
Complex Graphs and Networks

Lecture 2: Generative models -

preferential attachment schemes

Linyuan Lu

lu@math.sc.edu

University of South Carolina

BASICS2008 SUMMER SCHOOL
July 27 – August 2, 2008



Overview of talks

Lecture 2: Generative models - preferential attachment schemes Linyuan Lu (University of South Carolina) – 2 / 52

■ Lecture 1: Overview and outlines

■ Lecture 2: Generative models - preferential attachment
schemes

■ Lecture 3: Duplication models for biological networks

■ Lecture 4: The rise of the giant component

■ Lecture 5: The small world phenomenon: average
distance and diameter

■ Lecture 6: Spectrum of random graphs with given
degrees



Preferential attachment scheme
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The rich gets richer.

WWW Graphs

Call Graphs

Collaboration Graphs

Costars Graph of Actors

...



Erdős number 1 graph
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Power law graphs
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Left: Part of the collab-
oration graph (authors
with Erdős number 2)

Right: An IP graph (by Bill
Cheswick)



The power law

Lecture 2: Generative models - preferential attachment schemes Linyuan Lu (University of South Carolina) – 6 / 52

The number of vertices of degree k is approximately
proportional to k−β for some positive β.

A power law graph is a graph whose degree sequence
satisfies the power law.



History of power law
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■ Lotka’s Law (1926): The distribution of authors in the
index of Chemical Abstracts is power law.
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■ Lotka’s Law (1926): The distribution of authors in the
index of Chemical Abstracts is power law.

■ Yule’s Law (1942): City population follows a power
law.

■ Zipf’s Law (1949): The n-th most frequent word
occurs at rate 1

n.

■ Simon (1957): Power law is common for various
phenomena.

■ Pareto, (1897): Wealth distribution follows a power
law.



Preferential attachment
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G0 → G1 → G2 → . . . → Gt → . . .

u v

Vertex-step: At time t, add a new vertex v to the existed
network and attach v to a vertex u, which is selected with
probability proportional to its current degree.



Barabási-Albert’s model
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m-vertex-step: At time t, add a new vertex v and m edges
from v to the existed network using preferential attachment
scheme.
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m-vertex-step: At time t, add a new vertex v and m edges
from v to the existed network using preferential attachment
scheme.

The number of vertices:

nt = n0 + t.

The number of edges:

et = e0 + mt.



Heuristic analysis
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Let mk,t be the number of vertices with degree k at time t.

E(mk,t+1) = (1 − m
k

2et
)E(mk,t) + m

k − 1

2et
E(mk−1,t).
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Let mk,t be the number of vertices with degree k at time t.

E(mk,t+1) = (1 − m
k

2et
)E(mk,t) + m

k − 1

2et
E(mk−1,t).

Write E(mk,t) ≈ Mkt.

Mk(t + 1) ≈ (1 − m
k

2et
)Mkt + m

k − 1

2et
Mk−1t.
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Let mk,t be the number of vertices with degree k at time t.

E(mk,t+1) = (1 − m
k

2et
)E(mk,t) + m

k − 1

2et
E(mk−1,t).

Write E(mk,t) ≈ Mkt.

Mk(t + 1) ≈ (1 − m
k

2et
)Mkt + m

k − 1

2et
Mk−1t.

Simplify it and let t → ∞.

(1 +
k

2
)Mk =

k − 1

2
Mk−1.



Barabási-Albert’s result
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Write Mk ≈ ck−β. Then

Mk

Mk−1
= (1 − 1

k
)β ≈ 1 − β

k
.

Thus,

1 − β

k
≈ (k − 1)/2

1 + k/2
.

It implies β = 3.



A general generative model
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At time t,

■ add expected µe,e random random
edges to existed network.

■ add expected µn,e random edges
between new vertex and existed
network.

■ add expected µn,n loops to the
new vertex.
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At time t,

■ add expected µe,e random random
edges to existed network.

■ add expected µn,e random edges
between new vertex and existed
network.

■ add expected µn,n loops to the
new vertex.

v

This is the model D in the reference:
William Aiello, Fan Chung, and Linyuan Lu. Random evolution in
massive graphs, Handbook on Massive Data Sets, (Eds. James Abello et
al.), 97–122. The extended abstract is published in Proceedings of the
Forty-Second Annual Symposium on Foundations of Computer Science,

(2001), 510–519.



