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We propose a random graph model which is a special case of
sparse random graphs with given degree sequences which satisfy
a power law. This model involves only a small number of param-
eters, called logsize and log-log growth rate. These parameters
capture some universal characteristics of massive graphs. From
these parameters, various properties of the graph can be derived.
For example, for certain ranges of the parameters, we will com-
pute the expected distribution of the sizes of the connected com-
ponents which almost surely occur with high probability. We il-
lustrate the consistency of our model with the behavior of some
massive graphs derived from data in telecommunications. We
also discuss the threshold function, the giant component, and
the evolution of random graphs in this model.

1. INTRODUCTION

Is the World Wide Web completely connected? If
not, how big is the largest component, the second
largest component, etc.? Anyone who has surfed the
Web for any length of time will undoubtedly come
away feeling that if there are disconnected compo-
nents at all, they must be small and few in number.
Is the Web too large, dynamic and structureless to
answer these questions?

Probably yes, if the sizes of the largest compo-
nents are required to be exact. Recently, however,
some of the structure of the Web has come to light
which may enable us to describe graph properties of
the Web qualitatively. Kumar et al. [1999a; 1999b)]
and Kleinberg et al. [1999] have measured the de-
gree sequences of the Web and shown that it is well
approximated by a power law distribution. That
is, the number of nodes, y, of a given degree x is
proportional to z7? for some constant 8 > 0. This
was reported independently by Albert, Barabési and
Jeong [Albert et al. 1999; Barabdsi and Albert 1999;
Barabési et al. 2000]. The power law distribution
of the degree sequence appears to be a very robust
property of the Web despite its dynamic nature. In
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fact, the power law distribution of the degree se-
quence may be a ubiquitous characteristic, applying
to many massive real world graphs. Indeed, Abello
et al. [1998] have shown that the degree sequence of
call graphs is nicely approximated by a power law
distribution. Call graphs are graphs of calls handled
by some subset of telephony carriers for a specific
time period. Faloutsos et al. [1999] have shown that
the degree sequence of the Internet router graph also
follows a power law.

Just as many other real world processes have been
effectively modeled by appropriate random models,
in this paper we propose a parsimonious random
graph model for graphs with a power law degree
sequence. We then derive connectivity results that
hold with high probability in various regimes of our
parameters. Finally, we compare the results from
the model with the exact connectivity structure for
some call graphs computed by Abello et al. [1998].

An extended abstract of this paper has appeared in
the Proceedings of the Thirtysecond Annual ACM
Symposium on Theory of Computing 2000 [Aiello
et al. 2000]. In this paper, we have included the com-
plete proofs for the main theorems and additional
theorems focused on the second largest components
of power graphs in various ranges. In addition, we
give some recent references; see also [Hayes 2000].

Power Law Random Graphs

The study of random graphs dates back to the sem-
inal papers of Erdds and Rényi [1960; 1961], which
laid the foundation for the theory. There are three
standard models for what we will call in this paper
uniform random graphs [Alon and Spencer 1992].
Each has two parameters, one controlling the num-
ber of nodes in the graph and the other the den-
sity or number of edges. For example, the random
graph model G(n,e) assigns uniform probability to
all graphs with n nodes and e edges, while in the ran-
dom graph model §(n,p) each edge is chosen with
probability p.

Our power law random graph model P(a, 3) also
has two parameters. They only roughly delineate
the size and density, but they are natural and con-
venient for describing a power law degree sequence.
The model is described as follows. Let y be the num-
ber of nodes with degree z. P(«, 3) assigns uniform

probability to all graphs with y = e*/z”? (where self
loops are allowed). Note that « is the intercept and
B is the (negative) slope when the degree sequence
is plotted on a log-log scale.

There is also an alternative power law random
graph model analogous to the uniform graph model
G(n,p). Instead of having a fixed degree sequence,
the random graph has an expected degree sequence
distribution. The two models are basically asymp-
totically equivalent, subject to a bounding of error
estimates for the variances; this will be further dis-
cussed in [Aiello et al. > 2001].

Our Results

Just as for the uniform random graph model where
graph properties are studied for certain regimes of
the density parameter and shown to hold with high
probability asymptotically in the size parameter, in
this paper we study the connectivity properties of
P(a, ) as a function of the power [ which hold al-
most surely for sufficiently large graphs. Briefly, we
show that when § < 1, the graph is almost surely
connected. For 1 < B < 2 there is a giant compo-
nent, that is, a component of size ©(n). Moreover,
all smaller components are of size O(1). For 2 <
B < By =~ 3.4785 there is a giant component and all
smaller components are of size O(logn). For g = 2
the smaller components are of size O(log n/loglogn).
For 8 > [, the graph almost surely has no giant
component. In addition we derive several results
on the sizes of the second largest component. For
example, we show that for 8 > 4 the number of
components of given sizes can be approximated by
a power law as well.

