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We will consider monochromatic k-term Arithmetic
Progressions (k = 3, 4, 5) in the following:

[n] Zp

Zn
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Monochromatic progressions
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We consider the monochromatic 3-term arithmetic
progression (3-APs) in a 2-coloring of first 9 integers:

1 2 3 4 5 6 7 8 9

Red 3-APs: 2, 5, 8

Blue 3-APs: 3, 6, 9

Here is an alternative representation using 0-1 string.

0 0 1 1 0 1 1 0 1
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Theorem [Van der Waerden, 1927] For any given
positive integers r and k, there is some number N such that
if the integers in [N ] = {1, 2, ..., N} are colored, each with
one of r different colors, then there are at least k integers in
arithmetic progression all of the same color.
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Theorem [Van der Waerden, 1927] For any given
positive integers r and k, there is some number N such that
if the integers in [N ] = {1, 2, ..., N} are colored, each with
one of r different colors, then there are at least k integers in
arithmetic progression all of the same color.

1 2 3 4 5 6 7 8 9

The least such N is the Van der Waerden number W (r, k).

W (2, 3) = 9.



Van der Waerden numbers
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Some values of W (r, k)
r\ k 3 4 5 6 7
2 9 35 178 1,132 > 3, 703
3 27 > 292 > 2, 173 > 11, 191 > 48, 811
4 76 > 1, 048 > 17, 705 > 91, 331 > 420, 217
5 > 170 > 2, 254 > 98, 740 > 540, 025
6 > 223 > 9, 778 > 98, 748 > 816, 981
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Some values of W (r, k)
r\ k 3 4 5 6 7
2 9 35 178 1,132 > 3, 703
3 27 > 292 > 2, 173 > 11, 191 > 48, 811
4 76 > 1, 048 > 17, 705 > 91, 331 > 420, 217
5 > 170 > 2, 254 > 98, 740 > 540, 025
6 > 223 > 9, 778 > 98, 748 > 816, 981

Gowers [2001]

W (r, k) ≤ 22r
2
2
k+9



Monochromatic k-APs
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For any fixed r and k, let cr,k be the greatest number such
that any r-coloring of [n] (for n sufficiently large) contains
at least

(cr,k + o(1))n2

monochromatic k-APs.

Question: What can we say about cr,k?
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The set [n] has ( 1
2(k−1) + o(1))n2 k-APs. If we colors [n]

randomly using r colors, then each k-AP being
monochromatic has the probability 1

rk−1 .
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The set [n] has ( 1
2(k−1) + o(1))n2 k-APs. If we colors [n]

randomly using r colors, then each k-AP being
monochromatic has the probability 1

rk−1 .

The expected number of monochromatic k-APs is

(
1

rk−1
+ o(1))

1

2(k − 1)
n2.

We have

cr,k ≤
1

2(k − 1)rk−1
+ o(1).
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Let K := W (r, k).

■ There are about 1
2(K−1)n

2 of K-APs in [n].

■ Every K-AP contains at least one monochromatic k-AP.

■ Each monochromatic k-AP is in at most K2 of K-APs.

Putting together, we have

cr,k ≥
1

2W (r, k)3
> 0.
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■ What is the best constant cr,k?

■ Does random coloring have asymptotically the

least number of monochromatic APs?

In this talk, we we only consider the case using 2 colors.
Write ck for c2,k.
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Parillo, Robertson, and Saracino [2007] proved

0.05111· · · ≤ c3 ≤ 0.053376· · ·.

There is a 2-coloring on [n], which has fewer monochromatic
3-APs than a random 2-coloring.

Butler, Constello, and Graham [2010] proved

c4 ≤ 0.0172202· · ·,

c5 ≤ 0.005719619· · ·.



Our results on [n]
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Theorem 1 [Lu-Peng 2011]:

c4 ≤
1

72
= 0.01388888· · ·,

c5 ≤
1

304
= 0.003289474· · ·.
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■ Zn: the cyclic group of order n.

■ k-AP :
a, a + d, . . . , a + (k − 1)d

for some a, d ∈ Zn.

■ Here we allow degenerated k-APs, i.e., d = n
i

for some
i ∈ {1, . . . , k − 1}.