Aiello-Chung-Lu’s result
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Theorem (2001) For model D, almost surely the degree
sequence follows the power law distribution with the power
2 + 2µn,n+µn,e

µn,e+2µe,e . More precisely, we have

Pr(|di,t − a′it| > 2M ′λ
√

t) < e−λ2/2,

where a′i satisfies

a′i =
a′

i2+2µn,n+µn,e

µn,e+2µe,e

.

Here a′, M ′ are constants determined by distribution of
(me,e, mn,e, mn,n) of this model, but independent of i and t.



Two approaches
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How to show the power law distribution?

Heuristic approach:
Assume E(mk,t) ≈ Mkt.
Solve the recurrence.
Done!

Rigorous approach:
Solve the recurrence honestly.
Concentration Properties
...
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How to show the power law distribution?

Heuristic approach:
Assume E(mk,t) ≈ Mkt.
Solve the recurrence.
Done!

Rigorous approach:
Solve the recurrence honestly.
Concentration Properties
...

In the rest of talk, we will show how the rigorous proof can
be done through a simple model G(p).



A generative model G(p).
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G0 → G1 → G2 → . . . → Gt → . . .

Operations

vu

Vertex step

r

s

Edge step

Vertex u, r, s are randomly selected with probability
proportional to their current degrees.



A generative model G(p)
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Parameter p: 0 < p < 1.

Initial graph G0 ��
��
z
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Initial graph G0 ��
��
z

At time t, Gt is formed by modifying from Gt−1 as follows

■ With probability p, take a vertex-step.

■ With probability 1 − p, take a edge-step.
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Parameter p: 0 < p < 1.

Initial graph G0 ��
��
z

At time t, Gt is formed by modifying from Gt−1 as follows

■ With probability p, take a vertex-step.

■ With probability 1 − p, take a edge-step.

The number of edges:

et = 1 + t.



The number of vertices nt
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nt = 1 +
t

∑

i=1

si

where

Pr(sj = 1) = p,

Pr(sj = 0) = 1 − p.
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The expected value is

E(nt) = 1 + tp.



The number of vertices nt

Lecture 2: Generative models - preferential attachment schemes Linyuan Lu (University of South Carolina) – 17 / 52

nt = 1 +
t

∑

i=1

si

where

Pr(sj = 1) = p,

Pr(sj = 0) = 1 − p.

The expected value is

E(nt) = 1 + tp.

Concentration property?



Chernoff inequality (1981)
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Let X1, . . . , Xn be independent random variables with

Pr(Xi = 1) = pi, P r(Xi = 0) = 1 − pi.

We consider the sum X =
∑n

i=1 Xi, with expectation
E(X) =

∑n
i=1 pi. Then we have

(Lower tail) Pr(X ≤ E(X) − λ) ≤ e−λ2/2E(X),

(Upper tail) Pr(X ≥ E(X) + λ) ≤ e−
λ2

2(E(X)+λ/3) .
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Let X1, . . . , Xn be independent random variables with

Pr(Xi = 1) = pi, P r(Xi = 0) = 1 − pi.

We consider the sum X =
∑n

i=1 Xi, with expectation
E(X) =

∑n
i=1 pi. Then we have

(Lower tail) Pr(X ≤ E(X) − λ) ≤ e−λ2/2E(X),

(Upper tail) Pr(X ≥ E(X) + λ) ≤ e−
λ2

2(E(X)+λ/3) .

We can show nt is exponentially concentrated around E(nt).



Notations
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mk,t: the number of vertices of degree k at time t.
Initially

m2,0 = 1 and m0,t = 0.

Ft: the σ-algebra associated with the probability space at
time t.

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Ft.

Conditional probability identity:

E(E(X | Ft)) = E(X).



Recurrence formula for m1,t
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Case Probability Contribution
A new vertex p +1

dt−1
u = 1 → dt

u = 2 2−p
2t −1
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Case Probability Contribution
A new vertex p +1

dt−1
u = 1 → dt

u = 2 2−p
2t −1

For t > 0 and k = 1, we have

E(m1,t|Ft−1) = m1,t−1(1 − (2 − p)

2t
) + p.
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Case Probability Contribution
A new vertex p +1

dt−1
u = 1 → dt

u = 2 2−p
2t −1

For t > 0 and k = 1, we have

E(m1,t|Ft−1) = m1,t−1(1 − (2 − p)

2t
) + p.

