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In the study of the spectra of power-law graphs, there are basically
two competing approaches. One is to prove analogues of Wigner’s
semicircle law, whereas the other predicts that the eigenvalues
follow a power-law distribution. Although the semicircle law and
the power law have nothing in common, we will show that both
approaches are essentially correct if one considers the appropriate
matrices. We will prove that (under certain mild conditions) the
eigenvalues of the (normalized) Laplacian of a random power-law
graph follow the semicircle law, whereas the spectrum of the
adjacency matrix of a power-law graph obeys the power law. Our
results are based on the analysis of random graphs with given
expected degrees and their relations to several key invariants. Of
interest are a number of (new) values for the exponent �, where
phase transitions for eigenvalue distributions occur. The spectrum
distributions have direct implications to numerous graph algo-
rithms such as, for example, randomized algorithms that involve
rapidly mixing Markov chains.

E igenvalues of graphs are useful for controlling many graph
properties and consequently have numerous algorithmic

applications including low rank approximations,‡ information
retrieval (1), and computer vision.§ Of particular interest is the
study of eigenvalues for graphs with power-law degree distri-
butions (i.e., the number of vertices of degree j is proportional
to j�� for some exponent �). It has been observed by many
research groups (2–8, ¶) that many realistic massive graphs
including Internet graphs, telephone-call graphs, and
various social and biological networks have power-law degree
distributions.

For the classical random graphs based on the Erdös–Rényi
model, it has been proved by Füredi and Komlós that the spectrum
of the adjacency matrix follows the Wigner semicircle law (9).
Wigner’s theorem (10) and its extensions have long been used for
the stochastic treatment of complex quantum systems that lie
beyond the reach of exact methods. The semicircle law has extensive
applications in statistical and solid-state physics (21, 22).

In the 1999 article by Faloutsos et al. (6) on Internet
topology, several power-law examples of Internet topology are
given, and the eigenvalues of the adjacency matrices are
plotted, which do not follow the semicircle law. It is conjec-
tured that the eigenvalues of the adjacency matrices have a
power-law distribution with its own exponent different from
the exponent of the graph. Farkas et al. (11) looked beyond the
semicircle law and described a ‘‘triangular-like’’ shape distri-
bution (see ref. 12). Recently, M. Mihail and C. H. Papadimi-
triou (unpublished work) showed that the eigenvalues of the
adjacency matrix of power-law graphs with exponent � are
distributed according to a power law for � � 3.

Here we intend to reconcile these two schools of thought on
eigenvalue distributions. To begin with, there are in fact
several ways to associate a matrix to a graph. The usual
adjacency matrix A associated with a (simple) graph has
eigenvalues quite sensitive to the maximum degree (which is a
local property). The combinatorial Laplacian D � A, with D
denoting the diagonal degree matrix, is a major tool for
enumerating spanning trees and has numerous applications
(13, 14). Another matrix associated with a graph is the

(normalized) Laplacian L � I � D�1/2AD�1/2, which controls
the expansion�isoperimetrical properties (which are global)
and essentially determines the mixing rate of a random walk on
the graph. The traditional random matrices and random
graphs are regular or almost regular, thus the spectra of all the
above three matrices are basically the same (with possibly a
scaling factor or a linear shift). However, for graphs with
uneven degrees, the above three matrices can have very
different distributions.

In this article, we will consider random graphs with a general
given expected degree distribution, and we examine the spectra
for both the adjacency matrix and the Laplacian. We first will
establish bounds for eigenvalues for graphs with a general degree
distribution from which the results on random power-law graphs
then follow. The following is a summary of our results.

1. The largest eigenvalue of the adjacency matrix of a random
graph with a given expected degree sequence is determined
by m, the maximum degree, and d̃, the weighted average of
the squares of the expected degrees. We show that the largest
eigenvalue of the adjacency matrix is almost surely (1 �
o(1))max{d̃, �m} provided some minor conditions are
satisfied. In addition, suppose that the kth largest expected
degree mk is significantly �d̃2. Then the kth largest eigen-
value of the adjacency matrix is almost surely (1 � o(1))�mk.

