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m lLecture 2: Generative models - preferential attachment
schemes

m Lecture 3: Duplication models for biological networks

m Lecture 4: The rise of the giant component

m Lecture 5: The small world phenomenon: average
distance and diameter

m Lecture 6: Spectrum of random graphs with given
degrees
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- The beginning of graph thory -

In 1736, Leonhard Euler solved the Seven bridges of
Konigsberg
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Euler path eX|sts if and only if the graph is connected and
has 0 or 2 vertices with odd degrees.
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- Preliminary -

A graph consists of two sets V' and E.

-V is the set of vertices (or nodes).
- FE is the set of edges, where each edge is a pair of
vertices.

O O O
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A graph consists of two sets V' and E.

-V is the set of vertices (or nodes).
- FE is the set of edges, where each edge is a pair of
vertices.

@ &) D
@ ) ) D

The degree of a vertex is the number of edges, which are
incident to that vertex.
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- Examples of complex graphs -

WWW Graphs

Call Graphs
Collaboration Graphs
Gene Regulatory Graphs
Graph of U.S. Power Grid
Costars Graph of Actors
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BGP Graph

Vertex: AS
(autonomous system)

Edges: AS pairs in
BGP routing table.

A subgraph of a BGP graph
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Large BGP subgraph
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Hollywood Graph

Vertex: actors and
actress

Edges: co-playing in
the same movie

Only 10,000 out of
225.000 are shown.
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- Folklore of Erdos numbers -

m Erdos has Erdos number O.

m FErdos’ coauthor has Erdos number 1.

m FErdos coauthor's coauthor has Erdos
number 2.
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- Folklore of Erdos numbers -

m Erdos has Erdos number O.

m FErdos’ coauthor has Erdos number 1.

m FErdos coauthor's coauthor has Erdos
number 2.

My Erdos number is 2.

Erdos number is the graph distance to Erdos in the
Collaboration graph.
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Collaboration Graph

An tnduced subgraph of the collaboration graph {with Erdos number ar most 2).

Made by Fan Chung Graham and Lincoln L in 2002,
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- Characteristics -

. Large
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Characteristics -

. Large

. Sparse

. Power law degree distribution
. Small world phenomenon
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- The power law -

The number of vertices of degree k is approximately
proportional to k= for some positive (3.
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A power law graph is a graph whose degree sequence
satisfies the power law.
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- Power law distribution

1880@a8

| Left: The collaboration
1 graph follows the power
1 law degree distribution
) 1: NS ?’E’- with exponent ﬁ ~ 3.0

1 18 laa laoa

Complex Graphs and Networks Lecture 1: Overview and outlines Linyuan Lu (University of South Carolina) — 13 / 63



- Power law distribution
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| Left: The collaboration
{  graph follows the power
1 law degree distribution
[ S ?‘: _..J  with exponent 3 ~ 3.0
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Power law graphs

Left: Part of the collab-
oration graph (authors
with Erdos number 2

Right: An IP graph (
Cheswick
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Robustnhess of Power Law

size degree distribution
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- Basic questions -

« How to model power law graphs?
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- Basic questions -

« How to model power law graphs?

« What graph properties can be derived
from the model?
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- Random graphs -

A random graph is a set of graphs together with a
probability distribution on that set.
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Random graphs -

A random graph is a set of graphs together with a
probability distribution on that set.

Example: A random graph on 3 vertices and 2 edges with
the uniform distribution on it.

O
O O
Probability %

O O
Probability % Probability %
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- Random graphs -

A random graph is a set of graphs together with a
probability distribution on that set.

Example: A random graph on 3 vertices and 2 edges with
the uniform distribution on it.

O
O O O ®
Probability % Probability % Probability %

A random graph GG almost surely satisties a property P, if

Pr(G satisfies P) =1 — 0,(1).
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- Evolution models -

Graph evolution

- C G CG TGy C -

m Preferential attachment models
[0 Barabasi, Albert, etc.

0 Kleinberg, Kumar, Raghavan, etc.
0 Aiello, Chung, Lu
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- Evolution models -

Graph evolution

- C G CG TGy C -

m Preferential attachment models
[0 Barabasi, Albert, etc.

