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Overview of talks
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■ Lecture 1: Overview and outlines

■ Lecture 2: Generative models - preferential attachment
schemes

■ Lecture 3: Duplication models for biological networks

■ Lecture 4: The rise of the giant component

■ Lecture 5: The small world phenomenon: average
distance and diameter

■ Lecture 6: Spectrum of random graphs with given
degrees
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Königsberg
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In 1736, Leonhard Euler solved the Seven bridges of
Königsberg

→ An

Euler path exists if and only if the graph is connected and
has 0 or 2 vertices with odd degrees.



Preliminary
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A graph consists of two sets V and E.

- V is the set of vertices (or nodes).
- E is the set of edges, where each edge is a pair of

vertices.
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A graph consists of two sets V and E.

- V is the set of vertices (or nodes).
- E is the set of edges, where each edge is a pair of

vertices.
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The degree of a vertex is the number of edges, which are
incident to that vertex.



Examples of complex graphs
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WWW Graphs

Call Graphs

Collaboration Graphs

Gene Regulatory Graphs

Graph of U.S. Power Grid

Costars Graph of Actors

...



BGP Graph
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Vertex: AS
(autonomous system)

Edges: AS pairs in
BGP routing table.



Large BGP subgraph
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Only a portion of 6400 vertices and 13000 edges is drawn.



Hollywood Graph
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Vertex: actors and
actress

Edges: co-playing in
the same movie

Only 10,000 out of
225,000 are shown.



Folklore of Erdős numbers
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■ Erdős has Erdős number 0.

■ Erdős’ coauthor has Erdős number 1.

■ Erdős’ coauthor’s coauthor has Erdős
number 2.

...
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■ Erdős has Erdős number 0.

■ Erdős’ coauthor has Erdős number 1.

■ Erdős’ coauthor’s coauthor has Erdős
number 2.

...

My Erdős number is 2.
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■ Erdős has Erdős number 0.

■ Erdős’ coauthor has Erdős number 1.

■ Erdős’ coauthor’s coauthor has Erdős
number 2.

...

My Erdős number is 2.

Erdős number is the graph distance to Erdős in the
Collaboration graph.



Collaboration Graph

Complex Graphs and Networks Lecture 1: Overview and outlines Linyuan Lu (University of South Carolina) – 10 / 63



Characteristics

Complex Graphs and Networks Lecture 1: Overview and outlines Linyuan Lu (University of South Carolina) – 11 / 63

■ Large



Characteristics

Complex Graphs and Networks Lecture 1: Overview and outlines Linyuan Lu (University of South Carolina) – 11 / 63

■ Large

■ Sparse



Characteristics

Complex Graphs and Networks Lecture 1: Overview and outlines Linyuan Lu (University of South Carolina) – 11 / 63

■ Large

■ Sparse

■ Power law degree distribution



Characteristics

Complex Graphs and Networks Lecture 1: Overview and outlines Linyuan Lu (University of South Carolina) – 11 / 63

■ Large

■ Sparse

■ Power law degree distribution

■ Small world phenomenon



The power law
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The number of vertices of degree k is approximately
proportional to k−β for some positive β.
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The number of vertices of degree k is approximately
proportional to k−β for some positive β.

A power law graph is a graph whose degree sequence
satisfies the power law.



Power law distribution
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Left: The collaboration
graph follows the power
law degree distribution
with exponent β ≈ 3.0
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Left: The collaboration
graph follows the power
law degree distribution
with exponent β ≈ 3.0

Right: An IP graph
follows the power law de-
gree distribution with ex-
ponent β ≈ 2.4



Power law graphs
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Left: Part of the collab-
oration graph (authors
with Erdős number 2)

Right: An IP graph (by Bill
Cheswick)



Robustness of Power Law
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size degree distribution

25,3339

52,186



Basic questions
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■ How to model power law graphs?

■ What graph properties can be derived

from the model?



Random graphs
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A random graph is a set of graphs together with a
probability distribution on that set.
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A random graph is a set of graphs together with a
probability distribution on that set.
Example: A random graph on 3 vertices and 2 edges with
the uniform distribution on it.
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A random graph is a set of graphs together with a
probability distribution on that set.
Example: A random graph on 3 vertices and 2 edges with
the uniform distribution on it.
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A random graph G almost surely satisfies a property P , if

Pr(G satisfies P ) = 1 − on(1).