2. For a random power-law graph with exponent � � 2.5, the
largest eigenvalue of a random power-law graph is almost
surely [1 � o(1)]�m, where m is the maximum degree.
Moreover, the k largest eigenvalues of a random power-law
graph with exponent � have a power-law distribution with
exponent 2� � 1 if the maximum degree is sufficiently large
and k is bounded above by a function depending on �, m, and
d, the average degree. When 2 � � � 2.5, the largest
eigenvalue is heavily concentrated at cm3�� for some con-
stant c depending on � and the average degree.

3. We will show that the eigenvalues of the Laplacian satisfy the
semicircle law under the condition that the minimum ex-
pected degree is relatively large (�� the square root of the
expected average degree). This condition contains the basic
case when all degrees are equal (the Erdös–Rényi model). If
we weaken the condition on the minimum expected degree,
we can still have the following strong bound for the eigen-
values of the Laplacian, which implies strong expansion rates
for rapidly mixing,

max
i � 0

�1 � �i� � �1 � o�1	

4
�w�

�
g�n	log2n

wmin
,
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where w� is the expected average degree, wmin is the minimum
expected degree, and g(n) is any slow-growing function of n.

In applications, it usually suffices to have the �i values (i � 0)
bounded away from 0. Our result shows that (under some mild
conditions) these eigenvalues are actually very close to 1.

The rest of the article has two parts. In the first part we present
our model and the results concerning the spectrum of the
adjacency matrix. The last part deals with the Laplacian.

The Random Graph Model
The primary model for classical random graphs is the Erdos–
Rényi model Gp, in which each edge is independently chosen
with the probability P for some given P � 0 (see ref. 15). In such
random graphs the degrees (the number of neighbors) of vertices
all have the same expected value. Here we consider the following
extended random-graph model for a general degree distribution
(also see refs. 16 and 17).

For a sequence w � (w1, w2, . . . , wn), we consider random
graphs G(w) in which edges are independently assigned to each
pair of vertices (i, j) with probability wiwj�, where

� � 1��
i�1

n

wi.

Notice that we allow loops in our model (for computational
convenience), but their presence does not play any essential role.
It is easy to verify that the expected degree of i is wi.

To this end, we assume that maxi wi
2 � �k wk such that pij �

1 for all i and j. This assumption insures that the sequence wi is
graphical [in the sense that it satisfies the necessary and suffi-
cient condition for a sequence to be realized by a graph (18)
except that we do not require the wi values to be integers]. We
will use di to denote the actual degree of vi in a random graph
G in G(w), where the weight wi denotes the expected degree.

For a subset S of vertices, the volume Vol(S) is defined as the
sum of weights in S and vol(S) is the sum of the (actual) degrees
of vertices in S. That is, Vol(S) � �i�S wi and vol(S) � �i�S di.
In particular, we have Vol(G) � �i wi, and we denote � �
1�Vol(G). The induced subgraph on S is a random graph G(w�),
where the weight sequence is given by w�i � wiVol(S)� for all i �
S. The expected average degree is w� � �i�1

n wi�n � 1�(n�). The
second-order average degree of G(w�) is d̃ � (�i�S wi

2�
�i�1

n wi) � �i�S wi
2�. The maximum expected degree is denoted

by m.
The classical random graph G(n, p) can be viewed as a special

case of G(w) by taking w to be (pn, pn, . . . , pn). In this special
case, we have d̃ � w� � m � np. It is well known that the largest
eigenvalue of the adjacency matrix of G(n, p) is almost surely
[1 � o(1)]np provided that np �� log n.

The asymptotic notation is used under the assumption that n,
the number of vertices, tends to infinity. All logarithms have the
natural base.

Spectra of the Adjacency Matrix of Random Graphs with
Given Degree Distribution
For random graphs with given expected degrees (w1, w2, . . . ,
wn), there are two easy lower bounds for the largest eigenvalue
�A� of the adjacency matrix A, namely, [1 � o(1)]d̃ and [1 �
o(1)]�m.

It has been proven� that the maximum of the above two lower
bounds is essentially an upper bound (also see ref. 19).

Theorem 1. If d̃ � �m log n, then the largest eigenvalue of a
random graph in G(w) is almost surely [1 � o(1)]d̃.

Theorem 2. If �m � d̃ log2n, then almost surely the largest
eigenvalue of a random graph in G(w) is [1 � o(1)]�m. If the kth
largest expected degree mk satisfies �mk � d̃ log2n, then almost
surely the largest k eigenvalues of a random graph in G(w) is [1 �
o(1)]�mk.