0 Kleinberg, Kumar, Raghavan, etc.
0 Aiello, Chung, Lu

s Partial duplication models (Chung, Dewey, Galas, Lu)
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- Preferential attachment '

At time ¢, add a new vertex v to the existed network and
attach v to a vertex u, which is selected with probability
proportional to its current degree.
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- Preferential attachment '

At time t, add a new vertex v to the existed network and

attach v to a vertex u, which is selected with probability
proportional to its current degree.

Barabasi, Albert (1999) The preferential attachment
model almost surely generates a power low graph with
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- A general model -

At time t,

m add expected u%° random random

edges to existed network.

m add expected p'¢ random edges
between new vertex and existed l
network.

s add expected u™" loops to the
new vertex.

Aiello, Chung, Lu (2001): This general preferential

attachment model almost surely generates a power low

. - 21un,n_|_lun,e
— |
graph with exponent 5 = 2 4 s
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- A general model -

At time t,

m add expected ;€ random random
edges to existed network.

s add expected 1'° random edges O
between new vertex and existed l !
network.

s add expected u™" loops to the
new vertex.

Aiello, Chung, Lu (2001): This general preferential

attachment model almost surely generates a power low

. o Z/Ln’n—i—,un’e
graph with exponent 5 = 2 A e,

Similar results hold for directed graph model.
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- A question -

Are there power law graphs with
exponent (3 < 27
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Ecological networks

slope = —-1.7449
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Protein-interaction network

Snel, Bork & Huynen, PNAS 99, 5890 (2002)
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Degree distribution

The protein-interaction networks have 3 ~ 1.7
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- A critical threshold 5 =2

Range 1< fB<?2 2 <
Average degree Unbounded Bounded
Examples Biological Non-biological
networks networks
Partial Du- Preferential
Models plication attachment
model models
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Partial-duplication model

Evolution of graphs
- C G CGLC G Ce-

Construct G;.1 from G,

- Select a random vertex u of G} uniformly.

- Add a new vertex v.
- For each neighbor w of u, with probability p, add an edge

wv Independently.
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- Partial-duplication -

Full duplication
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- Results '

Chung, Dewey, Galas, Lu (2002) Almost surely, the
partial duplication model with selection probability p
generates power law graphs with the exponent (3 satisfying

p(B—1)=1-p"".

In particular, if % < p<1then [ <2.

™

. .
DE\S
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- Static models -

. Erdés-Rényi model G(n, p)

s Random Graphs with given expected degree sequences.

s Configuration model with given degree sequences.
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Erd6s-Rényi model G(n, p)

- n nodes
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- Erd6s-Rényi model G(n, p) -

- n nodes
- For each pair of vertices, create an edge independently
with probability p.
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- Erd6s-Rényi model G(n, p) -

- n nodes
- For each pair of vertices, create an edge independently
with probability p.

€

- The graph with e edges has the probability p®(1 — p) (3)-e
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Erd6s-Rényi model G(n, p) -

- n nodes
- For each pair of vertices, create an edge independently
with probability p.

- The graph with e edges has the probability p®(1 — p) (3)-e

The probability of this
graph is

p*(1—p)°.
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- Evolution of G(n, p) '

Erdos-Rényi 1960s:

s p~c/nfor0<c<1: The largest connected
component of G, Is a tree and has about
L(logn — 2 loglogn) vertices, where = ¢ — 1 — logc.
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L(logn — 2 loglogn) vertices, where = ¢ — 1 — logc.

m p~ 1/n+ u/n, the double jump.
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- Evo

Erdos-Rényi 1960s

lution of G(n, p) -

s p~c/nfor0<c<1: The largest connected
component of G, Is a tree and has about
L(logn — 2 loglogn) vertices, where = ¢ — 1 — logc.

m p~ 1/n+ u/n, the double jump.

s p~c/nforec>]
all the other com
component has a

| Except for one “giant” component,
bonents are relatively small. The giant
oproximately f(c)n vertices, where
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B  Model Glwy,wy,...,wi)

Random graph model with given expected degree sequence

- n nodes with weights wy, wo, ..., w,.
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- For each pair (i, j), create an edge independently with

probability p;; = w;w;p, where p = an —.
=1 "1
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probability p;; = w;w;p, where p = an —.
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- The graph H has probability
II py II (1—pij).

ijeE(H)  ij¢E(H)
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- An example: G(w1,w2,w3,w4) '
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- An example: G(wy, wo, w3, wy)
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An example: G(wy, wo, w3, wy)
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An example: G(W17w27w37w4> -

The probability of the graph is

4
wywywiwep' (1 — wawap) x (1 —wswyp) [T (1 —wip).

y 1

3,.2,,.2

=1
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- Notations

For G = G(wy,...,w,), let

- d= % 2= Wi
7 i Wy
- d= D i Wi
- The volume of S§: Vol(S) = e w;.
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- d= D i Wi

- The volume of S§: Vol(S) = e w;.