Previous Work

Strictly speaking our model is a special case of ran-
dom graphs with a given degree sequence, for which
there is a large literature. For example, Wormald
[1981] studied the connectivity of graphs whose de-
grees are in an interval [r, R|, where » > 3. Luczak
[1992] considered the asymptotic behavior of the
largest component of a random graph with given de-
gree sequence as a function of the number of vertices
of degree 2. His result was further improved by Mol-
loy and Reed [1995; 1998], who considered a random
graph on n vertices with the following degree distri-
bution. The number of vertices of degree 0,1,2, ...
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are about A\gn, A\in, ..., respectively, where the \’s
sum to 1. In [Molloy and Reed 1995] it is shown that
if @ =5,i(i—2)\; > 0 and the maximum degree is
not too large, then such random graphs have a gi-
ant component with probability tending to 1 as n
goes to infinity, while if ) < 0 then all components
are small with probability tending to 1 as n — oo.
The paper also examines the threshold behavior of
such graphs. In this paper, we will apply these tech-
niques to deal with the special case that concerns
our model.

Several other papers have taken an approach to
modeling power law graphs different from the one
taken here [Aiello et al. > 2001; Barabasi and Al-
bert 1999; Barabdsi et al. 2000; Kleinberg et al.
1999; Kumar et al. 1999b]. The essential idea of
these papers is to define a random process for grow-
ing a graph by adding nodes and edges. The intent
is to show that the defined processes asymptotically
yield graphs with a power law degree sequence with
very high probability. While interesting and impor-
tant, this approach has several difficulties. First, the
models are difficult to analyze rigorously, since the
transition probabilities are themselves dependent on
the the current state. For example, [Barabasi and
Albert 1999; Barabdsi et al. 2000] implicitly assume
that the probability that a node has a given degree
is a continuous function. Kumar et al. [2001] offer a
partial analysis of the situation. Second, while the
models may generate graphs with power law degree
sequences, it remains to be seen if they generate
graphs that duplicate other structural properties of
the Web, the Internet, and call graphs. For example,
the model in [Barabdsi and Albert 1999; Barabdasi
et al. 2000] cannot generate graphs with a power
law other than c¢/z3. Moreover, all the graphs can
be decomposed into m disjoint trees, where m is a
parameter of the model. The («, ) model in [Ku-
mar et al. 1999b] is able to generate graphs for which
the power law for the indegree is different than the
power law for the outdegree as is the case for the
Web. However, to do so, the model requires that
there be nodes that have only indegree and no out-
degree and vice versa. While this may be appropri-
ate for call graphs (e.g., customer service numbers)
it may not be right for modeling the Web. Thus,
while the random graph generation approach holds
the promise of accurately predicting a wide variety

of structural properties of many real world massive
graphs, much work remains to be done.

In this paper we take a different approach. We do
not attempt to answer how a graph comes to have
a power law degree sequence. Rather, we take that
as a given. In our model, all graphs with a given
power law degree sequence are equiprobable. The
goal is to derive structural properties that hold with
probability asymptotically approaching 1. Such an
approach, while potentially less accurate than the
detailed modeling approach above, has the advan-
tage of being robust: the structural properties de-
rived in this model will be true for the vast majority
of graphs with the given degree sequence. Thus, we
believe that this model will be an important com-
plement to random graph generation models.

The power law random graph model will be de-
scribed in detail in the next section. In Sections 3
and 4, our results on connectivity will be derived.
Section 5 discusses the sizes of the second largest
components. Section 6 compares the results of our
model to exact connectivity data for call graphs. A
short list of open questions concludes the article.

A subsequent paper [Aiello et al. > 2001] exam-
ines further several aspects of power law graphs, in-
cluding their evolution, their “scale invariance”, and
the asymmetry of in-degrees and out-degrees.

2. A RANDOM GRAPH MODEL

We consider a random graph with the following de-
gree distribution depending on two given values «
and 8. There are y vertices of degree x, where x
and y satisfy

logy = a — Blogx.
In other words,
‘{U'degvzx}‘ =y = e
: el
Basically, « is the logarithm of the size of the graph
and [ is the log-log growth rate of the graph.

The number of edges should be an integer. To
be precise, the expression above for y should be
rounded down to |e®/z”|. If we use real numbers
instead of rounding down to integers, this may cause
some error terms in further computation, but we will
see that the error terms can be easily bounded. For
simplicity and convenience, we will use real numbers
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with the understanding that the actual numbers are
their integer parts. Another constraint is that the
sum of the degrees should be even. This can be as-
sured by adding a vertex of degree 1 if the sum is
odd. Furthermore, for simplicity, we assume here
that there are no isolated vertices.

We can deduce the following facts for our graph:

(1) The maximum degree of the graph is e*/?. Note
that 0 <logy = a — Blog x.