Theorem 3. The largest eigenvalue of a random graph in G(w) is
almost surely at most

7�log n max
�m, d̃�.

We remark that the largest eigenvalue �A� of the adjacency
matrix of a random graph is almost surely [1 � o(1)]�m if �m
is �d̃ by a factor of log2n, and �A� is almost surely [1 � o(1)]d̃
if �m is �d̃ by a factor of log n. In other words, �A� is
(asymptotically) the maximum of �m and d̃ if the two values of
�m and d̃ are far apart (by a power of log n). One might be
tempted to conjecture that

�A� � �1 � o�1	
max
�m, d̃�.

This, however, is not true as shown by a counterexample given
previously (10).

We also note that with a more careful analysis the factor of log
n in Theorem 3 can be replaced by (log(n))1/2�	 and the factor
of log2n can be replaced by (log(n))3/2�	 for any positive 	
provided that n is sufficiently large. We remark that the constant
‘‘7’’ in Theorem 3 can be improved. We made no effort to get the
best constant coefficient here.

Eigenvalues of the Adjacency Matrix of Power-Law Graphs
In this section we consider random graphs with power-law
degree distribution with exponent �. We want to show that the
largest eigenvalue of the adjacency matrix of a random power-
law graph is almost surely approximately the square root of the
maximum degree m if � � 2.5 and is almost surely approximately
cm3�� if 2 � � � 2.5. A phase transition occurs at � � 2.5. This
result for power-law graphs is an immediate consequence of a
general result for eigenvalues of random graphs with arbitrary
degree sequences.

We choose the degree sequence w � (w1, w2, . . . , wn)
satisfying wi � ci�1/(��1) for i0 � i � n � i0. Here c is determined
by the average degree, and i0 depends on the maximum degree
m, namely,

c �
� � 2
� � 1

dn�1/(��1),

i0 � n� d�� � 2	

m�� � 1	�
��1

.

It is easy to verify that the number of vertices of degree k is
proportional to k��.

The second-order average degree d̃ can be computed as
follows.

d̃ � � d
�� � 2	2

�� � 1	�� � 3	
�1 � o�1		 if � 
 3.

1
2

d ln
2m
d

�1 � o�1		 if � � 3.

d
�� � 2	2

�� � 1	�3 � �	 ��� � 1	m
d�� � 2	�

3��

�1 � o�1	
 if 2 � � � 3.
�Chung, F., Lu, L. & Vu, V., Workshop on Algorithms and Models for the Web-Graph,
November 16, 2002, Vancouver, BC, Canada.
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We remark that for � � 3, the second-order average degree is
independent of the maximum degree. Consequently, the pow-
er-law graphs with � � 3 are much easier to deal with.
However, many massive graphs are power-law graphs with 2 �
� � 3, in particular, Internet graphs (9) have exponents
between 2.1 and 2.4, whereas the Hollywood graph (6) has
exponent � � 2.3. In these cases, it is d̃ that determines the first
eigenvalue. Theorem 4 is a consequence of Theorems 1 and 2.
When � � 2.5, the ith largest eigenvalue �i is

�i 	 �mi � �i � i0 � 1	�1/[(2��1)�1],

for �i sufficiently large. These large eigenvalues follow the
power-law distribution with exponent 2� � 1. (The exponent is
different from one in Mihail and Papadimitriou’s unpublished
work, because they use a different definition for power law.)

Theorem 4.

1. For � 
 3 and m � d2log3�	n, almost surely the largest
eigenvalue of the random power-law graph G is [1 � o(1)]�m.

2. For 2.5 � � � 3 and m � d(��2)/(��2.5)log3/(��2.5)n, almost
surely the largest eigenvalue of the random power-law graph G
is [1 � o(1)]�m.

3. For 2 � � � 2.5 and m � log3/2.5��n, almost surely the largest
eigenvalue is [1 � o(1)]d̃.

4. For k � (d�m log n)��1n and � � 2.5, almost surely the k
largest eigenvalues of the random power-law graph G with
exponent � have power-law distributions with exponent 2� � 1,
provided that m is large enough (satisfying the inequalities in 1
and 2).