We have

d>d

“=" holds if and only if w; =--- = w,,.

Complex Graphs and Networks Lecture 1: Overview and outlines Linyuan Lu (University of South Carolina) — 34 / 63



- Notations

For G = G(wy,...,w,), let

- d= % 2= Wi
o i Wy
D i Wi
- The volume of S§: Vol(S) = e w;.
We have

d>d
“=" holds if and only if w; =--- = w,,.

A connected component S is called a giant component if

Vol(.5) = O(Vol(G)).
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- Connected components -

Chung and Lu (2001) For G = G(wy, ..., w,),

n Ifd<1— e, then almost surely, all components have
volume at most O(y/nlogn).
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- Connected components -

Chung and Lu (2001) For G = G(wy, ..., w,),

n Ifd<1— e, then almost surely, all components have
volume at most O(y/nlogn).

m If d > 1+ ¢, then almost surely there is a unique giant
component of volume ©(Vol(G)). All other components
have size at most

( log n r 1 2
) d—1-logd—cd it = <d < {7
oen if d >
| 1+log d—log 4+21log(1—e) e(l1—e)?"
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- Volume of Giant Component -

Chung and Lu (2004)

If the average degree is strictly greater than 1, then almost
surely the giant component in a graph G in G(w) has

volume (\g + O(\/_l{}gl e} ~))Vol(G), where )\ is the unique
positive root of the followmg equation:

S wie " = (1= X)) w;.
i=1 1=1
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- G(n,p) verse G(wy,...,w,) -

Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?
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- G(n,p) verse G(wy,...,w,) -

Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?

Chung Lu (2004)

m Yes, forl <d< 5.
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- G(n,p) verse G(wy,...,w,) -

Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?

Chung Lu (2004)

m Yes, forl <d< 5.
s No, for sufficiently large d.
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- G(n,p) verse G(wy,...,w,) -

Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?

Chung Lu (2004)

m Yes, forl <d< 5.

s No, for sufficiently large d.

m Whend> %, almost surely the giant component of
G(wi,...,w,) has volume at least

(%(1 + J - %) +0(1))Vol(G).

This is asymptotically best possible.
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- “Six degree separation” -

Experiments of Stanley Milgram (1967)

Source Target
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- “Six degree separation” -

Experiments of Stanley Milgram (1967)

%/i\ /i\i

Source Target
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- “Six degree separation” -

Experiments of Stanley Milgram (1967)

%/i\ /i\i

Source Target

Diameter: the maximum distance d(u,v), where u and v are
in the same connected component.
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- “Six degree separation” -

Experiments of Stanley Milgram (1967)

%/i\ /i\i

Source Target

Diameter: the maximum distance d(u,v), where u and v are
in the same connected component.

Average distance: the average among all distance d(u,v) for
®airs of u and v in the same connected component.
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- Diameter of G(n, p) -

Bollobas (1985): (denser graph)

logn logn

diam(G(n,p)) = Llog an of [log np

| if np > logn.
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- Diameter of G(n, p) -

Bollobas (1985): (denser graph)

lognJ o (lo on
lognp lognp

diam(G(n,p)) = | | if np > logn.

Chung Lu, (2000) (Sparser graph)

. L f (1 T 0(1))11)Ogg7?p if np — 00
dzam(G(”ap)) — @(é@gg&) If oo > np > 1.
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- Diameter of G(wy,...,w,) -

Chung Lu (2002)

s For a random graph G with admissible expected degree
sequence (wq, ..., w,), the average distance is almost

surely (1 + 0(1))?@3.
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- Diameter of G(wy, ..., w,) -

Chung Lu (2002)

s For a random graph G with admissible expected degree
sequence (wq, ..., w,), the average distance is almost

surely (1 + 0(1))?@3.

s For a random graph G with strongly admissible expected
degree sequence (wq, ..., w,), the diameter is almost

surely @(ﬁzg).
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- Diameter of G(wy, ..., w,) -

Chung Lu (2002)

s For a random graph G with admissible expected degree

sequence (wq, ..., w,), the average distance is almost
surely (1 + 0(1))&3.