■ The total number of k-APs in Zn is n2.
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Let mk(n) be the largest number such that any 2-coloring of
Zn has at least mk(n)n2 monochromatic k-APs.

A random 2-coloring of Zn has ( 1
2k−1 + o(1))n2

monochromatic k-APs.

We have

mk(n) ≤
1

2k−1
+ on(1).
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Fact: For n sufficiently large, we have

m3(n) =
1

4
+ o(1).

I.e., random colorings have asymptotically fewer number of

APs.
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Wolf [2010] proved for sufficient large prime p

1

16
+ o(1) ≤ m4(Zp) ≤

1

8
(1 −

1

259200
) + o(1).
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Wolf [2010] proved for sufficient large prime p

1

16
+ o(1) ≤ m4(Zp) ≤

1

8
(1 −

1

259200
) + o(1).

This result shows that random colorings are not optimal. It
uses quadratic Fourier analysis and probabilistic method.
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Theorem 2 [Lu-Peng 2011]: For sufficient large prime p,
we have

7

96
+ o(1) ≤ m4(Zp) ≤

17

150
+ o(1).

■ We increase the lower bound by a factor of 1
6 .

■ The gap 1
8 − m4(Zp) is increased from Wolf’s bound

0.000000482 to 0.0116666.

■ Our upper bound uses an explicit construction.
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Theorem [Cameron-Cilleruelo-Serra (2003)] Any
2-coloring of a finite abelian graph with order n relatively
prime to 6 has at least

(
2

33
+ o(1))n2

monochromatic APs.
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Theorem [Cameron-Cilleruelo-Serra (2003)] Any
2-coloring of a finite abelian graph with order n relatively
prime to 6 has at least

(
2

33
+ o(1))n2

monochromatic APs.

It implies for if gcd(n, 6) = 1 then

m4(Zn) ≥
2

33
+ o(1).
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Theorem 2 [Lu-Peng 2011]: If n is not divisible by 4 and
large enough, then we have

m4(n) ≥
7
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+ o(1).
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Theorem 2 [Lu-Peng 2011]: If n is not divisible by 4 and
large enough, then we have

m4(n) ≥
7

96
+ o(1).

If n is divisible by 4 and large enough, then we have

m4(Zn) ≥
2

33
+ o(1).
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Theorem 3 [Lu-Peng 2011]:

■ If 20|n, then m4(n) ≤ 9
100 = 0.09.

■ If 22|n, then m4(Zn) ≤
21
242 < 0.086777.

■ If n is odd, then
m4(Zn) ≤

17
150 + o(1) < 0.1133334 + o(1).

■ If n is even, then
m4(Zn) ≤

8543
72600 + o(1) < 0.1176722 + o(1).

For sufficiently large n, there is a 2-coloring of Zn with
substantially fewer monochromatic APs than random
2-colorings have.
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Let n = bt and B be a “good” 2-coloring/bit-string in Zb

with x monochromatic 4-APs. Consider a 2-coloring of Zb

defined as follows.
BB · · ·B︸ ︷︷ ︸

t

The number of monochromatic 4-APs in this coloring is

exactly
xt2.

In particular, if b | n, we have

m4(Zn) ≤ m4(Zb).
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Let n = bt + r (0 < r < b) and B be a “good”
2-coloring/bit-string in Zb. How many monochromatic
4-APs in the following construction?

BB · · ·B︸ ︷︷ ︸
t

R

Here R is any bit string of length r.



Block construction with extra bits

21 / 32

Let n = bt + r (0 < r < b) and B be a “good”
2-coloring/bit-string in Zb. How many monochromatic
4-APs in the following construction?

BB · · ·B︸ ︷︷ ︸
t

R

Here R is any bit string of length r.