(2) The number n of vertices can be computed as
follows: By summing y(z) for x from 1 to e®/?,
we have

/B oo ¢(B)e* if 6> 1,
nzzm—ﬁ% ae® if 6=1,
a=1 e/PI(1-p) f0< B <1,

where ((t) = Y 7" n~" is the Riemann zeta func-
tion.
(3) The number of edges F is given by

e ;C(B-Dex i f>2,
e o :
Ezizxqj—ﬂ iae lfﬁ:2’
o=1 Le2e/Bj(2—pB) f0< B <2

The excess of the real numbers in (1)-(3) over their
integer parts can be estimated as follows: For the
number n of vertices, the error term is at most e*/#.
For § > 1, it is o(n), which is a lower order term.
For 0 < B < 1, the error term for n is relatively
large. In this case, we have

/P

> € _ feel?
215

=1 5
Therefore, n has same magnitude as e*/#/(1—f3).

The number E of edges can be treated similarly.
For 3 > 2, the error term of E is o(E), a lower order
term. For 0 < 8 < 2, E has the same magnitude
as in the formula of item (3). In this paper we deal
mainly with the case 3 > 2. The case 0 < < 2 is
considered only in the next section, where we refer
to 2—( as a constant. By using real numbers instead
of rounding down to their integer parts, we simplify
the arguments without affecting the conclusions.

To study the random graph model, we must con-
sider large n. We say a property holds almost surely
(a. s.) if the probability that it holds tends to 1 as
the number n of the vertices goes to infinity. Thus
we consider a to be large but (3 is fixed.

n — /P

We use the following random graph model for a
given degree sequence:

The model:

1. Form a set L containing degv distinct copies of
each vertex v.

2. Choose a random matching of the elements of L.

3. For two vertices u and v, the number of edges
joining u and v is equal to the number of edges
in the matching of L joining copies of u to copies
of v.

We remark that the graphs that we are consider-
ing are in fact multi-graphs, possibly with loops.
This model is a natural extension of the model for
k-regular graphs, formed by combining k£ random
matchings. For references and undefined terminol-
ogy, see [Alon and Spencer 1992; Wormald 1999].
This random graph model is slightly different from
the uniform selection model P(a, ) described in
Section 1.1. However, by using the techniques of
[Molloy and Reed 1998, Lemma 1], it can be shown
that if a random graph with a given degree sequence
a. s. has property P under one of these two models,
then it a. s. has property P under the other model,
provided some general conditions are satisfied.

3. THE CONNECTED COMPONENTS

Molloy and Reed [1995] showed that for a random
graph with (\; + o(1))n vertices of degree i, where
the \; are nonnegative values that sum to 1, the
giant component emerges when

Q=) i(i-2)X; >0,

i>1

so long as the maximum degree is less than n'/4~=.

They also show that almost surely there is no giant
component when ) < 0 and the maximum degree is
less than n'/8¢,

Here we compute @ for our (a, 3)-graphs:

oo/ 8 o/ B o/ B
e“ e“ e“
@= Zm(w—Z) Lac_f@J ~ Z -2 2 Z zh-1
r=1 =1 rx=1

~~ (C(ﬁ—2) — 2((5—1))6" if 6> 3.
We are thus led to consider the value Gy ~ 3.47875,
which is a solution to

¢(B—2) —2¢(B-1) = 0.
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If B > By, we have

/B .
e
Z:l x(x—2) LEJ < 0.

We summarize our results here:

1. When § > ([, = 3.47875..., the random graph
almost surely has no giant component. When
0 < By = 3.47875..., there is almost surely a
unique giant component.

2. When 2 < B < [y = 3.47875..., almost surely
the second largest components have size O (logn).
For any 2 < 2 < ©(logn), there is almost surely
a component of size x.

3. When g = 2, almost surely the second largest
components are of size ©(logn/loglogn). For
any 2 < z < O(logn/loglogn), there is almost
surely a component of size z.

4. When 1 < § < 2, the second largest components
are almost surely of size ©(1). The graph is al-
most surely not connected.

5. When 0 < 8 < 1, the graph is almost surely
connected.

6. For B = (B, = 3.47875..., the case is compli-
cated. It corresponds to the double jump of a
random graph G(n,p) with p = 1/n.

7. For 8 = 1, there is a nontrivial probability for
either case: that the graph is connected or dis-
connected.

We remark that for § > 8, Molloy and Reed’s result
immediately implies that almost surely there is no
giant component. When § < 8, additional analysis
is needed to deal with the degree constraints. We
will prove in Theorem 4.2 that almost surely there
is no giant component when 3 > 5. In Section 5,
we will deal with the range 8 < B,. We will show
in Theorem 5.1 that almost surely there is a unique
giant component when 3 < (3,. Furthermore, we will
determine the size of the second largest component
within a constant factor.

4. THE SIZES OF CONNECTED COMPONENTS IN
CERTAIN RANGES FOR 3

For B8 > By = 3.47875.. ., almost surely there is no
giant component. This range is of special interest
since it is quite useful later for describing the distri-
bution of small components.