Evolution models
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Graph evolution

· · · ⊂ Gt−1 ⊂ Gt ⊂ Gt+1 ⊂ · · ·

■ Preferential attachment models

◆ Barabási, Albert, etc.

◆ Kleinberg, Kumar, Raghavan, etc.

◆ Aiello, Chung, Lu
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Graph evolution

· · · ⊂ Gt−1 ⊂ Gt ⊂ Gt+1 ⊂ · · ·

■ Preferential attachment models

◆ Barabási, Albert, etc.

◆ Kleinberg, Kumar, Raghavan, etc.

◆ Aiello, Chung, Lu

■ Partial duplication models (Chung, Dewey, Galas, Lu)



Preferential attachment
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u v

At time t, add a new vertex v to the existed network and
attach v to a vertex u, which is selected with probability
proportional to its current degree.
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u v

At time t, add a new vertex v to the existed network and
attach v to a vertex u, which is selected with probability
proportional to its current degree.

Barabási, Albert (1999) The preferential attachment
model almost surely generates a power low graph with
exponent β = 3.



A general model
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At time t,

■ add expected µe,e random random
edges to existed network.

■ add expected µn,e random edges
between new vertex and existed
network.

■ add expected µn,n loops to the
new vertex.

v

Aiello, Chung, Lu (2001): This general preferential
attachment model almost surely generates a power low
graph with exponent β = 2 + 2µn,n+µn,e

µn,e+2µe,e
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At time t,

■ add expected µe,e random random
edges to existed network.

■ add expected µn,e random edges
between new vertex and existed
network.

■ add expected µn,n loops to the
new vertex.

v

Aiello, Chung, Lu (2001): This general preferential
attachment model almost surely generates a power low
graph with exponent β = 2 + 2µn,n+µn,e

µn,e+2µe,e

Similar results hold for directed graph model.



A question
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Are there power law graphs with

exponent β < 2?



Ecological networks
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Protein-interaction network
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Snel, Bork & Huynen, PNAS 99, 5890 (2002)



Degree distribution
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The protein-interaction networks have β ≈ 1.7



A critical threshold β = 2
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Range 1 < β < 2 2 < β

Average degree Unbounded Bounded

Examples Biological
networks

Non-biological
networks

Models
Partial Du-
plication
model

Preferential
attachment
models



Partial-duplication model
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Evolution of graphs

· · · ⊂ Gt−1 ⊂ Gt ⊂ Gt+1 ⊂ · · ·

Construct Gt+1 from Gt,

- Select a random vertex u of Gt uniformly.
- Add a new vertex v.
- For each neighbor w of u, with probability p, add an edge

wv independently.



Partial-duplication
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Results
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Chung, Dewey, Galas, Lu (2002) Almost surely, the
partial duplication model with selection probability p
generates power law graphs with the exponent β satisfying

p(β − 1) = 1 − pβ−1.

In particular, if 1
2 < p < 1 then β < 2.



Static models
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■ Erdős-Rényi model G(n, p)

■ Random Graphs with given expected degree sequences.

■ Configuration model with given degree sequences.



Erdős-Rényi model G(n, p)
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- n nodes
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- n nodes
- For each pair of vertices, create an edge independently

with probability p.
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- n nodes
- For each pair of vertices, create an edge independently

with probability p.

- The graph with e edges has the probability pe(1− p)(
n

2)−e.
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- n nodes
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- n nodes
- For each pair of vertices, create an edge independently

with probability p.

- The graph with e edges has the probability pe(1− p)(
n
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The probability of this
graph is

p4(1 − p)2.



Evolution of G(n, p)
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Erdős-Rényi 1960s:

■ p ∼ c/n for 0 < c < 1: The largest connected
component of Gn,p is a tree and has about
1
α(log n − 5

2 log log n) vertices, where α = c − 1 − log c.
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Erdős-Rényi 1960s:

■ p ∼ c/n for 0 < c < 1: The largest connected
component of Gn,p is a tree and has about
1
α(log n − 5

2 log log n) vertices, where α = c − 1 − log c.

■ p ∼ 1/n + µ/n, the double jump.

■ p ∼ c/n for c > 1: Except for one “giant” component,
all the other components are relatively small. The giant
component has approximately f(c)n vertices, where

f(c) = 1 − 1

c

∞
∑

k=1

kk−1

k!
(ce−c)k.



