

Monochromatic 4-term arithmetic progressions in 2-colorings of \mathbb{Z}_n

Linyuan Lu

Xing Peng

University of South Carolina

Integers Conference, Carrollton, GA, October 26-29, 2011.

Three modules

We will consider monochromatic k-term Arithmetic Progressions (k = 3, 4, 5) in the following:

We consider the monochromatic 3-term arithmetic progression (3-APs) in a 2-coloring of first 9 integers:

1 2 3 4 5 6 7 8 9

We consider the monochromatic 3-term arithmetic progression (3-APs) in a 2-coloring of first 9 integers:

1 2 3 4 5 6 7 8 9 Red 3-APs: 2, 5, 8

We consider the monochromatic 3-term arithmetic progression (3-APs) in a 2-coloring of first 9 integers:

1 2 3 4 5 6 7 8 9

Red 3-APs: 2, 5, 8 Blue 3-APs: 3, 6, 9

We consider the monochromatic 3-term arithmetic progression (3-APs) in a 2-coloring of first 9 integers:

1 2 3 4 5 6 7 8 9

Red 3-APs: 2, 5, 8 Blue 3-APs: 3, 6, 9

Here is an alternative representation using 0-1 string.

 $0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1$

Van der Waerden's theorem

Theorem [Van der Waerden, 1927] For any given positive integers r and k, there is some number N such that if the integers in $[N] = \{1, 2, ..., N\}$ are colored, each with one of r different colors, then there are at least k integers in arithmetic progression all of the same color.

1 2 3 4 5 6 7 8 9

Van der Waerden's theorem

Theorem [Van der Waerden, 1927] For any given positive integers r and k, there is some number N such that if the integers in $[N] = \{1, 2, ..., N\}$ are colored, each with one of r different colors, then there are at least k integers in arithmetic progression all of the same color.

1 2 3 4 5 6 7 8 9

The least such N is the Van der Waerden number W(r, k).

$$W(2,3) = 9.$$

Van der Waerden numbers

Some values of W(r,k)

r∖ k	3	4	5	6	7
2	9	35	178	1,132	> 3,703
3	27	> 292	> 2,173	> 11, 191	> 48,811
4	76	> 1,048	> 17,705	> 91,331	> 420, 217
5	> 170	> 2,254	> 98,740	> 540,025	
6	> 223	> 9,778	> 98,748	> 816,981	

Van der Waerden numbers

Some val	ues of	W(r,k)
----------	--------	--------

r∖ k	3	4	5	6	7
2	9	35	178	1,132	> 3,703
3	27	> 292	> 2,173	> 11, 191	> 48,811
4	76	> 1,048	> 17,705	> 91,331	> 420, 217
5	> 170	> 2,254	> 98,740	> 540,025	
6	> 223	> 9,778	> 98,748	> 816,981	

Gowers [2001]

 $W(r,k) \le 2^{2^{r^{2^{2^{k+9}}}}}$

Monochromatic *k*-**APs**

For any fixed r and k, let $c_{r,k}$ be the greatest number such that any r-coloring of [n] (for n sufficiently large) contains at least

$$(c_{r,k} + o(1))n^2$$

monochromatic k-APs.

Question: What can we say about $c_{r,k}$?

An upper bound on $c_{r,k}$

The set [n] has $(\frac{1}{2(k-1)} + o(1))n^2$ k-APs. If we colors [n] randomly using r colors, then each k-AP being monochromatic has the probability $\frac{1}{r^{k-1}}$.

An upper bound on $c_{r,k}$

The set [n] has $(\frac{1}{2(k-1)} + o(1))n^2$ k-APs. If we colors [n] randomly using r colors, then each k-AP being monochromatic has the probability $\frac{1}{r^{k-1}}$.

The expected number of monochromatic k-APs is

$$(\frac{1}{r^{k-1}} + o(1))\frac{1}{2(k-1)}n^2$$

An upper bound on $c_{r,k}$

The set [n] has $(\frac{1}{2(k-1)} + o(1))n^2$ k-APs. If we colors [n] randomly using r colors, then each k-AP being monochromatic has the probability $\frac{1}{r^{k-1}}$.