s For a random graph G with strongly admissible expected
degree sequence (wq, ..., w,), the diameter is almost
surely @(fég)'

These results apply to G(n,p) and random power law graph
with 8 > 3.
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- Admissible condition -

(i) logd < logn.
(i) d>1+¢€ w; > eforall but o(n) vertices.
(ili) d a subset U:

log d logl
Voly(U) = (1 + 0(1))Volo(G) > Voly(U) —2 228081

cflogn
Here Vol (U) = e w.
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- Admissible condition -

(i) logd < logn.
(i) d>1+¢€ w; > eforall but o(n) vertices.
(ili) d a subset U:

log d logl
Voly(U) = (1 + 0(1))Volo(G) > Voly(U) —2 228081

a?logn
Here Vol (U) = e wh

,l: .

Roughly speaking, G is close to G(n,p). No dense
subgraphs.
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- Admissible condition -

(i) logd < logn.
(i) d>1+¢€ w; > eforall but o(n) vertices.
(ili) d a subset U:

log d logl
Voly(U) = (1 + 0(1))Volo(G) > Voly(U) —2 228081

a?logn
Here Vol (U) = e wh

Roughly speaking, G is close to G(n,p). No dense
subgraphs.

Example: Power law graphs with G > 3 and G(n,p).
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Non-admissible graph
versus admissible graph

A random subgraph of the Collabo- A Connected component of G(n, p)
ration Graph. with n = 500 and p = 0.002.
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Non-admissible graph
versus admissible graph -

A random subgraph of the Collabo- A Connected component of G(n, p)
ration Graph. with n = 500 and p = 0.002.

- Dense core for non-admissible graphs.
No dense core for admissible graphs.
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- Power law graphs with 3 € (2, 3) -

Chung, Lu (2002)
- Examples: the WWW graph, Collaboration graph, etc.
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- Power law graphs with 3 € (2, 3) -

Chung, Lu (2002)

- Examples: the WWW graph, Collaboration graph, etc.
- Non-admissible.
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Power law graphs with 3 € (2, 3) -

Chung, Lu (2002)

- Examples: the WWW graph, Collaboration graph, etc.

- Non-admissible.
- Containing a dense core, with diameter loglogn.

Linyuan Lu (University of South Carolina) — 43 / 63
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Power law graphs with 3 € (2, 3) -

Chung, Lu (2002)

Examples: the WWW graph, Collaboration graph, etc.
Non-admissible.

Containing a dense core, with diameter log log n.
Mostly vertices are within the distance of O(loglogn)
from the core.
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- Power law graphs with 3 € (2, 3) -

Chung, Lu (2002)

- Examples: the WWW graph, Collaboration graph, etc.

- Non-admissible.

- Containing a dense core, with diameter loglogn.

- Mostly vertices are within the distance of O(loglogn)
from the core.

- There are some vertices at the distance of O(logn).
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- Power law graphs with 3 € (2, 3) -

Chung, Lu (2002)

- Examples: the WWW graph, Collaboration graph, etc.

- Non-admissible.

- Containing a dense core, with diameter loglogn.

- Mostly vertices are within the distance of O(loglogn)
from the core.

- There are some vertices at the distance of O(logn).

The diameter is O(logn), while the average distance is
O(loglogn).
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Eigenvalues of a graph

A graph G: o O ®
Adjacency matrix:

010
A=|[1 01
010

Eigenvalues are

—v2,0,V2.
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- Wigner’'s semicircle law

Wigner (1958)

- A is a real symmetric n X n matrix.
- Entries q;; are independent random variables.

- E(a?f“) = 0.

- E(aj) < M.

The distribution of eigenvalues of A converges into a
semicircle distribution of radius 2m+/n.
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- Wigner’'s semicircle law -

Wigner (1958)

- A is a real symmetric n X n matrix.
- Entries q;; are independent random variables.

- E(a?f“) = 0.

- E(aj) < M.

The distribution of eigenvalues of A converges into a
semicircle distribution of radius 2m+/n.

Fiiredi and Komlés (1981): The eigenvalues of G(n, p)
follows Wigner's semicircle law.
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- Experimental results '

s Faloutsos et al. (1999) The eigenvalues of the
Internet graph do not follow the semicircle law.

s Farkas et. al. (2001), Goh et. al. (2001) The
spectrum of a power law graph follows a “triangular-like”

distribution.