Model G(w1, w2, . . . , wn)
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Random graph model with given expected degree sequence

- n nodes with weights w1, w2, . . . , wn.
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Random graph model with given expected degree sequence

- n nodes with weights w1, w2, . . . , wn.

- For each pair (i, j), create an edge independently with
probability pij = wiwjρ, where ρ = 1

∑n

i=1 wi
.



Model G(w1, w2, . . . , wn)

Complex Graphs and Networks Lecture 1: Overview and outlines Linyuan Lu (University of South Carolina) – 32 / 63

Random graph model with given expected degree sequence
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.

- The graph H has probability
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Random graph model with given expected degree sequence
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An example: G(w1, w2, w3, w4)
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The probability of the graph is

w3
1w

2
2w

2
3w4ρ

4(1 − w2w4ρ) × (1 − w3w4ρ)
4

∏

i=1

(1 − w2
i ρ).



Notations
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For G = G(w1, . . . , wn), let

- d = 1
n

∑n
i=1 wi

- d̃ =
∑n

i=1 w2
i

∑n

i=1 wi
.

- The volume of S: Vol(S) =
∑

i∈S wi.
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For G = G(w1, . . . , wn), let

- d = 1
n

∑n
i=1 wi

- d̃ =
∑n

i=1 w2
i

∑n

i=1 wi
.

- The volume of S: Vol(S) =
∑

i∈S wi.

We have
d̃ ≥ d

“=” holds if and only if w1 = · · · = wn.

A connected component S is called a giant component if

Vol(S) = Θ(Vol(G)).



Connected components
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Chung and Lu (2001) For G = G(w1, . . . , wn),

■ If d̃ < 1 − ǫ, then almost surely, all components have
volume at most O(

√
n log n).
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Chung and Lu (2001) For G = G(w1, . . . , wn),

■ If d̃ < 1 − ǫ, then almost surely, all components have
volume at most O(

√
n log n).

■ If d > 1 + ǫ, then almost surely there is a unique giant
component of volume Θ(Vol(G)). All other components
have size at most











log n
d−1−log d−ǫd if 1

1−ǫ < d < 2
1−ǫ

log n
1+log d−log 4+2 log(1−ǫ) if d > 4

e(1−ǫ)2 .
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Chung and Lu (2004)
If the average degree is strictly greater than 1, then almost
surely the giant component in a graph G in G(w) has

volume (λ0 + O(
√

n log3.5 n
Vol(G) ))Vol(G), where λ0 is the unique

positive root of the following equation:

n
∑

i=1

wie
−wiλ = (1 − λ)

n
∑

i=1

wi.
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Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?
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Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?
Chung Lu (2004)

■ Yes, for 1 < d ≤ e
e−1 .
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Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?
Chung Lu (2004)

■ Yes, for 1 < d ≤ e
e−1 .

■ No, for sufficiently large d.
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Question: Does the random graph with equal expected
degrees generates the smallest giant component among all
possible degree distribution with the same volume?
Chung Lu (2004)

■ Yes, for 1 < d ≤ e
e−1 .

■ No, for sufficiently large d.
■ When d ≥ 4

e , almost surely the giant component of
G(w1, . . . , wn) has volume at least

(1

2
(1 +

√

√

√

√1 − 4

de
) + o(1)

)

Vol(G).

This is asymptotically best possible.
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Experiments of Stanley Milgram (1967)
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Experiments of Stanley Milgram (1967)
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Diameter: the maximum distance d(u, v), where u and v are
in the same connected component.
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Experiments of Stanley Milgram (1967)
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Diameter: the maximum distance d(u, v), where u and v are
in the same connected component.
Average distance: the average among all distance d(u, v) for
pairs of u and v in the same connected component.
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Bollobás (1985): (denser graph)

diam(G(n, p)) = ⌊ log n

log np
⌋ or ⌈ log n

log np
⌉ if np ≫ log n.
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Bollobás (1985): (denser graph)

diam(G(n, p)) = ⌊ log n

log np
⌋ or ⌈ log n

log np
⌉ if np ≫ log n.