The expected number of monochromatic k-APs is

$$(\frac{1}{r^{k-1}} + o(1))\frac{1}{2(k-1)}n^2$$

We have

$$c_{r,k} \le \frac{1}{2(k-1)r^{k-1}} + o(1).$$

Let K := W(r, k). There are about $\frac{1}{2(K-1)}n^2$ of K-APs in [n].

Let K := W(r, k).

- There are about $\frac{1}{2(K-1)}n^2$ of K-APs in [n].
 - Every K-AP contains at least one monochromatic k-AP.

Let K := W(r, k).

- There are about $\frac{1}{2(K-1)}n^2$ of K-APs in [n].
- Every K-AP contains at least one monochromatic k-AP.
- Each monochromatic k-AP is in at most K^2 of K-APs.

Let K := W(r, k).

- There are about $\frac{1}{2(K-1)}n^2$ of K-APs in [n].
- Every K-AP contains at least one monochromatic k-AP.
- Each monochromatic k-AP is in at most K^2 of K-APs.

Putting together, we have

$$c_{r,k} \ge \frac{1}{2W(r,k)^3} > 0.$$

Questions

• What is the best constant $c_{r,k}$?

Questions

- What is the best constant $c_{r,k}$?
- Does random coloring have asymptotically the least number of monochromatic APs?

Questions

- What is the best constant $c_{r,k}$?
- Does random coloring have asymptotically the least number of monochromatic APs?

In this talk, we we only consider the case using 2 colors. Write c_k for $c_{2,k}$.

Parillo, Robertson, and Saracino [2007] proved

 $0.05111\cdots \le c_3 \le 0.053376\cdots$

Parillo, Robertson, and Saracino [2007] proved

$0.05111 \dots \leq c_3 \leq 0.053376 \dots$

There is a 2-coloring on [n], which has fewer monochromatic 3-APs than a random 2-coloring.

Parillo, Robertson, and Saracino [2007] proved

 $0.05111\cdots \leq c_3 \leq 0.053376\cdots$

There is a 2-coloring on [n], which has fewer monochromatic 3-APs than a random 2-coloring.

Butler, Constello, and Graham [2010] proved

 $c_4 \leq 0.0172202\cdots,$ $c_5 \leq 0.005719619\cdots.$

Our results on [n]

Theorem 1 [Lu-Peng 2011]:

$$c_4 \leq \frac{1}{72} = 0.013888888\cdots,$$

 $c_5 \leq \frac{1}{304} = 0.003289474\cdots.$

 \mathbb{Z}_n : the cyclic group of order n.

Monochromatic APs on \mathbb{Z}_n

 \mathbb{Z}_n : the cyclic group of order n. k-AP : $a, a + d, \dots, a + (k - 1)d$

for some $a, d \in \mathbb{Z}_n$.

Monochromatic APs on \mathbb{Z}_n

 \mathbb{Z}_n : the cyclic group of order n. k-AP :

$$a, a+d, \ldots, a+(k-1)d$$

for some $a, d \in \mathbb{Z}_n$.

Here we allow *degenerated* k-APs, i.e., $d = \frac{n}{i}$ for some $i \in \{1, \dots, k-1\}$.

Monochromatic APs on \mathbb{Z}_n

 \mathbb{Z}_n : the cyclic group of order n. k-AP :

$$a, a+d, \ldots, a+(k-1)d$$

for some $a, d \in \mathbb{Z}_n$.

- Here we allow *degenerated* k-APs, i.e., $d = \frac{n}{i}$ for some $i \in \{1, \ldots, k-1\}$.
 - The total number of k-APs in \mathbb{Z}_n is n^2 .

Definition of m_k

Let $m_k(n)$ be the largest number such that any 2-coloring of \mathbb{Z}_n has at least $m_k(n)n^2$ monochromatic k-APs.

Definition of m_k

Let $m_k(n)$ be the largest number such that any 2-coloring of \mathbb{Z}_n has at least $m_k(n)n^2$ monochromatic k-APs.

A random 2-coloring of \mathbb{Z}_n has $(\frac{1}{2^{k-1}} + o(1))n^2$ monochromatic k-APs.