= Mihail and Papadimitriou (2002) They showed that
the large eigenvalues are determined by the large
degrees. Thus, the significant part of the spectrum of a
power law graph follows the power law.

N

Complex Graphs and Networks Lecture 1: Overview and outlines Linyuan Lu (University of South Carolina) — 46 / 63



- Eigenvalues of G(wy, ..., w,) -

Chung, Vu, and Lu (2003)

Suppose wy > wy > ... > w,. Let u; be i-th largest
eigenvalue of G(wy,wy, ..., wy,). Let m = w; and

d =", w?p. Almost surely we have:

s (1—0(1)) max{y/m,d} < py < 7/Iogn - max{y/m,d}.
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- Eigenvalues of G(wy, ..., w,) -

Chung, Vu, and Lu (2003)

Suppose wy > wy > ... > w,. Let u; be i-th largest
eigenvalue of G(wy,wy, ..., wy,). Let m = w; and

d =", w?p. Almost surely we have:

s (1-o(1)) max{\/m,d} < p; < 7+/logn - max{\/m, d}.
s 1= (1+4+0(1))d, ifd>+/mlogn.
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- Eigenvalues of G(wy, ..., w,) -

Chung, Vu, and Lu (2003)
Suppose wy > wy > ... > w,. Let u; be i-th largest

eigenvalue of G(wy,wy, ..., wy,). Let m = w; and
d =", w?p. Almost surely we have:

s (1-o(1)) max{y/m, cflv}~ <y < 7y/logn - max{\/m,d}.
= = (1+0(1))d, if d>/mlogn.
s 1 = (1+o0(1))y/m, if /m > dlog”n.
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- Eigenvalues of G(wy, ..., w,) -

Chung, Vu, and Lu (2003)

Suppose wy > wy > ... > w,. Let u; be i-th largest
eigenvalue of G(wy,wy, ..., wy,). Let m = w; and

d =", w?p. Almost surely we have:

s (1-o(1)) max{y/m, cflv}~ < < 7y/logn - max{y/m,d}.
= = (1+0(1))d, if d>/mlogn.

s 1 = (1+o0(1))y/m, if /m > dlog”n. i

n R Jwy and py o R —/wy, if Jwy > allog2 n.
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- Random power law graphs '

The first & and last k eigenvalues of the random power law
graph with 3 > 2.5 follows the power law distribution with
exponent 2(3 — 1. It results a “triangular-like” shape.

14 =iml.=p, &

12 F g -
T e
+ 1@ L -
‘- g d S
Iy = e * -
o & L
i & | & & &
L e &

4 b e =

Sl L
E I-'- ] ] I

-18 -2 B 3 18

elgenvalues
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- Laplacian spectrum

Random walks on a graph G-

M1l — AD_17T]€.
AD L~ D V2AD1/2

S
O

SH
S
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- Laplacian spectrum -

Random walks on a graph G-

M1l — AD_17T]{;.
AD L~ D V2AD1/2

S
O

Laplacian spectrum
O0=A <A << A1 <2

are the eigenvalues of L = — D 1/24D~1/2
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Laplacian spectrum

Random walks on a graph G-

M1l — AD_17T]{;.
AD L~ D V2AD1/2

Laplacian spectrum

O=X<AM << A1 <2

are the eigenvalues of L = — D 1/24D~1/2
The eigenvalues of AD tare 1,1 —\,...,1—\,_;.

Linyuan Lu (University of South Carolina) — 49 / 63
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- Spectral Radius '

Let

- Wpip = minfwy, ..., wy}
1 —n ,
- = . D i1 W

- ¢g(n) — a function tending to infinity arbitrarily slowly.

Chung, Vu, and Lu (2003)

If wWpin > log2 n, then almost surely the Laplacian spectrum
Ai's of G(wy, ..., w,) satisfy

4 log?
max [1 — A < (14 0(1))— - g(n)log' n

\/E | Wmin
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- Approximation -

M _ D—l/QAD—l/Q . ¢(>;¢0 O _ W—l/QAw—l/Q . X*X

where where
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- Approximation -

M _ D—l/QAD—l/Q . ¢8¢0 O _ W—l/QAw—l/Q . X*X

where where

VZ \ﬁ,...,@)*. X:\/Zi — (V.. V)

Po =

- (' can be viewed as the “expectation” of M.
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- Approximation -

M _ D—l/QAD—l/Q . ¢8¢0 O _ W—l/QAw—l/Q . X*X

where where

%Z (i )" xz\/zi — (V. V)|

Po =

- (' can be viewed as the “expectation” of M. We have

M =Cl <1 +0(1))ﬁ-
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- Approximation -

M _ D—l/QAD—l/Q . ¢8¢0 O _ W—l/QAw—l/Q . X*X
where where
| * |
¢0: o ( d17'°'7\/d7n)' X = o (\/ Wiy vy /W )
\/Zizl di \/Zi:l wj

- (' can be viewed as the “expectation” of M. We have

M —c| < +o<1>>%.