Theorem 4.1. For («, 3)-graphs with 5 > 4, the dis-
tribution of the number of connected components is
as follows:

1. For each vertex v of degree d = Q(1), let T be
the size of the connected component containing

v. Then
Pr<‘7’i >Q\/@> < 3,
(&1 C1 Cq A2
where
_, (B2 :C(ﬁ—3)_<C(6—2)>2
=2 eBon M T o T\

are constants and where A\ = d° with € an arbi-
trary small positive number and d a (slowly) in-
creasing function of n. In other words, the vertex
v almost surely belongs to a connected component
of size

i + O(d1/2+6).
&1

2. The number of connected components of size x is
almost surely at least

eD[
1+0o(1))—5——.
(4ol 5

and at most

e” log’g/%1 n
s B2
where
41+B02
3= ———
(B-2)er™”

is a constant depending only on (.
3. A connected component of the («,[3)-graph al-
most surely has size at most

e/t = @(n* P2 log n).

In our proof of this result we use the second moment,
whose convergence depends on 3 > 4. In fact for
B < 4 the second moment diverges as the size of
the graph goes to infinity, so our method no longer
applies.

Theorem 4.1 strengthens the following result —
which can be derived from [Molloy and Reed 1995,
Lemma 3] —for the range of § > 4.

Theorem 4.2. For 3 > (3, = 3.47875..., a connected
component of the (c, 3)-graph almost surely has size
at most Ce**/Pa = ©(n*Plogn), where C = 16/c?
is a constant depending only on (.
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The proof of Theorem 4.2, which we briefly describe
here because it is needed in proving Theorem 4.1,
uses the branching process method. Pick any ver-
tex v in the graph, expose its neighbors, then the
neighbors of its neighbors, repeating until the entire
component is exposed. We expose only one vertex
at each stage. At stage i, let L; the set of vertices
exposed and X; be the random variable that counts
the number of vertices in L;. We mark all vertices
in L; as either live or dead. A vertex in L; whose
neighbors have not all been exposed yet is marked
live. One whose neighbors have all been exposed is
marked dead. Let O; be the set of live vertices and
Y; the random variable that is the number of ver-
tices in O;. At each step we mark exact one dead
vertex, so the total number of dead vertices at the
i-th step is ¢. We have X; = Y; + 4. Initially we
assign Ly = Oy = {v}. Then at stage i > 1, we do
the following:

1. If Y;_; =0, stop and output X;_;.

2. Otherwise, randomly choose a live vertex u from
O;_, and expose its neighbors in N,,. Then mark
u dead and mark each vertex live if it is in N,
but not in L;_;. We have

Li=L,_1UN,,
O0; = (01 \ {u}) U (Ny \ Lia).

Suppose that v has degree d. Then X; =d+ 1, and
Y: = d. Eventually Y; will hit 0 if ¢ is large enough.
Let 7 denote the stopping time of Y, namely, Y, = 0.
Then X, = Y, +7 = 7 measures the size of the con-
nected component. We first compute the expected
value of Y; and then use Azuma’s Inequality [Molloy
and Reed 1995] to prove Theorem 4.2.

Suppose that vertex u is exposed at stage ¢. Then
N, N L; ; contains at least one vertex v, which was
exposed to reach u. However, N, NL;_; may contain
more than one vertex. We call an edge from u to a
vertex in L;_; other than v a backedge. Backedges
cause the exploration to stop sooner, especially when
the component is large. However in our case § >
By = 3.47875..., the contribution of backedges is
quite small. We set Z; = #{N,} and W; = #{N, N
L; 1} — 1, so Z; measures the degree of the vertex
exposed at stage ¢, while W, measures the number
of backedges. By definition,

Yi-Yi.=2-2-W,.

We have
Z L) Zx
((B=2) +O(n*F 1)
¢(B—1) + O(n?/8-1)
<Eﬁ—2 FOET

Now we bound W;. Suppose there are m edges ex-

posed at stage ¢ — 1. Then the probability that a

new neighbor is in L; ; is at most m/E. We have
m/E

<Z () = aom/Er
3 o(()),

provided that m/E = o(1).

When i < Ce?*/Pa, m is at most ie*/? < Ce3*/Pa.
Hence,

(4-1)

U O(n*#~'logn) = o(1).
E
We have

=1 +ZE(YJ‘ ~Y)

E(Y;)
—d+ZE —2—W))
((B-2)

=d+ (i_l)(g(ﬂ—l) - 2) —i0(n*# 11ogn)

=d—c(i—1)+io(1).
Proof of Theorem 4.2. Since |Y; — Y; | < e*/? by
Azuma’s martingale inequality, we have
Pr(|Y; — B(Y})| > t) < 2¢~/@),

where i = (16/c?)e**/?logn and t = Scq4. Since

E(Y;) +t=d—ci(i—1)+io(1) + 3ci0
=—icii+d+e +io(l) <O,
we have
Pr(r > (16/c})e*/?logn) = Pr(r > 1) < Pr(¥; >0)
< Pr(Y;>E(Y;) +1)

2 - 20/B _ <
< 2exp —t°/2ie =
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Hence, the probability that there exists a vertex v
such that v lies in a component of size greater than

16
gezo‘/ﬁ logn
1
is at most
2 2
— = — =o0(1). O
— = =ol)

The proof of Theorem 4.1 uses the methodology
above as a starting point while introducing the cal-
culation of the variance of the above random vari-
ables.