Definition of m_k

Let $m_k(n)$ be the largest number such that any 2-coloring of \mathbb{Z}_n has at least $m_k(n)n^2$ monochromatic k-APs.

A random 2-coloring of \mathbb{Z}_n has $(\frac{1}{2^{k-1}} + o(1))n^2$ monochromatic k-APs.

We have

$$m_k(n) \le \frac{1}{2^{k-1}} + o_n(1).$$

3-APs in \mathbb{Z}_n

Fact: For n sufficiently large, we have

$$m_3(n) = \frac{1}{4} + o(1).$$

3-APs in \mathbb{Z}_n

Fact: For n sufficiently large, we have

$$m_3(n) = \frac{1}{4} + o(1).$$

I.e., random colorings have asymptotically fewer number of APs.

The value $m_4(\mathbb{Z}_p)$ for prime p

Wolf [2010] proved for sufficient large prime *p*

$$\frac{1}{16} + o(1) \le m_4(\mathbb{Z}_p) \le \frac{1}{8}(1 - \frac{1}{259200}) + o(1).$$

The value $m_4(\mathbb{Z}_p)$ for prime p

Wolf [2010] proved for sufficient large prime p

$$\frac{1}{16} + o(1) \le m_4(\mathbb{Z}_p) \le \frac{1}{8}(1 - \frac{1}{259200}) + o(1).$$

This result shows that random colorings are not optimal. It uses quadratic Fourier analysis and probabilistic method.

Our result on \mathbb{Z}_p

$$\frac{7}{96} + o(1) \le m_4(\mathbb{Z}_p) \le \frac{17}{150} + o(1).$$

Our result on \mathbb{Z}_p

$$\frac{7}{96} + o(1) \le m_4(\mathbb{Z}_p) \le \frac{17}{150} + o(1).$$

We increase the lower bound by a factor of $\frac{1}{6}$.

Our result on \mathbb{Z}_p

$$\frac{7}{96} + o(1) \le m_4(\mathbb{Z}_p) \le \frac{17}{150} + o(1).$$

• We increase the lower bound by a factor of $\frac{1}{6}$.

The gap $\frac{1}{8} - m_4(\mathbb{Z}_p)$ is increased from Wolf's bound 0.000000482 to 0.0116666.

Our result on \mathbb{Z}_p

$$\frac{7}{96} + o(1) \le m_4(\mathbb{Z}_p) \le \frac{17}{150} + o(1).$$

- We increase the lower bound by a factor of $\frac{1}{6}$.
- The gap $\frac{1}{8} m_4(\mathbb{Z}_p)$ is increased from Wolf's bound 0.000000482 to 0.0116666.
- Our upper bound uses an explicit construction.

Related results

Theorem [Cameron-Cilleruelo-Serra (2003)] Any 2-coloring of a finite abelian graph with order n relatively prime to 6 has at least

$$\left(\frac{2}{33} + o(1)\right)n^2$$

monochromatic APs.

Related results

Theorem [Cameron-Cilleruelo-Serra (2003)] Any 2-coloring of a finite abelian graph with order n relatively prime to 6 has at least

$$\left(\frac{2}{33} + o(1)\right)n^2$$

monochromatic APs.

It implies for if gcd(n, 6) = 1 then

$$m_4(\mathbb{Z}_n) \ge \frac{2}{33} + o(1).$$

Lower bound on $m_4(\mathbb{Z}_n)$

Theorem 2 [Lu-Peng 2011]: If n is not divisible by 4 and large enough, then we have

$$m_4(n) \ge \frac{7}{96} + o(1).$$

Lower bound on $m_4(\mathbb{Z}_n)$

Theorem 2 [Lu-Peng 2011]: If n is not divisible by 4 and large enough, then we have

$$m_4(n) \ge \frac{7}{96} + o(1).$$

If n is divisible by 4 and large enough, then we have

$$m_4(\mathbb{Z}_n) \ge \frac{2}{33} + o(1).$$

Theorem 3 [Lu-Peng 2011]:

• If 20|n, then $m_4(n) \le \frac{9}{100} = 0.09$.