Thus,

E(m1,t) = E(m1,t−1)(1 − (2 − p)

2t
) + p.



Recurrence formula for mk,t
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Case Probability Contribution

dt−1
u = k − 1 → dt

u = k (2 − p)k−1
2t +1

dt−1
u = k → dt

u = k + 1 (2 − p) k
2t −1
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Case Probability Contribution

dt−1
u = k − 1 → dt

u = k (2 − p)k−1
2t +1

dt−1
u = k → dt

u = k + 1 (2 − p) k
2t −1

For t > 0 and k > 1, we have

E(mk,t|Ft−1) = mk,t−1(1 − (2 − p)2k

2t
)

+mk−1,t−1(
(2 − p)(k − 1)

2t
).
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Case Probability Contribution

dt−1
u = k − 1 → dt

u = k (2 − p)k−1
2t +1

dt−1
u = k → dt

u = k + 1 (2 − p) k
2t −1

For t > 0 and k > 1, we have

E(mk,t|Ft−1) = mk,t−1(1 − (2 − p)2k

2t
)

+mk−1,t−1(
(2 − p)(k − 1)

2t
).

Thus,
E(mk,t) = E(mk,t−1)(1 − (2−p)2k

2t ) + E(mk−1,t−1)(
(2−p)(k−1)

2t ).



A useful lemma for rigorous proofs
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Lemma: Suppose {at} satisfies at+1 = (1 − bt

t+t1
)at + ct for

t ≥ t0. limt→∞ bt = b > 0 and limt→∞ ct = c. Then

lim
t→∞

at

t
exists and lim

t→∞
at

t
=

c

1 + b
.
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Lemma: Suppose {at} satisfies at+1 = (1 − bt

t+t1
)at + ct for

t ≥ t0. limt→∞ bt = b > 0 and limt→∞ ct = c. Then

lim
t→∞

at

t
exists and lim

t→∞
at

t
=

c

1 + b
.

Proof: Define st = |at

t − c
1+b|. Then

st+1 ≤ st|1 − 1 + bt

t + 1
| + |(1 + b)ct − (1 + bt)c

(1 + b)(1 + t)
|.

|st+1 − ǫ| ≤ |st − ǫ|(1 − ǫ) for large t.



Solve the case k = 1
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E(m1,t) = E(m1,t−1)(1 − (2 − p)

2t
) + p.
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E(m1,t) = E(m1,t−1)(1 − (2 − p)

2t
) + p.

We apply the lemma with

at = E(m1,t),

bt = b = (2 − p)/2,

ct = c = p.

We have limt→∞ E(m1,t)/t exists and

M1 = lim
t→∞

E(m1,t)

t
=

2p

4 − p
.



Solve the case k > 1
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E(mk,t) = E(mk,t−1)(1 − (2−p)2k
2t ) + E(mk−1,t−1)(

(2−p)(k−1)
2t ).
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E(mk,t) = E(mk,t−1)(1 − (2−p)2k
2t ) + E(mk−1,t−1)(

(2−p)(k−1)
2t ).

We apply the lemma with at = E(mk,t),

bt = b = k(2 − p)/2,

ct = E(mk−1,t−1)(2 − p)(k − 1)/(2t).
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E(mk,t) = E(mk,t−1)(1 − (2−p)2k
2t ) + E(mk−1,t−1)(

(2−p)(k−1)
2t ).

We apply the lemma with at = E(mk,t),

bt = b = k(2 − p)/2,

ct = E(mk−1,t−1)(2 − p)(k − 1)/(2t).

limt→∞ ct = Mk−1(2 − k)(k − 1)1
2 (inductive hypothesis)
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E(mk,t) = E(mk,t−1)(1 − (2−p)2k
2t ) + E(mk−1,t−1)(

(2−p)(k−1)
2t ).

We apply the lemma with at = E(mk,t),

bt = b = k(2 − p)/2,

ct = E(mk−1,t−1)(2 − p)(k − 1)/(2t).

limt→∞ ct = Mk−1(2 − k)(k − 1)1
2 (inductive hypothesis)

The limit limt→∞ E(mk,t)/t exists and is equal to

Mk = Mk−1
(2 − p)(k − 1)

2 + k(2 − p)
= Mk−1

k − 1

k + 2
2−p

.
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Recall Γ(s) =
∫ ∞

0 xs−1e−xdx.