Chung Lu, (2000) (Sparser graph)

diam(G(n, p)) =











(1 + o(1)) log n
log np if np → ∞

Θ( log n
log np) if ∞ > np > 1.
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Chung Lu (2002)

■ For a random graph G with admissible expected degree
sequence (w1, . . . , wn), the average distance is almost
surely (1 + o(1)) log n

log d̃
.
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Chung Lu (2002)

■ For a random graph G with admissible expected degree
sequence (w1, . . . , wn), the average distance is almost
surely (1 + o(1)) log n

log d̃
.

■ For a random graph G with strongly admissible expected
degree sequence (w1, . . . , wn), the diameter is almost
surely Θ( log n

log d̃
).
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Chung Lu (2002)

■ For a random graph G with admissible expected degree
sequence (w1, . . . , wn), the average distance is almost
surely (1 + o(1)) log n

log d̃
.

■ For a random graph G with strongly admissible expected
degree sequence (w1, . . . , wn), the diameter is almost
surely Θ( log n

log d̃
).

These results apply to G(n, p) and random power law graph
with β > 3.
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(i) log d̃ ≪ log n.
(ii) d > 1 + ǫ. wi > ǫ for all but o(n) vertices.
(iii) ∃ a subset U :

Vol2(U) = (1 + o(1))Vol2(G) ≫ Vol3(U)
log d̃ loglog n

d̃ log n
.

Here Volk(U) =
∑

i∈U wk
i .
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(i) log d̃ ≪ log n.
(ii) d > 1 + ǫ. wi > ǫ for all but o(n) vertices.
(iii) ∃ a subset U :

Vol2(U) = (1 + o(1))Vol2(G) ≫ Vol3(U)
log d̃ loglog n

d̃ log n
.

Here Volk(U) =
∑

i∈U wk
i .

Roughly speaking, G is close to G(n, p). No dense
subgraphs.
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(i) log d̃ ≪ log n.
(ii) d > 1 + ǫ. wi > ǫ for all but o(n) vertices.
(iii) ∃ a subset U :

Vol2(U) = (1 + o(1))Vol2(G) ≫ Vol3(U)
log d̃ loglog n

d̃ log n
.

Here Volk(U) =
∑

i∈U wk
i .

Roughly speaking, G is close to G(n, p). No dense
subgraphs.
Example: Power law graphs with β > 3 and G(n, p).



Non-admissible graph

versus admissible graph
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A random subgraph of the Collabo-

ration Graph.

A Connected component of G(n, p)

with n = 500 and p = 0.002.
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A random subgraph of the Collabo-

ration Graph.

A Connected component of G(n, p)

with n = 500 and p = 0.002.

- Dense core for non-admissible graphs.
- No dense core for admissible graphs.



Power law graphs with β ∈ (2, 3)
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Chung, Lu (2002)

- Examples: the WWW graph, Collaboration graph, etc.
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Chung, Lu (2002)

- Examples: the WWW graph, Collaboration graph, etc.
- Non-admissible.
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Chung, Lu (2002)

- Examples: the WWW graph, Collaboration graph, etc.
- Non-admissible.
- Containing a dense core, with diameter log log n.
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Chung, Lu (2002)

- Examples: the WWW graph, Collaboration graph, etc.
- Non-admissible.
- Containing a dense core, with diameter log log n.
- Mostly vertices are within the distance of O(log log n)

from the core.
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Chung, Lu (2002)

- Examples: the WWW graph, Collaboration graph, etc.
- Non-admissible.
- Containing a dense core, with diameter log log n.
- Mostly vertices are within the distance of O(log log n)

from the core.
- There are some vertices at the distance of O(log n).
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Chung, Lu (2002)

- Examples: the WWW graph, Collaboration graph, etc.
- Non-admissible.
- Containing a dense core, with diameter log log n.
- Mostly vertices are within the distance of O(log log n)

from the core.
- There are some vertices at the distance of O(log n).

The diameter is Θ(log n), while the average distance is
O(log log n).



Eigenvalues of a graph
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A graph G: j j j
Adjacency matrix:

A =









0 1 0
1 0 1
0 1 0









Eigenvalues are
−
√

2, 0,
√

2.



Wigner’s semicircle law
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Wigner (1958)

- A is a real symmetric n × n matrix.
- Entries aij are independent random variables.
- E(a2k+1

ij ) = 0.
- E(a2

ij) = m2.

- E(a2k
ij ) < M .