Theorem 3 [Lu-Peng 2011]:

- If 20|n, then $m_4(n) \le \frac{9}{100} = 0.09$.
 - If 22|n, then $m_4(\mathbb{Z}_n) \leq \frac{21}{242} < 0.086777$.

Theorem 3 [Lu-Peng 2011]:

- If 20|n, then $m_4(n) \le \frac{9}{100} = 0.09$.
- If 22|n, then $m_4(\mathbb{Z}_n) \leq \frac{21}{242} < 0.086777$.
 - If n is odd, then $m_4(\mathbb{Z}_n) \leq \frac{17}{150} + o(1) < 0.1133334 + o(1).$

Theorem 3 [Lu-Peng 2011]:

- If 20|n, then $m_4(n) \le \frac{9}{100} = 0.09$.
- If 22|n, then $m_4(\mathbb{Z}_n) \leq \frac{21}{242} < 0.086777$.
 - If *n* is odd, then $m_4(\mathbb{Z}_n) \leq \frac{17}{150} + o(1) < 0.1133334 + o(1).$
 - If *n* is even, then $m_4(\mathbb{Z}_n) \leq \frac{8543}{72600} + o(1) < 0.1176722 + o(1).$

Theorem 3 [Lu-Peng 2011]:

- If 20|n, then $m_4(n) \le \frac{9}{100} = 0.09$.
- If 22|n, then $m_4(\mathbb{Z}_n) \leq \frac{21}{242} < 0.086777$.
- If *n* is odd, then $m_4(\mathbb{Z}_n) \leq \frac{17}{150} + o(1) < 0.1133334 + o(1).$

If *n* is even, then $m_4(\mathbb{Z}_n) \leq \frac{8543}{72600} + o(1) < 0.1176722 + o(1).$

For sufficiently large n, there is a 2-coloring of \mathbb{Z}_n with substantially fewer monochromatic APs than random 2-colorings have.

Block construction method

Let n = bt and B be a "good" 2-coloring/bit-string in \mathbb{Z}_b with x monochromatic 4-APs. Consider a 2-coloring of \mathbb{Z}_b defined as follows.

$$\underbrace{BB\cdots B}_{t}$$

Block construction method

Let n = bt and B be a "good" 2-coloring/bit-string in \mathbb{Z}_b with x monochromatic 4-APs. Consider a 2-coloring of \mathbb{Z}_b defined as follows.

$$\underbrace{BB\cdots B}_{t}$$

The number of monochromatic 4-APs in this coloring is exactly xt^2 .

Block construction method

Let n = bt and B be a "good" 2-coloring/bit-string in \mathbb{Z}_b with x monochromatic 4-APs. Consider a 2-coloring of \mathbb{Z}_b defined as follows.

The number of monochromatic 4-APs in this coloring is exactly xt^2 .

In particular, if $b \mid n$, we have

$$m_4(\mathbb{Z}_n) \leq m_4(\mathbb{Z}_b).$$

Block construction with extra bits

Let n = bt + r (0 < r < b) and B be a "good" 2-coloring/bit-string in \mathbb{Z}_b . How many monochromatic 4-APs in the following construction?

$$\underbrace{BB\cdots B}_{t}R$$

Here R is any bit string of length r.

Block construction with extra bits

Let n = bt + r (0 < r < b) and B be a "good" 2-coloring/bit-string in \mathbb{Z}_b . How many monochromatic 4-APs in the following construction?

$$\underbrace{BB\cdots B}_{t}R$$

Here R is any bit string of length r.

The number of all 4-APs which pass through some bit(s) in R is O(n). The major term in the number of all monochromatic 4-APs only depends on B and r.