Spectrum of the Laplacian
Suppose G is a graph that does not contain any isolated
vertices. The Laplacian L is defined to be the matrix L �
I � D�1/2AD�1/2, where I is the identity matrix, A is the
adjacency matrix of G, and D denotes the diagonal degree
matrix. The eigenvalues of L are all nonnegative between 0 and
2 (see ref. 20). We denote the eigenvalues of L by 0 � �0 � �1 �
. . . �n�1. For each i, let �i denote an orthonormal eigenvector
associated with �i. We can write L as L � �i �iPi, where Pi

denotes the i projection into the eigenspace associated with
eigenvalue �i. We consider

M � I � L � P0 � �
i�0

(1��i)Pi.

For any positive integer k, we have

Trace�M2k	 � �
i�0

(1��i)2k.

Lemma 1. For any positive integer k, we have

max
i � 0

�1 � �i� � �M� � �Trace�M2k	
1/�2k	.

The matrix M can be written as

M � D�1/2AD�1/2�P0

� D�1/2AD�1/2��*0�0

� D�1/2AD�1/2 �
1

vol�G	
D1/2KD1/2,

where �0 is regarded as a row vector (�d1�vol(G), . . . ,
�dn�vol(G)), �*0 is the transpose of �0, and K is the all 1s
matrix.

Let W denote the diagonal matrix with the (i, i) entry having
value wi, the expected degree of the ith vertex. We will approx-
imate M by

C � W�1/2AW�1/2 �
1

Vol�G	
W1/2KW1/2

� W�1/2AW�1/2��*�,

where � is a row vector (�w1�, . . . , �wn�). We note that ��*� �
�*�� is strongly concentrated at 0 for random graphs with given
expected degree wi. C can be seen as the expectation of M, and
we shall consider the spectrum of C carefully.

A Sharp Bound for Random Graphs with Relatively Large
Minimum Expected Degree
In this section we consider the case when the minimum of the
expected degrees is not too small compared to the mean. In this
case, we are able to prove a sharp bound on the largest
eigenvalue of C.

Theorem 5. For a random graph with given expected degrees w1, . . . ,
wn where wmin �� �w� log3n, we have almost surely

�C� � �1 � o�1	

2
�w�

.

Proof: We rely on the Wigner high-moment method. For any
positive integer k and any symmetric matrix C

Trace�C2k	 � �1�C	2k � · · · � �n�C	2k,

which implies

E��1�C	2k	 � E�Trace�C2k		,

where �1 is the eigenvalue with maximum absolute value:
��1� � �C�.

If we can bound E(Trace(C2k)) from above, then we have an
upper bound for E(�1(C)2k). The latter would imply an upper
bound (almost surely) on ��1(C)� via Markov’s inequality pro-
vided that k is sufficiently large.

Let us now take a closer look at Trace(C2k). This is a sum
where a typical term is ci1i2

ci2i3
, . . . , ci2k�1i2k

ci2ki1
. In other words,

each term corresponds to a closed walk of length 2k (containing
2k, not necessarily different, edges) of the complete graph Kn on
{1, . . . , n} (Kn has a loop at every vertex). On the other hand,
the entries cij of C are independent random variables with mean
zero. Thus, the expectation of a term is nonzero if and only if
each edge of Kn appears in the walk at least twice. To this end,
we call such a walk a good walk. Consider a closed good walk that
uses l different edges e1, . . . , el with corresponding multiplicities
m1, . . . , ml (the mh values are positive integers at least 2
summing up to 2k). The (expected) contribution of the term
defined by this walk in E(Trace(C2k)) is



h�1

l

E�ceh

mh	. [1]

In order to compute E(cij
m), let us first describe the distribu-

tion of cij: cij � 1��wiwj � �wiwj� � qij��wiwj with prob-
ability pij � wiwj� and cij � ��wiwj� � �pij��wiwj with
probability qij � �1 � pij. This implies that for any m 
 2,
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�E�cij
m	� �

qij
mpij � ��pij	

mqij

�wiwj	
m/2 �

pij

�wiwj	
m/2

�
�

�wiwj	
m/2�1 �

�

�wmin	
m�2 . [2]

Here we used the fact that qij
mpij � (�pij)mqij � pij in the first

inequality (the reader can consider this fact an easy exercise) and
the definition pij � wiwj� in the second equality.