- M has eigenvalues 0,1 — A\q,...,1 — \,_1, since
M =1—L — ¢y0p9 and Log = 0.
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- Results on spectrum of -

Chung, Vu, and Lu (2003)
We have

U wyy > \/Elog2 n, then

1N = (1 4 o(1))

S
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- Results on spectrum of -

Chung, Vu, and Lu (2003)
We have

U wyy > \/Elog2 n, then

o]l = (1+ 0“))53

n  If wy > Vd, the eigenvalues of C follow the

semi-circle distribution with radius r ~ %.
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- Coupling methods '

(1 and Go: two random graphs on n vertices.
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- Coupling methods -

(1 and Go: two random graphs on n vertices.
s Almost surely GG; = G5: for any monotone property A

Pr(G, satisfies A) > Pr(G5 satisfies A) — 0,(1).
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- Coupling methods -

(1 and Go: two random graphs on n vertices.
s Almost surely GG; = G5: for any monotone property A

Pr(G, satisfies A) > Pr(G5 satisfies A) — 0,(1).

s Almost surely G; =< G5: for any monotone property A

Pr(G, satisfies A) < Pr(Gs satisfies A) 4+ 0,,(1).
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- Coupling methods -

(1 and Go: two random graphs on n vertices.
s Almost surely GG; = G5: for any monotone property A

Pr(G, satisfies A) > Pr(G5 satisfies A) — 0,(1).

s Almost surely G; =< G5: for any monotone property A

Pr(G, satisfies A) < Pr(Gs satisfies A) 4+ 0,,(1).

A monotone property is closed under edge-addition.

m  'GGis Hamiltonian.”
m (G contains a subgraph H."
m  The diameter of (G is at most k.”
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- Example of coupling -

s F(n,m): uniform random graphs on n vertices and m
edges.
s G(n,p): Erdés-Rényi random graphs.

n
2

With p = 2%, for any 0 > 0, almost surely we have
(3)

G(n, (1 =6)p) = F(n,m) < G(n, (1 +0)p).
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- Example of coupling -

s F(n,m): uniform random graphs on n vertices and m
edges.
s G(n,p): Erdés-Rényi random graphs.

With p = 2%, for any 0 > 0, almost surely we have
(3)

G(n, (1 =6)p) = F(n,m) < G(n, (1 +0)p).

Can we couple evolution models with static models?

Complex Graphs and Networks Lecture 1: Overview and outlines Linyuan Lu (University of South Carolina) — 54 / 63



r G (p1, p2, D3, D1, M) -

At each time ¢,

= with probability p;, take a vertex-growth step; add a new
vertex v and form m new edges from v to existing
vertices u chosen with probability proportional to d,,.
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r G (p1, p2, D3, D1, M) -

At each time ¢,

= with probability p;, take a vertex-growth step; add a new
vertex v and form m new edges from v to existing
vertices u chosen with probability proportional to d,,.

= with probability py, take a m edge-growth steps;
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r G (p1, p2, D3, D1, M) -

At each time ¢,

= with probability p;, take a vertex-growth step; add a new
vertex v and form m new edges from v to existing
vertices u chosen with probability proportional to d,,.