Classes of 4-APs

We divide the set of all 4-APs in \mathbb{Z}_n into 8 classes.

type	meaning
0	a < a + d < a + 2d < a + 3d < n
1	a < a + d < a + 2d < n < a + 3d < 2n
2	a < a + d < n < a + 2d < a + 3d < 2n
3	a < a + d < n < a + 2d < 2n < a + 3d < 3n
4	a < n < a + d < a + 2d < a + 3d < 2n
5	a < n < a + d < a + 2d < 2n < a + 3d < 3n
6	a < n < a + d < 2n < a + 2d < a + 3d < 3n
7	a < n < a + d < 2n < a + 2d < 3n < a + 3d < 4n

A graphical view of 8 classes

Every 4-AP $a, a + d, \ldots, a + (k - 1)d$ is determined by a pair (a, d). The 8 classes can be viewed as 8 regions shown below.

The number of $4\text{-}\mathsf{APs}$

The number of 4-APs in each class is proportional to the area a_i of the corresponding *i*-th region as shown below.

A lemma

For $0 \le i \le 7$, write *i* as a bit-string $x_1x_2x_3$. Let c_i be the number of sequences in *B* of form

$$a, a + d + x_1r, a + 2d + x_2r, a + 3d + x_3r.$$

Then the number of monochromatic 4-APs in $BB\cdots BR$ is

$$\sum_{i=0}^{7} a_i c_i t^2 + O(t).$$

In particular, we have

$$m_4(\mathbb{Z}_n) \le \sum_{i=0}^7 a_i \frac{c_i}{b^2}.$$

A good 2-coloring in \mathbb{Z}_{20}

In \mathbb{Z}_{20} , consider the 2-coloring given by

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0.

A good 2-coloring in \mathbb{Z}_{20}

In \mathbb{Z}_{20} , consider the 2-coloring given by

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0.

For r = 1, we have

type	0	1	2	3	4	5	6	7
d_i	36	50	50	50	50	50	50	36

A good 2-coloring in \mathbb{Z}_{20}

In \mathbb{Z}_{20} , consider the 2-coloring given by

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0.

For r = 1, we have

type	0	1	2	3	4	5	6	7
d_i	36	50	50	50	50	50	50	36

This implies

$$m_4(\mathbb{Z}_{20k+1}) \le \frac{17}{150} + o(1).$$

In fact, the same bound works for all odd \boldsymbol{r} .

A special 2-coloring of \mathbb{Z}_{11}

In \mathbb{Z}_{11} , consider the 2-coloring given by

 $B_{11} := (11101 * 01000).$

* could be either 0 or 1.

A special 2-coloring of \mathbb{Z}_{11}

In \mathbb{Z}_{11} , consider the 2-coloring given by

 $B_{11} := (11101 * 01000).$

* could be either 0 or 1.

Property: B_{11} contains no non-degenerate monochromatic 4-APs of \mathbb{Z}_{11} .

A recursive construction

Given a 2-coloring B_t of \mathbb{Z}_t , define $B_{11} \ltimes B_t$ to be the following 2-coloring of \mathbb{Z}_{11t}

$$\underbrace{B_{11}B_{11}\cdots B_{11}}_{t},$$

where t *'s are replaced by B_t .

A recursive construction

Given a 2-coloring B_t of \mathbb{Z}_t , define $B_{11} \ltimes B_t$ to be the following 2-coloring of \mathbb{Z}_{11t}

$$\underbrace{B_{11}B_{11}\cdots B_{11}}_{t},$$

where t *'s are replaced by B_t .

Property:

$$m_4(\mathbb{Z}_{11t}) \le \frac{10 + m_4(\mathbb{Z}_t)}{121}.$$

 $m_4(\mathbb{Z}_{11^s}) \le \frac{1}{12} + \frac{1}{12 \times 11^{2s-1}}.$

 $m_4(\mathbb{Z}_{11^s}) \le \frac{1}{12} + \frac{1}{12 \times 11^{2s-1}}.$ $\lim_{n \to \infty} m_4(\mathbb{Z}_n) \le \frac{1}{12}.$ $n \rightarrow \infty$

$$m_4(\mathbb{Z}_{11^s}) \le \frac{1}{12} + \frac{1}{12 \times 11^{2s-1}}.$$

$$\lim_{n \to \infty} m_4(\mathbb{Z}_n) \le \frac{1}{12}.$$

Corollary:

$$c_4 \le \frac{1}{6} \lim_{n \to \infty} m_4(\mathbb{Z}_n) \le \frac{1}{72}.$$

$$m_4(\mathbb{Z}_{11^s}) \le \frac{1}{12} + \frac{1}{12 \times 11^{2s-1}}.$$

$$\lim_{n \to \infty} m_4(\mathbb{Z}_n) \le \frac{1}{12}.$$

Corollary:

$$c_4 \le \frac{1}{6} \lim_{n \to \infty} m_4(\mathbb{Z}_n) \le \frac{1}{72}.$$

We conjecture that the equality holds.