The distribution of eigenvalues of A converges into a
semicircle distribution of radius 2m

√
n.
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Wigner (1958)

- A is a real symmetric n × n matrix.
- Entries aij are independent random variables.
- E(a2k+1

ij ) = 0.
- E(a2

ij) = m2.

- E(a2k
ij ) < M .

The distribution of eigenvalues of A converges into a
semicircle distribution of radius 2m

√
n.

Füredi and Komlós (1981): The eigenvalues of G(n, p)
follows Wigner’s semicircle law.



Experimental results
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■ Faloutsos et al. (1999) The eigenvalues of the
Internet graph do not follow the semicircle law.

■ Farkas et. al. (2001), Goh et. al. (2001) The
spectrum of a power law graph follows a “triangular-like”
distribution.

■ Mihail and Papadimitriou (2002) They showed that
the large eigenvalues are determined by the large
degrees. Thus, the significant part of the spectrum of a
power law graph follows the power law.

µi ≈
√

di.
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Chung, Vu, and Lu (2003)
Suppose w1 ≥ w2 ≥ . . . ≥ wn. Let µi be i-th largest
eigenvalue of G(w1, w2, . . . , wn). Let m = w1 and
d̃ =

∑n
i=1 w2

i ρ. Almost surely we have:

■ (1−o(1)) max{√m, d̃} ≤ µ1 ≤ 7
√

log n · max{√m, d̃}.
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Chung, Vu, and Lu (2003)
Suppose w1 ≥ w2 ≥ . . . ≥ wn. Let µi be i-th largest
eigenvalue of G(w1, w2, . . . , wn). Let m = w1 and
d̃ =

∑n
i=1 w2

i ρ. Almost surely we have:

■ (1−o(1)) max{√m, d̃} ≤ µ1 ≤ 7
√

log n · max{√m, d̃}.
■ µ1 = (1 + o(1))d̃, if d̃ >

√
m log n.
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Chung, Vu, and Lu (2003)
Suppose w1 ≥ w2 ≥ . . . ≥ wn. Let µi be i-th largest
eigenvalue of G(w1, w2, . . . , wn). Let m = w1 and
d̃ =

∑n
i=1 w2

i ρ. Almost surely we have:

■ (1−o(1)) max{√m, d̃} ≤ µ1 ≤ 7
√

log n · max{√m, d̃}.
■ µ1 = (1 + o(1))d̃, if d̃ >

√
m log n.

■ µ1 = (1 + o(1))
√

m, if
√

m > d̃ log2 n.
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Chung, Vu, and Lu (2003)
Suppose w1 ≥ w2 ≥ . . . ≥ wn. Let µi be i-th largest
eigenvalue of G(w1, w2, . . . , wn). Let m = w1 and
d̃ =

∑n
i=1 w2

i ρ. Almost surely we have:

■ (1−o(1)) max{√m, d̃} ≤ µ1 ≤ 7
√

log n · max{√m, d̃}.
■ µ1 = (1 + o(1))d̃, if d̃ >

√
m log n.

■ µ1 = (1 + o(1))
√

m, if
√

m > d̃ log2 n.
■ µk ≈ √

wk and µn+1−k ≈ −√
wk, if

√
wk > d̃ log2 n.



Random power law graphs
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The first k and last k eigenvalues of the random power law
graph with β > 2.5 follows the power law distribution with
exponent 2β − 1. It results a “triangular-like” shape.



Laplacian spectrum
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Random walks on a graph G:

πk+1 = AD−1πk.

AD−1 ∼ D−1/2AD−1/2.
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Random walks on a graph G:

πk+1 = AD−1πk.

AD−1 ∼ D−1/2AD−1/2.
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1
dv

1
dv

1
dv

Laplacian spectrum

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2

are the eigenvalues of L = I − D−1/2AD−1/2.
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Random walks on a graph G:

πk+1 = AD−1πk.

AD−1 ∼ D−1/2AD−1/2.
�
��
v �

��

�
��

�
��

-
�

�
�

�
�

�
���6

1
dv

1
dv

1
dv

Laplacian spectrum

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2

are the eigenvalues of L = I − D−1/2AD−1/2.
The eigenvalues of AD−1 are 1, 1 − λ1, . . . , 1 − λn−1.