Γ(s) = sΓ(s − 1).
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Recall Γ(s) =
∫ ∞

0 xs−1e−xdx.

Γ(s) = sΓ(s − 1).

Stirling formula

Γ(x) = (1 + O(
1

x
))

√
2π√
x

(
x

e
)x.
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Recall Γ(s) =
∫ ∞

0 xs−1e−xdx.

Γ(s) = sΓ(s − 1).

Stirling formula

Γ(x) = (1 + O(
1

x
))

√
2π√
x

(
x

e
)x.

Γ(x)

Γ(x + p)
= (1 + O(

1

x
))

√
x + p√

x

(x
e )

x

(x+p
e )x+p

= (1 + O(
1

x
))xp.



Power Law
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We have

Mk =
2p

4 − p

k
∏

j=2

j − 1

j + 2
2−p
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We have

Mk =
2p

4 − p

k
∏

j=2

j − 1

j + 2
2−p

=
2p

4 − p

Γ(k)Γ(2 + 2
2−p)

Γ(k + 2 + p
2−p)
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We have

Mk =
2p

4 − p

k
∏

j=2

j − 1

j + 2
2−p

=
2p

4 − p

Γ(k)Γ(2 + 2
2−p)

Γ(k + 2 + p
2−p)

≈ 2p

4 − p
Γ(2 +

2

2 − p
)k−(2+ p

2−p ).
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We have

Mk =
2p

4 − p

k
∏

j=2

j − 1

j + 2
2−p

=
2p

4 − p

Γ(k)Γ(2 + 2
2−p)

Γ(k + 2 + p
2−p)

≈ 2p

4 − p
Γ(2 +

2

2 − p
)k−(2+ p

2−p ).

{Mk} follows a power law distribution with β = 2 + p
2−p .
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“{E(mk,t)}k power law” 6=⇒ {mk,t}k power law”



Are we done?

Lecture 2: Generative models - preferential attachment schemes Linyuan Lu (University of South Carolina) – 27 / 52

No.

“{E(mk,t)}k power law” 6=⇒ {mk,t}k power law”

We need prove mk,t concentrates on E(mk,t).
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Chung, Lu For the preferential attachment model G(p),
almost surely the number of vertices with degree k at time t
is

Mkt + O(4
√

k3t ln(t)).
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Chung, Lu For the preferential attachment model G(p),
almost surely the number of vertices with degree k at time t
is

Mkt + O(4
√

k3t ln(t)).

In other words, almost surely the graphs generated by G(p)
have the power law degree distribution with the exponent
β = 2 + p

2−p.



A claim
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Claim: For k ≥ 1, c > 0, with probability at least
1 − 2(t + 1)k−1e−c2

, we have

|mk,t − Mk(t + 1)| ≤ 4kc
√

t.
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Claim: For k ≥ 1, c > 0, with probability at least
1 − 2(t + 1)k−1e−c2

, we have

|mk,t − Mk(t + 1)| ≤ 4kc
√

t.

Choose c =
√

k ln t. Note that

2(t + 1)k−1e−c2

= 2(t + 1)k−1t−k = o(1).
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Claim: For k ≥ 1, c > 0, with probability at least
1 − 2(t + 1)k−1e−c2

, we have

|mk,t − Mk(t + 1)| ≤ 4kc
√

t.

Choose c =
√

k ln t. Note that

2(t + 1)k−1e−c2

= 2(t + 1)k−1t−k = o(1).

From the Claim, with probability 1 − o(1), we have

|mk,t − Mk(t + 1)| ≤ 4
√

k3t ln t,

as desired.



Martingale inequality
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A martingale is a sequence of random variables X0, X1, . . .
so that

E(Xn+1 | X0, X1, . . . , Xn) = Xn.
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A martingale is a sequence of random variables X0, X1, . . .
so that

E(Xn+1 | X0, X1, . . . , Xn) = Xn.

For c = (c1, c2, . . . , cn), the martingale X is said to be
c-Lipschitz if

|Xi − Xi−1| ≤ ci for i = 1, 2, . . . , n.
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A martingale is a sequence of random variables X0, X1, . . .
so that

E(Xn+1 | X0, X1, . . . , Xn) = Xn.