k-APs (for k > 4)

A special 2-coloring exists in \mathbb{Z}_{37} : $B_{37} = (11110111000010110010 * 0100110100001110).$

k-APs (for k > 4)

A special 2-coloring exists in \mathbb{Z}_{37} : $B_{37} = (11110111000010110010 * 0100110100001110).$

Corollary:

$$c_5 \le \frac{1}{8} \lim_{n \to \infty} m_5(\mathbb{Z}_n) \le \frac{1}{304}$$

k-APs (for k > 4)

A special 2-coloring exists in \mathbb{Z}_{37} : $B_{37} = (11110111000010110010 * 0100110100001110).$

Corollary:

$$c_5 \le \frac{1}{8} \lim_{n \to \infty} m_5(\mathbb{Z}_n) \le \frac{1}{304}$$

Bulter [2011+]: found a coloring in \mathbb{Z}_{47} for 6-AP and a coloring in \mathbb{Z}_{77} for 7-AP. Thus,

$$c_6 \leq \frac{1}{480} \text{ and } c_6 \leq \frac{71}{71706}$$

Lower bounds on $m_4(\mathbb{Z}_n)$

Main idea for Lower bounds:

If *n* is not divisible by 4, then we are able to extend Wolf's proof to \mathbb{Z}_n . At the same time, we capture the patterns which are thrown away in Wolf's paper. Finally, we use heuristic search to show those patterns should appear with positive density.

Lower bounds on $m_4(\mathbb{Z}_n)$

Main idea for Lower bounds:

- If *n* is not divisible by 4, then we are able to extend Wolf's proof to \mathbb{Z}_n . At the same time, we capture the patterns which are thrown away in Wolf's paper. Finally, we use heuristic search to show those patterns should appear with positive density.
 - If n is divisible by 4, then Wolf's proof can not be extended to \mathbb{Z}_n . However, we are able to extend Cameron-Cilleruelo-Serra's argument to get a lower bound.

Conjecture: For $k \ge 4$,

$$c_k = \frac{1}{2(k-1)} \lim_{n \to \infty} m_k(\mathbb{Z}_n).$$

Conjecture: For $k \ge 4$,

$$c_k = \frac{1}{2(k-1)} \lim_{n \to \infty} m_k(\mathbb{Z}_n).$$

■ Is
$$c_4 = \frac{1}{72}$$
?

Questions

• Conjecture: For $k \ge 4$,

$$c_k = \frac{1}{2(k-1)} \lim_{n \to \infty} m_k(\mathbb{Z}_n).$$

Is
$$c_4 = \frac{1}{72}?$$
Is $c_5 = \frac{1}{304}?$

Questions

• Conjecture: For $k \ge 4$,

$$c_k = \frac{1}{2(k-1)} \lim_{n \to \infty} m_k(\mathbb{Z}_n).$$

- Is c₄ = ¹/₇₂?
 Is c₅ = ¹/₃₀₄?
 - Determine $m_4(\mathbb{Z}_p)$ for large p. Currently, we have

 $0.072916667\cdots \leq m_4(\mathbb{Z}_p) \leq 0.113333333\cdots$

Questions

• Conjecture: For $k \ge 4$,

$$c_k = \frac{1}{2(k-1)} \lim_{n \to \infty} m_k(\mathbb{Z}_n).$$

- Is c₄ = ¹/₇₂?
 Is c₅ = ¹/₃₀₄?
 - Determine $m_4(\mathbb{Z}_p)$ for large p. Currently, we have

 $0.072916667\cdots \leq m_4(\mathbb{Z}_p) \leq 0.113333333\cdots$

Good lower bound for c_4 ?