt
u = j → dt+1

v = i
(

j

i−1

)

pi−1(1 − p)j−i+1 1

E(f(i, t + 1)) = (1 −
1 + pi

t
)E(f(i, t))

+
1 + (i − 1)p

t
E(f(i − 1, t))

+
∑

j≥i−1

(

j

i − 1

)

pi−1(1 − p)j−i+11

t
E(f(j, t)).



Heuristic analysis
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Substitute E(f(i, t)) by ait.

ai(t + 1) = (1 −
1 + pi

t
)ait

+
1 + (i − 1)p

t
ai−1t

+
∑

j≥i−1

(

j

i − 1

)

pi−1(1 − p)j−i+11

t
ajt.

Let t → ∞, we have

(2+ip)ai = (1+p(i−1))ai−1+
∑

j≥i−1

aj

(

j

i − 1

)

pi−1(1−p)j−i+1.



Recurrence formula for ai
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Replace i by i + 1. We get

(2 + (i + 1)p)ai+1 = (1 + pi)ai +
∑

j≥i

aj

(

j

i

)

pi(1 − p)j−i.

Here a0 = 0. (No isolated vertex.)



Lemma 1
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Lemma:For fixed k and large x, we have

(

x−c
k

)

(

x
k

) = (1 + O(
1

x − k
))(1 −

k

x
)c.
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Lemma:For fixed k and large x, we have

(

x−c
k

)

(

x
k

) = (1 + O(
1

x − k
))(1 −

k

x
)c.

Proof:
(

x−c
k

)

(

x
k

) =
Γ(x − c + 1)/Γ(x − c + 1 − k)

Γ(x + 1)/Γ(x + 1 − k)

= (1 + O(
1

x − k
))

(x + 1)−c

(x + 1 − k)−c

= (1 + O(
1

x − k
))(1 −

k

x
)c.



Lemma 2
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Lemma: For large i, we have

∑

j≥i

(
j

i
)−β

(

j

i

)

pi(1 − p)j−i = pβ−1 + O(
1

i
).
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Lemma: For large i, we have

∑

j≥i

(
j

i
)−β

(

j

i

)

pi(1 − p)j−i = pβ−1 + O(
1

i
).

Proof:

∑

j≥i

(
j

i
)−β

(

j

i

)

pi(1 − p)j−i =
∞

∑

k=0

(1 +
k

i
)−β

(

i + k

k

)

pi(1 − p)k
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Lemma: For large i, we have

∑

j≥i

(
j

i
)−β

(

j

i

)

pi(1 − p)j−i = pβ−1 + O(
1

i
).

Proof:

∑

j≥i

(
j

i
)−β

(

j

i

)

pi(1 − p)j−i =
∞

∑

k=0

(1 +
k

i
)−β

(

i + k

k

)

pi(1 − p)k

= (1 + O(
1

i
))

∞
∑

k=0

(

i + k − β

k

)

pi(1 − p)k



Lemma 2
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= (1 + O(
1

i
))pi

∞
∑

k=0

(

i + k − β

k

)

(1 − p)k



Lemma 2
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= (1 + O(
1

i
))pi

∞
∑

k=0

(

i + k − β

k

)

(1 − p)k

= (1 + O(
1

i
))pi

∞
∑

k=0

(

β − i − 1

k

)

(−1)k(1 − p)k



Lemma 2
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= (1 + O(
1

i
))pi

∞
∑

k=0

(

i + k − β

k

)

(1 − p)k

= (1 + O(
1

i
))pi

∞
∑

k=0

(

β − i − 1

k

)

(−1)k(1 − p)k

= (1 + O(
1

i
))pi(1 − (1 − p))β−i−1

= (1 + O(
1

i
))pβ−1.



Heuristic analysis II
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Heuristically, we let ai ≈ Ci−β for large i. we have

ai+1

ai

≈ (1 −
β

i
)

aj

ai

≈ (
j

i
)−β.



Heuristic analysis II
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Heuristically, we let ai ≈ Ci−β for large i. we have

ai+1

ai

≈ (1 −
β

i
)

aj

ai

≈ (
j

i
)−β.