Proof of Theorem 4.1. We follow the notation and pre-
vious results of Section 4. Under the assumption
B > 4, we consider

/B
e a /.8
Var(Z) = 3 ;UZ’% _ B(Z,)
=1
o /B
= SN _ B(Z)?
E z=1

_¢(B=3)+ 0¥ (C(B—2)>2

~((B-1) +0(n¥5- 1) \((B-1)
+O(n3/ﬁfl)
_C(B-3)  /¢(B-2) 481
=t~ (=) o
=cy+0(1),

since 3 > 4.

We need to compute the covariance.
models for random graphs in which the edges are
in dependently chosen. Then, Z;, and Z; are in-
dependent. However, in the model based on ran-
dom matchings, there is a small correlation. For
example, Z; = x slightly effects the probability of
Z; = y. Namely, Z; = x has slightly less chance,
while Z; = y # x has slightly more chance. Both
differences can be bounded by

1 1 2
< —

E-1 E— E*

There are

Hence
COV&I'(Z,L‘, ZJ) < E(ZZ)E(Z/Ez)
1
- 0(5) it i .
Now we will bound W;. Suppose that there are m
edges exposed at stage i« — 1. Then the probability

that a new neighbor is in L; ; is at most m/E. We
have

Var(W;) < isﬁ (%) — E(W))?
"o —o((E))

Covar(W;, W;) <

A
<
5

(W) Var(W))
5+0(5) )

m
< \/Var(Zi)Var(Wj) = O( E)
When i = O(e*/#), m < ie®/? = O(e?*/?), we have
¢(6-2)

I
|
_l’_
Q

Covar(Z;, W;)

m

_9) 4 iOm¥E1 4™
2>+20(n )—HE

E(Y,) = d+(¢—1)<

¢(B-1)
=d— (i—1)c; + O(nYPY)
=d—(i—1)c; +0o(1)
and
Var(Y;) = Var (d + i:(YJ - Y}l))
= Var (Z(zj —~ Wj))

) + Var(W;))

—Z Var

+ Z (Covar(Z;, Z) — Covar(Z;, Wy,)

ST + Covar(W;, Wy))
=icy +io(1) +i*(O(1/n) + O(Ve/B-1e)

+O(e (2/ﬂ71)a))
=1icy + ZO( ) + Z(O( (2/B— 1/2)04) + O( 8/B— l)a))
=icy +i0(1).
Chebyshev’s inequality gives

1
Pr(|Y; — E(Y;)| > Ao) < eL
where o is the standard deviation of Y;, and o =

Vics + o(vVi). Set

, {d 22 dch , [d 22 dcﬂ
===, G=|—+"y/— |

(&] &1 C1 C1 (&1 &1
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Then
E(Y;,)=Xo = d—(i1—1)c1+0(1) — (AW eair +0(Vir))
> 2A @_A‘/CQE_O(\/&)
C1 C1
dCQ
=M/ ——o(Vd) >0
C1
Hence,
Pr(t < i) <Pr(Y;, <0)
1
<Pr(Y;, < E(Y;,) — Ao) < e
Similarly,
E(Kz)_l_)‘o-_ 22_1)Cl+0(1 +(>‘V 0212+0(\/_))
> 2/\\/ +A e 2 4 o(Vd)
c
et A«l +O
Hence,

Pr(r > iy) < Pr(Y;, > 0)

< Pr(Y;, > E(Y; !

)+ o) < =
Therefore

A2
d 2\ Jdc, 2
e N e
Pr(‘T o > o ) S

For a fixed v and A a function slowly increasing to
infinity, the preceding inequality implies that almost
surely we have 7 = d/c; + O(A\d).

Almost all components generated by vertices of
degree = have size about d/c;. One such component
can have at most about 1/c; vertices of degree d.
Hence, the number of components of size d/c; is at
least c¢;e*/#/d°. Let d = c;x. Then the number of
components of size x is at least

The argument above actually gives the following
result. The size of every component whose vertices
have degree at most dy is almost surely Cdjlogn,
where C' = 16/¢? is the same constant as in Theorem
4.2. Set x = Cdalogn and consider the number of
components of size x. A component of size z almost
surely contains at least one vertex of degree greater
than d;.