Spectral Radius
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Let

- wmin = min{w1, . . . , wn}
- d = 1

n

∑n
i=1 wi

- g(n) — a function tending to infinity arbitrarily slowly.

Chung, Vu, and Lu (2003)
If wmin ≫ log2 n, then almost surely the Laplacian spectrum
λi’s of G(w1, . . . , wn) satisfy

max
i6=0

|1 − λi| ≤ (1 + o(1))
4√
d

+
g(n) log2 n

wmin
.
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M = D−1/2AD−1/2 − φ∗

0
φ0

where

φ0 =
1

√

∑n
i=1

di

(
√

d1, . . . ,
√

dn)∗.

C = W−1/2AW−1/2 − χ∗χ

where

χ =
1

√

∑n
i=1

wi

(
√

w1, . . . ,
√

wn)∗.
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0
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d1, . . . ,
√

dn)∗.

C = W−1/2AW−1/2 − χ∗χ

where

χ =
1

√

∑n
i=1

wi

(
√

w1, . . . ,
√

wn)∗.

- C can be viewed as the “expectation” of M .
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M = D−1/2AD−1/2 − φ∗

0
φ0

where

φ0 =
1

√

∑n
i=1

di

(
√

d1, . . . ,
√

dn)∗.

C = W−1/2AW−1/2 − χ∗χ

where

χ =
1

√

∑n
i=1

wi

(
√

w1, . . . ,
√

wn)∗.

- C can be viewed as the “expectation” of M . We have

‖M − C‖ ≤ (1 + o(1))
2√
d
.
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M = D−1/2AD−1/2 − φ∗

0
φ0

where

φ0 =
1

√

∑n
i=1

di

(
√

d1, . . . ,
√

dn)∗.

C = W−1/2AW−1/2 − χ∗χ

where

χ =
1

√

∑n
i=1

wi

(
√

w1, . . . ,
√

wn)∗.

- C can be viewed as the “expectation” of M . We have

‖M − C‖ ≤ (1 + o(1))
2√
d
.

- M has eigenvalues 0, 1 − λ1, . . . , 1 − λn−1, since
M = I − L − φ∗

0φ0 and Lφ0 = 0.



Results on spectrum of C
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Chung, Vu, and Lu (2003)
We have

■ If wmin ≫
√

d log2 n, then

‖C‖ = (1 + o(1))
2√
d
.
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Chung, Vu, and Lu (2003)
We have

■ If wmin ≫
√

d log2 n, then

‖C‖ = (1 + o(1))
2√
d
.

■ If wmin ≫
√

d, the eigenvalues of C follow the
semi-circle distribution with radius r ≈ 2√

d
.
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■ G1 and G2: two random graphs on n vertices.
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■ G1 and G2: two random graphs on n vertices.
■ Almost surely G1 � G2: for any monotone property A

Pr(G1 satisfies A) ≥ Pr(G2 satisfies A) − on(1).

■ Almost surely G1 � G2: for any monotone property A

Pr(G1 satisfies A) ≤ Pr(G2 satisfies A) + on(1).

A monotone property is closed under edge-addition.

■ “G is Hamiltonian.”
■ “G contains a subgraph H.”
■ “The diameter of G is at most k.”
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■ F (n, m): uniform random graphs on n vertices and m
edges.

■ G(n, p): Erdős-Rényi random graphs.

With p = m

(n

2)
, for any δ > 0, almost surely we have

G(n, (1 − δ)p) � F (n, m) � G(n, (1 + δ)p).
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■ F (n, m): uniform random graphs on n vertices and m
edges.

■ G(n, p): Erdős-Rényi random graphs.

With p = m

(n

2)
, for any δ > 0, almost surely we have

G(n, (1 − δ)p) � F (n, m) � G(n, (1 + δ)p).

Can we couple evolution models with static models?



G(p1, p2, p3, p4,m)
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At each time t,

■ with probability p1, take a vertex-growth step; add a new
vertex v and form m new edges from v to existing
vertices u chosen with probability proportional to du.
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At each time t,

■ with probability p1, take a vertex-growth step; add a new
vertex v and form m new edges from v to existing
vertices u chosen with probability proportional to du.

■ with probability p2, take a m edge-growth steps;
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At each time t,

■ with probability p1, take a vertex-growth step; add a new
vertex v and form m new edges from v to existing
vertices u chosen with probability proportional to du.