(2+ (i+1)p)(1−
β

i
) = (1+ ip)+

∑

j≥i

(
j

i
)−β

(

j

i

)

pi(1− p)j−i.

Apply Lemma 2 and simplify it. We get

1 + p = pβ + pβ−1.



Results
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Theorem (Chung, Dewey, Galas, Lu, 2002) Almost

surely, the partial duplication model with selection probability

p generates power law graphs with the exponent β satisfying

p(β − 1) = 1 − pβ−1.

In particular, if 1
2 < p < 1 then β < 2.



What we need to do
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■ Show the limit limt→∞
f(t,i)

t
= ai exits.
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■ Show the limit limt→∞
f(t,i)

t
= ai exits.

■ Show ai satisfies
∑∞

i=1 ai = 1 and

(2 + (i + 1)p)ai+1 = (1 + pi)ai +
∑

j≥i

aj

(

j

i

)

pi(1− p)j−i.



What we need to do
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■ Show the limit limt→∞
f(t,i)

t
= ai exits.

■ Show ai satisfies
∑∞

i=1 ai = 1 and

(2 + (i + 1)p)ai+1 = (1 + pi)ai +
∑

j≥i

aj

(

j

i

)

pi(1− p)j−i.

■ Show ai ≈ ci−β and β satisfies

p(β − 1) = 1 − pβ−1.



A tricky way
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Because the ratio f(t,i)
ait

oscillates a lot, it is very hard to

prove limi→∞
f(t,i)
ait

= 1 directly.
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Because the ratio f(t,i)
ait

oscillates a lot, it is very hard to

prove limi→∞
f(t,i)
ait

= 1 directly.

Let g(t, i) = 1
t

∑i
k=1 E(f(t, i)) be the expected number of

vertices with degree at most i at time t.
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Because the ratio f(t,i)
ait

oscillates a lot, it is very hard to

prove limi→∞
f(t,i)
ait

= 1 directly.

Let g(t, i) = 1
t

∑i
k=1 E(f(t, i)) be the expected number of

vertices with degree at most i at time t.

By definition, for fixed t, g(t, i) is an increasing function of i.
In particular, g(t, i) = 1, for all i ≥ t ≥ 0.
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Because the ratio f(t,i)
ait

oscillates a lot, it is very hard to

prove limi→∞
f(t,i)
ait

= 1 directly.

Let g(t, i) = 1
t

∑i
k=1 E(f(t, i)) be the expected number of

vertices with degree at most i at time t.

By definition, for fixed t, g(t, i) is an increasing function of i.
In particular, g(t, i) = 1, for all i ≥ t ≥ 0.

We will show limt→∞ g(t, i) =
∑i

k=0 ai.



Recurrence formula for g(t, i)
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Lemma For i ≥ 1 and t ≥ n0, g(t, i) satisfies the following
recurrence formula.

g(t + 1, i) = (1 −
2 + pi

t + 1
)g(t, i) +

1 + pi

t + 1
g(t, i − 1)

+
1

t + 1

∑

j≥i

g(t, j)F (j, i − 1, p).

Here g(t, 0) = 0 and

F (j, i, p) =
∑i

k=0

(

j

k

)

pk(1−p)j−k−
∑i

k=0

(

j+1
k

)

pk(1−p)j+1−k.



Remark
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The lemma can be proved by induction on i and the
following tool.

Abel summation identity

∞
∑

j=1

(cj − cj−1)dj =
∞

∑

j=1

cj(dj − dj+1) − c0d1.



The result
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Lemma:For all i, the limit limt→∞ g(t, i) exists. We have

lim
t→∞

g(t, i) =
i

∑

k=1

ak.
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Lemma:For all i, the limit limt→∞ g(t, i) exists. We have

lim
t→∞

g(t, i) =
i

∑

k=1

ak.

Proof: Let si =
∑i

k=1 ak and h(t) = sup{g(t,i)
si

}i≥1. We
claim that

■ h(t) ≥ 1, for all t ≥ 1.
■ h(t) is a decreasing function of t.
■ limt→∞ h(t) = 1.