For c = (c1, c2, . . . , cn), the martingale X is said to be
c-Lipschitz if

|Xi − Xi−1| ≤ ci for i = 1, 2, . . . , n.

Azuma’s martingale inequality:
If a martingale X is c-Lipschitz, then

Pr(|X − E(X)| ≥ λ) ≤ 2e
− λ2

2
Pn

i=1 c2
i .
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Rewrite recursive formula as

E(m1,t − M1(t + 1)|Ft−1) = (m1,t−1 − M1t)(1 − 2 − p

2t
).
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Rewrite recursive formula as

E(m1,t − M1(t + 1)|Ft−1) = (m1,t−1 − M1t)(1 − 2 − p

2t
).

Let X1,t =
m1,t−M1(t+1)
∏t

j=1(1−2−p
2j )

. 1 = X1,0, X1,1, · · · , X1,t forms a

martingale.
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Rewrite recursive formula as

E(m1,t − M1(t + 1)|Ft−1) = (m1,t−1 − M1t)(1 − 2 − p

2t
).

Let X1,t =
m1,t−M1(t+1)
∏t

j=1(1−2−p
2j )

. 1 = X1,0, X1,1, · · · , X1,t forms a

martingale.
We can show

|Xi − Xi−1| ≤
4

∏t
j=1(1 − 2−p

2j )
.
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Let ci = 4
∏t

j=1(1−2−p
2j )

. We have

t
∑

i=1

c2
i =

t
∑

i=1

16
∏t

j=1(1 − 2−p
2j )2

= 16
t

∑

i=1

(Γ(
p

2
)2) + O(

1

i
))i2−p

≈ 16Γ2(p
2)

3 − p
t3−p

< 8Γ2(
p

2
)t3−p.
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Choose λ = c
√

2
∑t

i=1 c2
i . We have

Pr(|X1,t − E(X1,t)| ≥ λ) ≤ e−c2

.
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Choose λ = c
√

2
∑t

i=1 c2
i . We have

Pr(|X1,t − E(X1,t)| ≥ λ) ≤ e−c2

.

With probability at least 1 − e−c2

,

|m1,t − M1(t + 1)| = |X1,t − E(X1,t)|
t

∏

i=1

(1 − 2 − p

2j
)

≤ λ

t
∏

i=1

(1 − 2 − p

2j
))

≈ 4c
√

t. �
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By the induction hypothesis, with probability at least
1 − 2tk−2e−c2

, we have

|mk−1,t−1 − Mk−1t| ≤ 4(k − 1)c
√

t − 1.
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By the induction hypothesis, with probability at least
1 − 2tk−2e−c2

, we have

|mk−1,t−1 − Mk−1t| ≤ 4(k − 1)c
√

t − 1.

For k, we define

Xk,t =
mk,t − Mk(t + 1) − 4(k − 1)c

√
t

∏t
j=1(1 − (2−p)k

2j )
.
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By the induction hypothesis, with probability at least
1 − 2tk−2e−c2

, we have

|mk−1,t−1 − Mk−1t| ≤ 4(k − 1)c
√

t − 1.

For k, we define

Xk,t =
mk,t − Mk(t + 1) − 4(k − 1)c

√
t

∏t
j=1(1 − (2−p)k

2j )
.

Therefore, 0 = Xk,0, Xk,1, · · · , Xk,t forms a submartingale

with fail probability at most 2tk−2e−c2

.
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For a filter F:

{∅, Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,

X0, X1, . . . , Xn is called a submartingale if

■ Xi is Fi-measurable,
■ E(Xi | Fi−1) ≤ Xi−1, for 1 ≤ i ≤ n.
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Suppose that a submartingale X associated with a filter F,
satisfies

Var(Xi | Fi−1) ≤ σ2
i

Xi − E(Xi | Fi−1) ≤ C

for 1 ≤ i ≤ n with exceptional set Bi. Then

Pr(Xn ≥ X0 + λ) ≤ e
− λ2

2(
Pn

i=1 σ2
i
+Cλ/3) +

n
∑

i=1

Pr(Bi).
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Applying submartingale inequality, σ2
i = 4

∏i
j=1(1−

(2−p)k
2j )2

, and

C = 4
∏t

j=1(1−2−p
2j )

.
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Applying submartingale inequality, σ2
i = 4

∏i
j=1(1−

(2−p)k
2j )2

, and

C = 4
∏t

j=1(1−2−p
2j )

. We have

Pr(Xk,t ≥ E(Xk,t) + λ) ≤ e
− λ2

2(
Pt

i=1 σ2
i
+Mλ/3) +

n
∑

i=1

Pr(Bi)

≤ e−c2

+
n

∑

i=1

(i + 1)k−2e−c2

≤ (t + 1)k−1e−c2

.