Let Wl,k denote the set of closed good walks on Kn of length
2k using exactly l � 1 different vertices. Notice that each walk
in Wl,k must have at least l different edges. By Eqs. 1 and 2, the
contribution of a term corresponding to such a walk toward
E(Trace(C2k)) is at most �l�wmin

2k�2l.
It follows that

E�Trace�C2k		 � �
l�0

k

�Wl,k�
�k

wmin
2k�2l . [3]

In order to bound the last sum, we need the following result of
Füredi and Komlós (9).

Lemma 2. For all l � n,

�Wl ,k� � n�n � 1	. . .�n � l	� 2k
2l �� 2l

l � 1
l � 1

�l � 1	4�k�l	.

[4]

In order to prove Theorem 5, it is more convenient to use the
following cleaner bound, which is a direct corollary of Eq. 4.

�Wl ,k� � nl�14l�2k
2l��l � 1	4�k�l	 [5]

Substituting Eq. 5 into 3 yields

E�Trace�C2k		 � �
l�0

k
�l

wmin
2k�2l nl�14l�2k

2l��l � 1	4�k�l	 � �
l�0

k

sl,k.

[6]

Now fix k � g(n)log n, where g(n) tends to infinity (with n)
arbitrarily slowly. With this k and the assumption about the
degree sequence, the last sum in Eq. 6 is dominated by its highest
term. To see this, let us consider the ratio sk,k�sl,k for some l �
k � 1:

sk,k

sl ,k
�

��4�n	wmin
2 
k�l

�2k
2l��l � 1	4�k�l	



��4�n	wmin

2 
k�l

2k2�k�l	k4�k�l	 

1
2 ��4�n	wmin

2

k6 �k�l

,

where in the first inequality we used the simple fact that

� 2k
2l � �

�2k	2�k�l	

2�k � l	!
� 2k2�k�l	.

With a proper choice of g(n), the assumption wmin �
�(log3n)�w� guarantees that (4�nwmin

2 �k6) � �(1), where �(1)
tends to infinity with n, which implies sk,k�sl,k 
 [�(1)]k�l.
Consequently,

E�Trace�C2k		 � �
l � 0

k

sl,k � �1 � o�1	
sk,k

� �1 � o�1	
�knk�14k � �1 � o�1	
n�4�n	k.

Because E(�1(C)2k) � E(Trace(C2k)) and �n � 1�w� , we have

E��1�C	2k	 � �1 � o�1	
n� 2
�w� �

2k

. [7]

By Eq. 7 and Markov’s equality

P��1�C	 
 �1 � 		
2
�w� �

� P��1�C	2k 
 �1 � 		2k� 2
�w� �

2k�

�
E��1�C	2k	

�1 � 		2k� 2
�w� �

2k �

�1 � o�1	
n� 2
�w� �

2k

�1 � 		2k� 2
�w� �

2k

�
�1 � o�1		n

�1 � 		2k .

Because k � �(log n), we can find an 	 � 	(n) tending to 0 with
n such that n�(1 � 	)2k � o(1), which implies that almost surely
��1(C)� � [1 � o(1)](2��w� ) as desired. The lower bound on
��1(C)� follows from the semicircle law proved in the next
section.

The Semicircle Law
We show that if the minimum expected degree is relatively large,
then the eigenvalues of C satisfy the semicircle law with respect
to the circle of radius r � 2��w� centered at 0. Let W be an
absolute continuous distribution function with (semicircle) den-
sity w(x) � (2��)�1 � x2 for �x� � 1 and w(x) � 0 for �x� � 1.
For the purpose of normalization, consider Cnor � (2��w� )�1C. Let
N(x) be the number of eigenvalues of Cnor � x and Wn(x) �
n�1N(x).

Theorem 6. For random graphs with a degree sequence satisfying
wmin �� �w� , Wn(x) tends to W(x) in probability as n tends to
infinity.

Remark: The assumption here is weaker than that of Theorem
5 due to the fact that we only need to consider moments of
constant order.