For each vertex v with degree d > dy, by part 1
in the statement of Theorem 4.1, we have

d 2\g [dcsy 2
prl(jr— 4] 5 2, f22) 2
r< T C1 C1 - )\2
Letting
c,Cdilogn [¢
LN
4 ng
we have
d 2\ /d
Pr(r > Cdjlogn) <Pr(7’> — 4+ ﬁ)
Cq C1 C1
d
= g
010g N

where C3 = 32¢,/(ciC?) = c1¢y/8 is a constant de-

pending only on 3. Since there are only e*/d’ ver-

tices of degree d, the number of components of size

at least x is at most
/B

Zdﬁ

d4 log n 2;‘

C3€a 2 1
< 2
dilog’n B —2d)"
2036a
(B-2)d5 *log’ n
e” Iogﬁ/%1 n
A2

d4log n -

:C3

where
203 4 +BCQ
(8-2) (B-2)e1*?

For z = e2*/(#+2), the preceding inequality implies
that the number of components of size at least x is at
most o(1). In other words, almost surely no compo-
nent has size greater than e2®/(*+2 . This completes
the proof of Theorem 4.1. O

C3 = Cl+ﬂ/2

5. ON THE SIZE OF THE SECOND LARGEST
COMPONENT

For B8 < By = 3.47875..., we consider the giant
component as well as the size of the second largest
component.

Theorem 5.1. Consider an («, 3)-graph with 3 < By =
3.47875. ...

1. There is a unique giant component of size ©(n).
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No

. When 2 < B < By, almost surely the size of the
second largest component is ©(logn).

3. When B =2, almost surely the size of the second
largest component is ©(logn/loglogn).

4. When 1 < B < 2, almost surely the size of the
second largest component is ©(1).

5. When 0 < 8 < 1, almost surely the graph is con-

nected.

Proof. When 3 < By, the branching process method
is no longer feasible when vertices of large degrees
are involved. Thus, we cannot apply Azuma’s mar-
tingale inequality for bounding Y; as we did in ear-
lier proofs. We will modify the branching process
method as follows.

(@) Choose a number z5 (to be specified later de-
pending on ).

(b) Start with Y live vertices and Y, > C'logn. All
other vertices are unmarked.

(c) At the i-th step, choose one live vertex u and ex-
posed its neighbors. If the degree of u is less than
or equal to =g, proceed as in Section 4, by mark-
ing u dead and all vertices v € N, live (provided
v is not marked before). If the degree of u is
greater than =4, mark exactly one vertex v € N,
live and others dead, provided v is unmarked. In
both cases u is marked dead.

The main idea is to show that Y;*, a truncated ver-
sion of Y;, is well-concentrated around E(Y;*). Al-
though it is difficult to directly derive such a result
for Y; because of vertices of large degrees, we will be
able to bound the distribution Y;*. Indeed, we will
show that the set of marked vertices (live or dead)
grows to a giant component if Y, exceeds a certain
bound. We consider three ranges for g.

Case 1: 2 < 3 < 3,. We consider the positive constant

0~ 15 enl2)

If the component has more than §E edges, it must
have ©(n) vertices since § > 2. So it is a giant
component and we are done. We may assume that
the component has no more than d F edges.

We now choose z3 = z, and apply the modified
branching process. Then, Y.* satisfies:

K2

e Y5 > [Clogn], where C = 13022/Q is a con-
stant depending only on S.
« 1<Y -V, <a
e Let W, be the number of backedges as defined in
Section 4. By inequality (4-1) and the assump-
tion that the number of edges m in the compo-
nent is at most dn, we have
0 Q
EW;) < TS

Hence,

=1
LQ_Q_¢Q
-2 4 4
By Azuma’s martingale inequality,
Pr(ve < @) <pe(v - ) < %)
(Qi/8) _
< exp—W — 0(n 1)

provided that ¢ > C'logn.

The preceding inequality implies that with prob-
ability at least 1 — o(n '), we have Y* > Qi/8 > 0
when ¢ > [C'logn]|. Since Y;* decreases by at most 1
at each step, Y;* cannot be zero if i < [C'logn]|. So
Y > 0 for all 7. In other words, a. s. the branching
process will not stop. However, it is impossible to
have Y7 > 0—a contradiction. Thus we conclude
that the component must have at least dn edges. So
it is a giant component. We note that if a compo-
nent has more than [Clogn]| edges exposed, then
almost surely it is a giant component. In particu-
lar, any vertex with degree more than [C'logn] is
almost surely in the giant component. Hence, the
second components have size of at most ©(logn).

Next we show that the second largest has size at
least ©(logn). We consider the vertices v of degree
T = ca, where cis some constant. There is a positive
probability that all neighboring vertices of v have
degree 1. In this case, we get a connected component
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of size z +1 = O(logn). The probability of this is

about .
(emn)

There are e®/(ca)? vertices of degree x. Thus the
probability that none of them has the preceding
property is about

a

<1 B ﬁ)u ~ eXp(‘m—ll)w (ciw)
- (e/cw—l)C)‘*)

where
1 if >3,
c= 1
_— if3 2.
—2log(5—-2) if3>p5>

In other words, a. s. there is a component of size
ca + 1 = O(logn). Therefore, the second largest
component has size O(logn). Moreover, the argu-
ment still holds if we replace ca by any small num-
ber. Hence, small components exhibit a continuous
behavior.