Here we choose λ properly so that e
− λ2

2(
Pt

i=1 σ2
i
+Mλ/3) ≤ e−c2

.
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Choose λ = 2c
√

t
∏t

j=1(1−
(2−p)k

2j )
≈ 2Γ(1 − (2−p)k

2 )ct1/2+k(2−p)/2.

With probability at least 1 − (t + 1)k−1e−c2

, we have

mk,t − Mk(t + 1) ≤ 2kc
√

t.

Similar for the other direction. Thus, With probability at
least 1 − 2(t + 1)k−1e−c2

, we have

|mk,t − Mk(t + 1)| ≤ 2kc
√

t.

The proof of the claim is finished. �
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Parameters: 0 < p < 1. m ≥ 1, initial graph G0. At time t,
Gt is formed by modifying from Gt−1 as follows

■ With probability p, take a m-vertex-step.

■ With probability 1 − p, take a m-edge-step.
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Parameters: 0 < p < 1. m ≥ 1, initial graph G0. At time t,
Gt is formed by modifying from Gt−1 as follows

■ With probability p, take a m-vertex-step.

■ With probability 1 − p, take a m-edge-step.

Add m edges at each step.



Result on G(p,m,G0)
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Chung, Lu For G(p, m, G0), almost surely the number of
vertices with degree k at time t is

mMkt + mk,0 + O(4m
√

(k + m − 1)3t ln(t)).

Here Mm = 2p
4−p and

Mk = 2p
4−p

Γ(k−m)Γ(1+ 2
2−p )

Γ(k−m+1+ 2
2−p )

= O(k−(2+ p
2−p )), for k ≥ m + 1.
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Chung, Lu For G(p, m, G0), almost surely the number of
vertices with degree k at time t is

mMkt + mk,0 + O(4m
√

(k + m − 1)3t ln(t)).

Here Mm = 2p
4−p and

Mk = 2p
4−p

Γ(k−m)Γ(1+ 2
2−p )

Γ(k−m+1+ 2
2−p )

= O(k−(2+ p
2−p )), for k ≥ m + 1.

In other words, almost surely the graphs generated by G(p)
have the power law degree distribution with the exponent
β = 2 + p

2−p.



Scale-free networks
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u
u
u
u
u
u
u
u
u
u
u
ut = 1

t = 2

t = m

t = 1

t = 2

G(p) G(p, m, G0)

Same power law exponent, different edge density.
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■ The WWW graph as a directed graph:

Kumar et al (1999) and independently Albert and
Barabasi (1999) reported that a power law of exponent
2.1 for in-degree distribution and a power law of
exponent 2.7 for out-degree distribution.
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■ The WWW graph as a directed graph:

Kumar et al (1999) and independently Albert and
Barabasi (1999) reported that a power law of exponent
2.1 for in-degree distribution and a power law of
exponent 2.7 for out-degree distribution.

■ The call graph also has different power law distributions
for in-degrees and out-degrees.
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■ The WWW graph as a directed graph:

Kumar et al (1999) and independently Albert and
Barabasi (1999) reported that a power law of exponent
2.1 for in-degree distribution and a power law of
exponent 2.7 for out-degree distribution.

■ The call graph also has different power law distributions
for in-degrees and out-degrees.

How to model directed graphs using preferential attachment
scheme?
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■ At time 1, add a node with in-weight 1 and out-weight 1.

■ A time t + 1:

◆ With probability 1 − α, add a node with in-weight 1
and out-weight 1.