Proof
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The first item is from the following observation:

h(t) ≥
g(t, t)

st

=
1

st

≥ 1.
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The first item is from the following observation:

h(t) ≥
g(t, t)

st

=
1

st

≥ 1.

To show h(t + 1) ≤ h(t), it is sufficient to show

g(t + 1, i) ≤ h(t)si, for all i.

For i ≥ 1, we have



Proof
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g(t + 1, i) = (1 −
2 + pi

t + 1
)g(t, i) +

1 + ip

t + 1
g(t, i − 1)

+
1

t + 1

∑

j≥i

g(t, j)F (j, i − 1, p)

≤ (1 −
2 + pi

t + 1
)h(t)si +

1 + ip

t + 1
h(t)si−1

+
1

t + 1

∑

j≥i

h(t)sjF (j, i − 1, p)

= h(t)si.
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g(t + 1, i) = (1 −
2 + pi

t + 1
)g(t, i) +

1 + ip

t + 1
g(t, i − 1)

+
1

t + 1

∑

j≥i

g(t, j)F (j, i − 1, p)

≤ (1 −
2 + pi

t + 1
)h(t)si +

1 + ip

t + 1
h(t)si−1

+
1

t + 1

∑

j≥i

h(t)sjF (j, i − 1, p)

= h(t)si.

Thus, h(t + 1) = sup{
g(t + 1, i)

si

}i≥1 ≤ h(t).



Proof
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The function h(t) monotone decreases and lower-bounded
by 1. Therefore, the limit limt→∞ h(t) exists. We denote the
limit by c. We have

c = lim
t→∞

h(t) ≥ 1.
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The function h(t) monotone decreases and lower-bounded
by 1. Therefore, the limit limt→∞ h(t) exists. We denote the
limit by c. We have

c = lim
t→∞

h(t) ≥ 1.

If c = 1, then limt→∞ g(i, t) = si. We are done.



Proof by contradiction
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Suppose, to the contrary, that c > 1. We note

lim
i→∞

si =
∞

∑

i=0

ai = 1.



Proof by contradiction
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Suppose, to the contrary, that c > 1. We note

lim
i→∞

si =
∞

∑

i=0

ai = 1.

There exists an index i0 so that

si ≥
2

1 + c
for i ≥ i0.



Proof by contradiction
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Suppose, to the contrary, that c > 1. We note

lim
i→∞

si =
∞

∑

i=0

ai = 1.

There exists an index i0 so that

si ≥
2

1 + c
for i ≥ i0.

For any t and i ≥ i0, we have

g(t, i)

si

≤
1

si

≤
1 + c

2
.



Proof by contradiction
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Thus, the supreme h(t) is always achieved at some index
i(t) < i0.
Let ci =

∑

j≥i0

aj

ai
F (j, i− 1, p). We define δ to the minimum

value of c0, c1, . . . , ci0. It is clear that δ > 0.
We can prove

g(t, i)

si

≤ h(t − 1) −
(c − 1)δ

2t
.



Proof by contradiction
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Thus, the supreme h(t) is always achieved at some index
i(t) < i0.
Let ci =

∑

j≥i0

aj

ai
F (j, i− 1, p). We define δ to the minimum

value of c0, c1, . . . , ci0. It is clear that δ > 0.
We can prove

g(t, i)

si

≤ h(t − 1) −
(c − 1)δ

2t
.

Since the superium h(t) is always achieved at some index
i(t) < i0, we have



Proof by contradiction
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h(t) = min{
g(t, i)

si

, 0 ≤ i ≤ i0}

≤ h(t − 1) −
(c − 1)δ

2t
.



Proof by contradiction
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h(t) = min{
g(t, i)

si

, 0 ≤ i ≤ i0}

≤ h(t − 1) −
(c − 1)δ

2t
.

In particular, we have

h(t) ≤ h(0) −
(c − 1)δ

2

t
∑

k=1

1

k
.