Proof: Because convergence in probability is entailed by the
convergence of moments, to prove this Theorem 6 we need to
show that for any fixed s, the sth moment of Wn(x) (with n
tending to infinity) is asymptotically the sth moment of
W(x). The sth moment of Wn(x) equals (1�n)E(Trace(Cnor

s )).
For s even, s � 2k, the sth moment of Wx is (2k)!�22kk!(k � 1)!
(see ref. 10). For s odd, the sth moment of Wx is 0 by symmetry.

In order to verify Theorem 6, we need to show that for any
fixed k

1
n

E�Trace�Cnor
2k 		 � �1 � o�1	


�2k	!
22kk!�k � 1	!�

[8]

and

1
n

E�Trace�Cnor
2k�1)) � o�1	. [9]
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We first consider Eq. 8. Let us go back to Eq. 3. Now we need
to use the more accurate estimate of �Wl,k� given by Eq. 4 instead
of the weaker but cleaner one in Eq. 5. Define

s�l ,k �
�l

wmin
2k�2l n�n � 1	. . .�n � l	�2k

2l��2l
l � 1

l � 1
�l � 1	4�k�l	.

One can check, with a more tedious computation, that the sum

�
l�0

k

s�l,k

is still dominated by the last term, namely

�
l�0

k

s�l,k � �1 � o�1	
s�k,k.

It follows that E(Trace(C2k)) � [1 � o(1)]s�k,k. On the other
hand, E(Trace(C2k)) 
 Wk,k��k. Now comes the important point,
for l � k, �Wl,k� is not only upper-bounded by but in fact equals
the right-hand side of Eq. 4. Therefore,

E�Trace�C2k		 � �1 � o�1	
s�k,k.

It follows that

E�Trace�Cnor
2k 		 � �1 � o�1	
� 2

�w� �
�2k

s�k,k

� �1 � o�1	
n
�2k	!

22kk!�k � 1	!
,

which implies Eq. 8.
Now we turn to Eq. 9. Consider a term in Trace(C2k�1). If the

closed walk corresponding to this term has at least k � 1
different edges, then there should be an edge with multiplicity
one, and the expectation of the term is 0. Therefore, we only have
to look at terms with walks that have at most k different edges
(and at most k � 1 different vertices). It is easy to see that the
number of closed good walks of length 2k � 1 with exactly l �
1 different vertices is at most O(nl�1). The constant in O
depends on k and l (recall that now k is a constant), but for the
current task we do not need to estimate this constant. The
contribution of a term corresponding to a walk with at most

l � 1 different edges is bounded by �l�wmin
2k�1�2l. Thus

E(Trace(C2k�1)) is upper-bounded by

�
l�0

k

c
�l

wmin
2k�1�2l nl�1 [10]

for some constant c. To compute the (2k � 1)th moment of
Wn(x), we need to multiply E(Trace(C2k�1)) by the normalizing
factor

1
n � 1

2�n�
� 2k�1

.

It follows from Eq. 4 that the absolute value of the (2k � 1)th
moment of Wn(x) is upper-bounded by

�
l�0

k 1
n � 1

2�n�
�2k�1 �l

wmin
2k�1�2l nl�1 � �

l�0

k � 1

2�n�wmin
�2k�1�2l

.

[11]

Under the assumption of the theorem (1�2�n�wmin) � o(1).
Thus, the last sum in Eq. 11 is o(1), completing the proof.

Summary
In this article we prove that the Laplacian spectrum of random
graphs with given expected degrees follows the semicircle law,
provided some mild conditions are satisfied. We also show that
the spectrum of the adjacency matrix is essentially determined by
its degree distribution. In particular, the largest k eigenvalues of
the adjacency matrix of a random power-law graph follow a
power-law distribution, provided that the largest k degrees are
large in terms of the second-order average degree. Here we
compute the spectra of a subgraph G of a simulated random
power-law graph with exponent 2.2. The graph G has 588 vertices
with the average degree w� � 43.88 and the second average
degree d̃ � 61.5804. The largest eigenvalue of its adjacency
matrix is 61.78, which is very close to the second-order average
degree d̃, as asserted by Theorem 1 (see Fig. 1). All the nontrivial
eigenvalues of the Laplacian are within 0.3 � (2��w� ) from 1,
as predicted by Theorems 5 and 6 (see Fig. 2).
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Fig. 1. The large eigenvalues of the adjacency matrix follow the power law. Fig. 2. The Laplacian spectrum follows the semicircle law.
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