◆ With probability α, add an edge uv. Here the origin
u is chosen with probability proportional to the

current out-weight wout
u,t

def
= 1 + δout

u,t and the
destination v is chosen with probability proportional

to the current in-weight win
v,t

def
= 1 + δin

v,t.
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Aiello, Chung, Lu (2001) For model A, the distribution of
in-degree and out-degree sequences follow the power law
distribution with power 1 + 1

α . The joint distribution of
in-degree and out-degree sequence follows the power law
distribution with power 2 + 1

α . More precisely, we have

Pr(|djoint
i,j,t − ai,jt| > λ

√
t + 2) < e−λ2/8,

P r(|din
i,t − bit| > λ

√
t + 2) < e−λ2/2,

P r(|dout
j,t − cjt| > λ

√
t + 2) < e−λ2/2.
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where ai,j, bi, cj are constants satisfying

ai,j =
(1 − α)(i + j−2)!αi+j−2

∏i+j
l=2(1 + lα)

=
( 1

α − 1)Γ( 1
α + 2)

(i + j)
1
α+2

+oi+j(1)

bi=
(1 − α)!αi−1

∏i
l=1(1 + lα)

=
( 1

α − 1)Γ( 1
α + 1)

i
1
α+1

+ oi(1)

cj =
(1 − α)(j − 1)!αj−1

∏j
l=1(1 + lα)

=
( 1

α − 1)Γ( 1
α + 1)

j
1
α+1

+ oj(1)
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Two parameters: γin and γout.

■ At time 1, add a node with in-weight γin and out-weight
γout.

■ A time t + 1:

◆ With probability 1 − α, add a node with in-weight 1
and out-weight 1.

◆ With probability α, add an edge uv. Here the origin
u is chosen with probability proportional to the

current out-weight wout
u,t

def
= γout + δout

u,t and the
destination v is chosen with probability proportional

to the current in-weight win
v,t

def
= γin + δin

v,t.
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Aiello, Chung, Lu (2001) For model B, the distribution of
in-degree sequence follows the power law distribution with

power 2 + γin

∆ , and the distribution of out-degree sequence

follows the power law distribution with power 2 + γout

∆ . Here
∆ = α

1−α is the asymptotic edge density. More precisely, we
have

Pr(|din
i,t − b′it| > 2λ

√
t) < e−λ2/2,

P r(|dout
j,t − c′jt| > 2λ

√
t) < e−λ2/2.
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where b′i, c
′
j are constants satisfying

b′i = (1 − α)(
1

γin
+

1

∆
)

i+1
∏

l=1

l − 2 + γin

l + γin

α

= (1 − α)(
1

γin
+

1

∆
)
Γ(γin

α + 1)

Γ(γin − 1)

1

i
γin

∆ +2
+ oi(1)

c′j = (1 − α)(
1

γout
+

1

∆
)

j+1
∏

l=1

l − 2 + γout

l + γout

α

= (1 − α)(
1

γout
+

1

∆
)
Γ(γout

α + 1)

Γ(γout − 1)

1

j
γout

∆ +2
+ oj(1)
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At time t,

■ add expected µe,e random random
directed edges to existed network.

■ add expected µn,e random edges
from new vertex to existed net-
work.

■ add expected µe,n random edges
from existed network to new ver-
tex.

■ add expected µn,n loops to the
new vertex.

v
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At time t,

■ add expected µe,e random random
directed edges to existed network.

■ add expected µn,e random edges
from new vertex to existed net-
work.

■ add expected µe,n random edges
from existed network to new ver-
tex.

■ add expected µn,n loops to the
new vertex.

v
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Aiello, Chung, Lu (2001) For model C, almost surely the
out-degree sequence follows the power law distribution with
the power 2 + µn,n+µn,e

µe,n+µe,e . Almost surely the in-degree
sequence follows the power law distribution with the power
2 + µn,n+µe,n

µn,e+µe,e . More precisely, we have

Pr(|din
i,t − b′′i t| > 2Mλ

√
t) < e−λ2/2,

P r(|dout
j,t − c′′j t| > 2Mλ

√
t) < e−λ2/2.
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where b′′i , c
′′
j satisfy

b′′i =
b′′

i2+µn,n+µe,n

µn,e+µe,e

+ oi(1),

c′′j =
c′′

j2+µn,n+µe,n

µn,e+µe,e

+ oj(1).

Here b′′, c′′, M are constants determined by the joint
distribution of me,e, mn,e, me,n, mn,n of this model, but
independent of i and t.
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■ Lecture 1: Overview and outlines

■ Lecture 2: Generative models - preferential attachment
schemes

■ Lecture 3: Duplication models for biological networks

■ Lecture 4: The rise of the giant component

■ Lecture 5: The small world phenomenon: average
distance and diameter

■ Lecture 6: Spectrum of random graphs with given
degrees
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