The number of all 4-APs which pass through some bit(s) in
R is O(n). The major term in the number of all
monochromatic 4-APs only depends on B and r.
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We divide the set of all 4-APs in Zn into 8 classes.

type meaning
0 a < a + d < a + 2d < a + 3d < n

1 a < a + d < a + 2d < n < a + 3d < 2n
2 a < a + d < n < a + 2d < a + 3d < 2n
3 a < a + d < n < a + 2d < 2n < a + 3d < 3n
4 a < n < a + d < a + 2d < a + 3d < 2n
5 a < n < a + d < a + 2d < 2n < a + 3d < 3n
6 a < n < a + d < 2n < a + 2d < a + 3d < 3n
7 a < n < a + d < 2n < a + 2d < 3n < a + 3d < 4n



A graphical view of 8 classes

23 / 32

Every 4-AP a, a + d, . . . , a + (k − 1)d is determined by a
pair (a, d). The 8 classes can be viewed as 8 regions shown
below.

0

1

2

3

4

5

6

7

2n/3

n/2 n/2

2n/3

n/3 n/3

n

n

0 a

d



The number of 4-APs
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The number of 4-APs in each class is proportional to the
area ai of the corresponding i-th region as shown below.

1/6

1/12
1/6

1/12

1/12

1/6
1/12

1/6

a/n

d/n

1

1

2/3

1/2

1/3 1/3

1/2

2/3

0



A lemma
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For 0 ≤ i ≤ 7, write i as a bit-string x1x2x3. Let ci be the
number of sequences in B of form

a, a + d + x1r, a + 2d + x2r, a + 3d + x3r.

Then the number of monochromatic 4-APs in BB · · ·BR is

7∑

i=0

aicit
2 + O(t).

In particular, we have

m4(Zn) ≤
7∑

i=0

ai

ci

b2
.
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In Z20, consider the 2-coloring given by

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0.

For r = 1, we have

type 0 1 2 3 4 5 6 7
di 36 50 50 50 50 50 50 36

This implies

m4(Z20k+1) ≤
17

150
+ o(1).

In fact, the same bound works for all odd r .
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In Z11, consider the 2-coloring given by

B11 := (11101 ∗ 01000).

∗ could be either 0 or 1.

Property: B11 contains no non-degenerate monochromatic
4-APs of Z11.
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following 2-coloring of Z11t

B11B11 · · ·B11︸ ︷︷ ︸
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where t ∗’s are replaced by Bt.
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Given a 2-coloring Bt of Zt, define B11 ⋉ Bt to be the
following 2-coloring of Z11t

B11B11 · · ·B11︸ ︷︷ ︸
t

,

where t ∗’s are replaced by Bt.

Property:

m4(Z11t) ≤
10 + m4(Zt)

121
.
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m4(Z11s) ≤
1

12
+

1

12 × 112s−1
.

lim
n→∞

m4(Zn) ≤
1

12
.

Corollary:

c4 ≤
1

6
lim
n→∞

m4(Zn) ≤
1

72
.

We conjecture that the equality holds.
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A special 2-coloring exists in Z37:
B37 = (11110111000010110010 ∗ 0100110100001110).

Corollary:

c5 ≤
1

8
lim
n→∞

m5(Zn) ≤
1

304
.

Bulter [2011+]: found a coloring in Z47 for 6-AP and a

coloring in Z77 for 7-AP. Thus,

c6 ≤
1

480
and c6 ≤

71

71706
.
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Main idea for Lower bounds:

■ If n is not divisible by 4, then we are able to extend
Wolf’s proof to Zn. At the same time, we capture the
patterns which are thrown away in Wolf’s paper. Finally,
we use heuristic search to show those patterns should
appear with positive density.
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Main idea for Lower bounds:

■ If n is not divisible by 4, then we are able to extend
Wolf’s proof to Zn. At the same time, we capture the
patterns which are thrown away in Wolf’s paper. Finally,
we use heuristic search to show those patterns should
appear with positive density.

■ If n is divisible by 4, then Wolf’s proof can not be
extended to Zn. However, we are able to extend
Cameron-Cilleruelo-Serra’s argument to get a lower
bound.
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Questions
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■ Conjecture: For k ≥ 4,

ck =
1

2(k − 1)
lim
n→∞

mk(Zn).

■ Is c4 = 1
72?

■ Is c5 = 1
304?

■ Determine m4(Zp) for large p. Currently, we have

0.072916667· · · ≤ m4(Zp) ≤ 0.113333333· · ·.

■ Good lower bound for c4?
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