■ with probability p2, take a m edge-growth steps;

■ with probability p3, take a vertex-deletion step;
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At each time t,

■ with probability p1, take a vertex-growth step; add a new
vertex v and form m new edges from v to existing
vertices u chosen with probability proportional to du.

■ with probability p2, take a m edge-growth steps;

■ with probability p3, take a vertex-deletion step;

■ with probability p4 = 1 − p1 − p2 − p3, take m
edge-deletion steps.
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Chung-Lu (2004), Frieze-Cooper-Vera (2004)
For p1 > p3 and p2 > p4, G(p1, p2, p3, p4, m) almost surely
generates a power law graphs with exponent

β = 2 +
p1 + p3

p1 + 2p2 − p3 − 2p4
.
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Suppose p3 < p1, p4 < p2, and log n ≪ m < t
p1

2(p1+p2) . Then
G(p1, p2, p3,4 , m) dominates and is dominated by an

edge-independent graph with probability p
(t)
ij of having an

edge between vertices i and j, i < j, at time t, with p
(t)
ij

satisfying:











p2m
2p4τ (2p2−p4)

l2α−1

iαjα (1 + (1 − p4

p2
)(j

t )
1
2τ

+2α−1) if iαjα ≫ p2mt2α−1

4τ2p4

1 − (1 + o(1))2p4τ
p2m

iαjαt1−2α if iαjα ≪ p2mt2α−1

4τ2p4

where α = p1(p1+2p2−p3−2p4)
2(p1+p2−p4)(p1−p3)

and τ = (p1+p2−p4)(p1−p3)
p1+p3

.
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Suppose m > log1+ǫ n.

■ G(p1, p2, p3, p4, m) follows the power law distribution
with exponent β = 2+(p1+p3)/(p1+2p2−p3−2p4).
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Suppose m > log1+ǫ n.

■ G(p1, p2, p3, p4, m) follows the power law distribution
with exponent β = 2+(p1+p3)/(p1+2p2−p3−2p4).

■ For p2 > p3 + p4, we have 2 < β < 3. Almost surely a
random graph in G(p1, p2, p3, p4, m) has diameter
Θ(log n) and average distance O( log log n

log(1/(β−2)).
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Suppose m > log1+ǫ n.

■ G(p1, p2, p3, p4, m) follows the power law distribution
with exponent β = 2+(p1+p3)/(p1+2p2−p3−2p4).

■ For p2 > p3 + p4, we have 2 < β < 3. Almost surely a
random graph in G(p1, p2, p3, p4, m) has diameter
Θ(log n) and average distance O( log log n

log(1/(β−2)).

■ For p2 < p3 + p4, we have β > 3. Almost surely a
random graph in G(p1, p2, p3, p4, m) has diameter
Θ(log n) and average distance O( log n

log d) where d is the
average degree.
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Suppose m > log1+ǫ n.

■ G(p1, p2, p3, p4, m) follows the power law distribution
with exponent β = 2+(p1+p3)/(p1+2p2−p3−2p4).

■ For p2 > p3 + p4, we have 2 < β < 3. Almost surely a
random graph in G(p1, p2, p3, p4, m) has diameter
Θ(log n) and average distance O( log log n

log(1/(β−2)).

■ For p2 < p3 + p4, we have β > 3. Almost surely a
random graph in G(p1, p2, p3, p4, m) has diameter
Θ(log n) and average distance O( log n

log d) where d is the
average degree.

■ Almost surely a random graph in G(p1, p2, p3, p4, m) has
spectral gap λ at least 1/8 + o(1).
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Topics we have covered:

■ Examples of complex networks
■ Evolution models

■ Static models
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Topics we have covered:

■ Examples of complex networks
■ Evolution models

■ Static models

Topics we have not covered but important:

■ Random graphs with (exact) degree sequence
■ Geometric graphs and hybrid random graphs
■ Quasi-randomness and spectral analysis
■ Algorithms
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■ Lecture 1: Overview and outlines

■ Lecture 2: Generative models - preferential attachment
schemes

■ Lecture 3: Duplication models for biological networks

■ Lecture 4: The rise of the giant component

■ Lecture 5: The small world phenomenon: average
distance and diameter

■ Lecture 6: Spectrum of random graphs with given
degrees
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