= with probability py, take a m edge-growth steps;

= with probability p3, take a vertex-deletion step;
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At each time ¢,

- G(p1,p2, D3, 1, M) -

= with probability p;, take a vertex-growth step; add a new
vertex v and form m new edges from v to existing

vertices u chosen with
s with probability po, ta

s with probability ps3, ta

probability proportional to d,.
ke a m edge-growth steps;

ke a vertex-deletion step:;

s with probability py = |
edge-deletion steps.

| — p1 — p2 — p3, take m
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- Degree distribution -

Chung-Lu (2004), Frieze-Cooper-Vera (2004)

For p1 > p3 and py > ps, G(p1, P2, P3, P4, m) almost surely
generates a power law graphs with exponent

B=21 P1 + D3
p1+ 2p2 — p3 — 2py
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- Coupling result '

Suppose p3 < p1, p4 < p2, and logn <K m < t551 172 Then

G(p1, p2, p3,4 , m) dominates and is dominated by an
(2)
]
edge between vertices ¢ and 7, 7 < 7, at time ¢, with p
satisfying:

of having an
(t)

1]

edge-independent graph with probability p

r 2a—1 -1 20—1
p2m [ __ baN(]\5=T20a-1 ol s isYe" pamt
2paT(2p2—pa) 15 (1 T (1 p2)(75)2 ) it 7 ] > 47'22]94 1
_ 2p4T ;o gl 20 ol Iids) Pt
| 1— (L4 o(1)) 2ot i < L
209 —D3—2 _ _
where o = P1(P1+2p2—p3—2pa) and - = (p1+p2—p4)(P1 P3)_
2(p1+p2—p4)(P1—P3) p1+D3

Complex Graphs and Networks Lecture 1: Overview and outlines Linyuan Lu (University of South Carolina) — 57 / 63



- Corollary -

Suppose m > log' € n.

s G(pl,p2,p3,p4, m) follows the power law distribution
with exponent § =2+ (pl +p3)/(pl +2p2 — p3 — 2p4).
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- Corollary -

Suppose m > log' € n.

s G(pl,p2,p3,p4, m) follows the power law distribution
with exponent § =2+ (pl +p3)/(pl +2p2 — p3 — 2p4).
m  For ps > p3 + p4, we have 2 < 3 < 3. Almost surely a

random graph in G(p1, p2, p3, P4, m) has diameter
O(logn) and average distance O(—o8 " )).

log(1/(8—2
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- Corollary -

Suppose m > log!*

s G(pl,p2,p3,p4, m) follows the power law distribution
with exponent § =2+ (pl +p3)/(pl +2p2 — p3 — 2p4).

m  For ps > p3 + p4, we have 2 < 3 < 3. Almost surely a
random graph in G(p1, p2, P3, P4, M ) has diameter
O(logn) and average distance O(; ?%}?%”2))

s For py < p3 + p4, we have 5 > 3. Almost surely a
random graph in G(p1, p2, p3, P4, m) has diameter
O(logn) and average distance O( Og”) where d is the

log d
average degree.

Comple Graphs and Networks Lecture 1: Overview and outlines Linyuan Lu (University of South Carolina) — 58 / 63




- Corollary -

Suppose m > log' € n.

s G(pl,p2,p3,p4, m) follows the power law distribution
with exponent § =2+ (pl +p3)/(pl +2p2 — p3 — 2p4).

m  For ps > p3 + p4, we have 2 < 3 < 3. Almost surely a
random graph in G(p1, p2, p3, P4, m) has diameter
©(logn) and average distance O(IO;‘E%/%Z)).

m  For py < p3+ p4, we have 3 > 3. Almost surely a
random graph in G(p1, p2, p3, P4, m) has diameter
O(logn) and average distance O(ﬁi’;) where d is the
average degree.

s Almost surely a random graph in G(p1, p2, p3, ps, m) has

spectral gap A at least 1/8 + o(1).
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- Summary

Topics we have covered:

s  Examples of complex networks
s Evolution models

s Static models
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- Summary

Topics we have covered:

s  Examples of complex networks
s Evolution models

s Static models

Topics we have not covered but important:

s Random graphs with (exact) degree sequence
s  Geometric graphs and hybrid random graphs
m  Quasi-randomness and spectral analysis

s Algorithms
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Further reading

Fan Chung and Linyuan Lu

Complex graphs and networks

CBMS Regional Conference Series in Math-
ematics; number 107, (2006), 264+vii
Dages.

SBN-10: 0-8218-3657-9,

SBN-13: 978-0-8218-3657-6.

nttp:/ /www.math.sc.edu/~Iu/
nttp: / /www.math.ucsd.edu/~fan/
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Overview of talks -

m lLecture 1: Overview and outlines

m lLecture 2: Generative models - preferential attachment
schemes

m Lecture 3: Duplication models for biological networks

m Lecture 4: The rise of the giant component

m Lecture 5: The small world phenomenon: average
distance and diameter

m Lecture 6: Spectrum of random graphs with given
degrees
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