Case 2: 3 = 2. We choose z3 = 10ce. We note that
a component with more than 2F/3 edges must be
unique. We will prove that almost surely the unique
component contains all vertices with degree greater
than 101a?. So it contains (1 — o(1))FE edges and it
is the giant component.

We further modify the branching process by start-
ing from Yy > [101a?] vertices. If the component
has more than %E edges, we are done. Otherwise,
the expected number of backeges is small.

2/3
(1-2/3)?

from inequality (4-1). Hence, Y;* satisfies

E(W;) < =6

Y, > [101a7],

—1<Y!-Y", <100,
1 10« o
BT ~¥2) ~ 5 Y e@-2)| 5] - EO%)

>10—-2-6=2.

By Azuma’s martingale inequality,

Pr(Y;' <i) < Pr(Y; — B(Y;") < i

2

i? .
< exp<—m) =o(n™")
provided that i > 101>
This inequality implies that with proability at
least 1 — o(n™'), we have Y;* > i > 0 when i >
[101a?]. Since Y;* decreases at most by 1 at each
step, Y;* cannot be zero if i < [101a*]. So Y;* > 0
for all 7. In other words, a. s. the branching pro-
cess will not stop. However, it is impossible to have
Y* > 0—a contradiction. Thus we conclude that
the component must have at least %E edges. We
note that a. s. all vertices with degree more than
[101?] are in the unique component with at least
%E edges, hence the giant component.
The probability that a random vertex is in the
giant component is at most

10102

_Ze

The probability that there are 2.1a/loga vertices
not in the giant component is at most

(e

210ga

e—(2.1+o(1))a — 0(n_2).

<2 log a)Z.la/log a
- =
Since there is at most n connected components, we

conclude that a. s. a connected component of size
greater that

1
212 — <7°g n )
log o log logn

must be the giant component.

Now we find a vertex v of degree x with z <
0.9a/log . The probability that all its neighbors
are of degree 1 is (1/a)*. The probability that no
such vertex exists is at most

(1) men(-(5)
o),

Hence, almost surely there is a vertex of degree
x < 0.9a/log a that, which forms a connected com-
ponent of size x+1. This proves that a. s. the second
largest component has size ©(logn/loglogn).

= exp —
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Case 3: 0 < 3 < 2. We use the modified branching
process by choosing
o — o (5—20)
=—exp———.
PP 6208

If a component has more than 2F/3 edges, it is the

unique giant component and we are done. Other-
wise,
2/3
EW;,) < ——— =6.
(W3) < (1-2/3)2
Hence, Y;* satisfies
5 (2—p)e
Y > exp ———,
0 2 P55
5—2
<Yy Y, <exp 2B
(6—208)8
ox (5—28)a
1 P (6=2p)p oo
BT -¥i)~rg X sG] - B0
~ Ce/(P),

Here C' is a constant depending only on S.
By Azuma’s martingale inequality,

Pr(Y;<iCe*®) <Pr(Y;—E(Y;")<—1Ce™/*9)i)

<e p(— (3Ce/ i) >
i(exp —(5—25)04)2

(6-28)p
=o(n™ 1)
provided that
o 200
=P Gop)p

This inequality shows that with probability at
least 1 — o(n™!), we have Y;* > 1Ce*/*?§ > 0 pro-

vided that (2 p)
—B)a
7> @exp EGIA

Since Y;* decreases at most by 1 at each step, Y;*
cannot be zero if

< Gz o
So Y;* > 0 for all 7. In other Words, a. s. the branch-
ing processing will not stop. However, it is impos-
sible to have Y,* > 0—a contradiction. So, a. s. all
vertices with degree more than

5 (2—0)a
2P B-p)p

are in the giant component. The probability that a
random vertex is in the giant component is at most

o 55
e (2—0)a
E ; ma;ﬂ_@(e"p (3—ﬂ)ﬁ>'
The probability that all
3—p
2{ J 1
2l ™"

vertices are not in the giant vertex is at most

58] 1
(2—P)a )2L2ﬁ -2
O|exp|— =o(n 7).

(o (-555) )
Since there are at most n connected components,

we conclude that a. s. a connected component of
size greater that

3-8
2L—J —o(1
>3] —ew
must be the giant component.

For 1 < B < 2, we fix a vertex v of degree 1. The
probability that the other vertex that connects to v

is also of degree 1 is
ea
© (em/ﬁ ) '

Therefore the probability that no component has
size of 2 is at most

(1-0(z5)) = o)

In other words, the graph a. s. has at least one com-
ponent of size 2.