Since the harmonic sum diverges, for t large enough,
h(t) < 0. Contradiction to h(t) ≥ 1, for all t. �



Generating function
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Lemma: Let F (z) =
∑∞

i=1 aiz
i. Then

(2/z − 1)F (z) − F (pz + 1 − p) + p(1 − z)F ′(z) = 0.

Proof: We have

F (pz + 1 − p) =
∞

∑

j=0

aj(pz + 1 − p)j

=
∞

∑

j=0

aj

j
∑

i=0

(

j

i

)

pi(1 − p)j−izi

=
∞

∑

i=0

zi

∞
∑

j=i

aj

(

j

i

)

pi(1 − p)j−i.



Generating function
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F (pz + 1 − p) =
∞

∑

i=0

zi

∞
∑

j=i

aj

(

j

i

)

pi(1 − p)j−i

=
∞

∑

i=0

zi
[

(2 + p(i + 1))ai+1 − (1 + pi)ai

]

= 2
∞

∑

i=0

ai+1z
i + p

∞
∑

i=0

(i + 1)ai+1z
i

−

∞
∑

i=0

aiz
i − p

∞
∑

i=0

iaiz
i

= 2F (z)/z + pF ′(z) − F (z) − pzF ′(z).
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Rewritten as

F (pz + 1 − p) − (2/z − 1)F (z)

1 − z
= pF ′(z).

Take the limit as z → 1.

−pF ′(1) + F ′(1) − 2 = pF ′(1).

we have

F ′(1) =
2

1 − 2p
.

If p < 1
2 , then the expected average degree is 2

1−2p
.



Maximal degree
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Theorem For the duplication model, with probability at

least 1 − te−c, the maximum degree ∆t is at most

Θ(ctp).

Moreover, suppose the maximum degree of the initial graph

Gt0 is ∆t0. Then with probability at least 1 − te−c, we have

∆t ≤ (∆t0 +
1

p
+

√

c2

9
+ 2c(∆t0 +

1

p
) +

c

3
)

(

t

t0

)p

.
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For the duplication model G(p), for any vertex v with degree

born before time t1, the degree dv(t) at time t satisfies:

1. With probability at least 1 − e−c, for some c > 0, we

have

dv(t) ≤ (dv(t1)+
1

p
+

√

16c2

9
+ 2c(dv(t1) +

1

p
)+

4c

3
)
( t

t1

)p
−

1

p

2. With probability at least 1 − e−c, for some c > 0, we

have

dv(t) ≥ (dv(t1)+
1

p
−

√

c2

9
+ 2c(dv(t1) +

1

p
)−

c

3
)
( t

t1

)p
−

1

p
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■ If p < 1
2 , almost surely the number of edges is

t
1−2p

+ O(t2p log t).
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■ If p < 1
2 , almost surely the number of edges is

t
1−2p

+ O(t2p log t).

■ If p > 1
2 , almost surely the number of edges is

O(t2p log t).
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- With probability q, take a partial duplication step with
the selection probability p.

- With probability 1 − q, take a full duplication step.



Result on Mixed model
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Theorem 2 (Chung, Dewey, Galas, Lu, 2002)
Almost surely, the mixed model generates power law graphs
with the exponent β satisfying

β(1 − q) + pq(β − 1) = 1 − qpβ−1.
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- The biological networks follow the power law degree
distributions with exponent β in the range (1, 2), which
is different from non-biological networks.
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- The (partial) duplications are probably the main force
shaping the biological networks.



Summary
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- The biological networks follow the power law degree
distributions with exponent β in the range (1, 2), which
is different from non-biological networks.

- The (partial) duplications are probably the main force
shaping the biological networks.

- The partial duplication model is able to generate the
power law graphs with exponent in the full range (1,∞).
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■ Lecture 1: Overview and outlines

■ Lecture 2: Generative models - preferential attachment
schemes

■ Lecture 3: Duplication models for biological networks

■ Lecture 4: The rise of the giant component

■ Lecture 5: The small world phenomenon: average
distance and diameter

■ Lecture 6: Spectrum of random graphs with given
degrees
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