For 0 < 8 < 1, we want to show that the ran-
dom graph is a. s. connected. Since the size of the
possible second largest component is bounded by a
constant M, all vertices of degree > M are almost
surely in the giant component. We only need to
show the probability that there is an edge connect-
ing two small degree vertices is small. There are
only

M e
Z x Lv—ﬁj ~ Ce”
z=1
vertices with degree less than M. For any random
pair of vertices (u,v), the probability that there is
an edges connecting them is about

% = @(672‘1/'6).
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Hence the probability that there is edge connecting
two small degree vertices is at most

>3

u,v

z (Ce*)?0(e*/P) = o(1).

Thus every vertex is a. s. connected to a vertex with
degree > M, which a. s. belongs to the giant expo-
nent. Hence, the random graph is a. s. connected.

0

6. COMPARISONS WITH REALISTIC MASSIVE GRAPHS

Our (a, B)-random graph model was originally de-
rived from massive graphs generated by long dis-
tance telephone calls. These so-called call graphs
are taken over different time intervals. For the sake
of simplicity, we consider all the calls made in one
day. Every completed phone call is an edge in the
graph. Every phone number that either originates
or receives a call is a node in the graph. When a
node originates a call, the edge is directed out of
the node and contributes to that node’s outdegree.
Likewise, when a node receives a call, the edge is di-
rected into the node and contributes to that node’s
indegree.

y(7)
107 5
106 4
10° 4
104 5
108

1004

10+

e ————
1_ -esees o

The particular call graph we used for the statis-
tics in this section correspond to the date August 10,
1998, a typical day. The data were compiled by J.
Abello and A. Buchsbaum of AT&T Labs from raw
phone call records using, in part, the external mem-
ory algorithm of [Abello et al. 1998] for computing
connected components of massive graphs.

In Figure 1, we plot the number of vertices versus
the indegree and the outdegree for the call graph.
Let y(i) be the number of vertices with indegree .
For each ¢ such that y(i) > 0, a dot on the left plot
is placed at (i, y(z)) The plot on the right is built
in the same way. Plots of the number of vertices
versus the indegree or outdegree for the call graphs
of other days are very similar.

Figure 2 plots for the same call graph the number
of connected components for each possible size.

The degree sequence of the call graph does not
obey perfectly the («, 3)-graph model. The num-
ber of vertices of a given degree does not even de-
crease monotonically with increasing degree. More-
over, the call graph is directed: for each edge there
is a node that originates the call and a node that re-
ceives the call. The indegree and outdegree of a node
need not be the same. Clearly the («,3)-random

105 4
104
1034
100+

104

1_

T T T T
1 10 100 103 104 10°

%

T T T T o)
1 10 100 104 10°

FIGURE 1. Left: number of vertices y(i) versus indegree i, plotted on a log-log scale, for a representative real-life
graph. Right: number of vertices versus outdegree o for the same graph.
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100+

10+

1_I T _-‘;“ T T T T T
1 10 100 10% 10* 105 10 107

FIGURE 2. Left: number of connected components
for each possible component size s for our example
graph. Note the giant component on the lower right.

graph model does not capture all of the random be-
havior of the real world call graph.

Nonetheless, our model does capture some of the
behavior of the call graph. To see this we first esti-
mate « and [ in Figure 1. Recall that for an («, 3)-
graph, the number of vertices as a function of degree
is given by logy = a — Blogx. By approximating
Figure 1 by a straight line, 8 can be estimated using
the slope of the line to be approximately 2.1. The
value of e® for Figure 1 is approximately 30 x 10°.
The total number of nodes in the call graph can be
estimated by ((2.1)e” = 1.56e™ ~ 47 x 10°.

For (3 between 2 and [y, the (a, 3)-graph will have
a giant component of size O(n). In addition, a. s. all
other components are of size O(logn). Moreover, for
any 2 > = > O(logn), a component of size = exists.
This is qualitatively true of the distribution of com-
ponent sizes of the call graph in Figure 2. The one
giant component contains nearly all of the nodes.
The maximum size of the next largest component
is indeed exponentially smaller than the size of the
giant component. Also, a component of nearly ev-
ery size below this maximum exists. Interestingly,
the distribution of the number of components of size
smaller than the giant component is nearly log-log

linear. This suggests that after removing the gi-
ant component, one is left approximately with an
(a, B)-graph with 3 > 4. (Theorem 4.1 yields a log-
log linear relation between number of components
and component size for 5 > 4.) This seems intu-
itively reasonable, since the greater the degree, the
fewer nodes of that degree we expect to remain after
deleting the giant component. This will increase the
value of 3 for the resulting graph.

7. OPEN QUESTIONS

Numerous questions remain to be studied. For ex-
ample, what is the effect of time scaling? How does
it correspond with the evolution of 3?7 What are
the structural behaviors of the call graphs? What
are the correlations between the directed and undi-
rected graphs? It is of interest to understand the
phase transition of the giant component in the re-
alistic graph. In the other direction, the number of
tiny components of size 1 is leading to many inter-
esting questions as well. Clearly, there is much work
to be done in our understanding of massive graphs.
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