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We propose a random graph model which is a special case of

sparse random graphs with given degree sequences which satisfy

a power law. This model involves only a small number of param-

eters, called logsize and log-log growth rate. These parameters

capture some universal characteristics of massive graphs. From

these parameters, various properties of the graph can be derived.

For example, for certain ranges of the parameters, we will com-

pute the expected distribution of the sizes of the connected com-

ponents which almost surely occur with high probability. We il-

lustrate the consistency of our model with the behavior of some

massive graphs derived from data in telecommunications. We

also discuss the threshold function, the giant component, and

the evolution of random graphs in this model.

1. INTRODUCTIONIs the World Wide Web completely connected? Ifnot, how big is the largest component, the secondlargest component, etc.? Anyone who has surfed theWeb for any length of time will undoubtedly comeaway feeling that if there are disconnected compo-nents at all, they must be small and few in number.Is the Web too large, dynamic and structureless toanswer these questions?Probably yes, if the sizes of the largest compo-nents are required to be exact. Recently, however,some of the structure of the Web has come to lightwhich may enable us to describe graph properties ofthe Web qualitatively. Kumar et al. [1999a; 1999b]and Kleinberg et al. [1999] have measured the de-gree sequences of the Web and shown that it is wellapproximated by a power law distribution. Thatis, the number of nodes, y, of a given degree x isproportional to x�� for some constant � > 0. Thiswas reported independently by Albert, Barab�asi andJeong [Albert et al. 1999; Barab�asi and Albert 1999;Barab�asi et al. 2000]. The power law distributionof the degree sequence appears to be a very robustproperty of the Web despite its dynamic nature. In
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fact, the power law distribution of the degree se-quence may be a ubiquitous characteristic, applyingto many massive real world graphs. Indeed, Abelloet al. [1998] have shown that the degree sequence ofcall graphs is nicely approximated by a power lawdistribution. Call graphs are graphs of calls handledby some subset of telephony carriers for a speci�ctime period. Faloutsos et al. [1999] have shown thatthe degree sequence of the Internet router graph alsofollows a power law.Just as many other real world processes have beene�ectively modeled by appropriate random models,in this paper we propose a parsimonious randomgraph model for graphs with a power law degreesequence. We then derive connectivity results thathold with high probability in various regimes of ourparameters. Finally, we compare the results fromthe model with the exact connectivity structure forsome call graphs computed by Abello et al. [1998].An extended abstract of this paper has appeared inthe Proceedings of the Thirtysecond Annual ACMSymposium on Theory of Computing 2000 [Aielloet al. 2000]. In this paper, we have included the com-plete proofs for the main theorems and additionaltheorems focused on the second largest componentsof power graphs in various ranges. In addition, wegive some recent references; see also [Hayes 2000].
Power Law Random GraphsThe study of random graphs dates back to the sem-inal papers of Erd}os and R�enyi [1960; 1961], whichlaid the foundation for the theory. There are threestandard models for what we will call in this paperuniform random graphs [Alon and Spencer 1992].Each has two parameters, one controlling the num-ber of nodes in the graph and the other the den-sity or number of edges. For example, the randomgraph model G(n; e) assigns uniform probability toall graphs with n nodes and e edges, while in the ran-dom graph model G(n; p) each edge is chosen withprobability p.Our power law random graph model P (�; �) alsohas two parameters. They only roughly delineatethe size and density, but they are natural and con-venient for describing a power law degree sequence.The model is described as follows. Let y be the num-ber of nodes with degree x. P (�; �) assigns uniform

probability to all graphs with y = e�=x� (where selfloops are allowed). Note that � is the intercept and� is the (negative) slope when the degree sequenceis plotted on a log-log scale.There is also an alternative power law randomgraph model analogous to the uniform graph modelG(n; p). Instead of having a �xed degree sequence,the random graph has an expected degree sequencedistribution. The two models are basically asymp-totically equivalent, subject to a bounding of errorestimates for the variances; this will be further dis-cussed in [Aiello et al. � 2001].
Our ResultsJust as for the uniform random graph model wheregraph properties are studied for certain regimes ofthe density parameter and shown to hold with highprobability asymptotically in the size parameter, inthis paper we study the connectivity properties ofP (�; �) as a function of the power � which hold al-most surely for su�ciently large graphs. Briey, weshow that when � < 1, the graph is almost surelyconnected. For 1 < � < 2 there is a giant compo-nent, that is, a component of size �(n). Moreover,all smaller components are of size O(1). For 2 <� < �0 � 3:4785 there is a giant component and allsmaller components are of size O(log n). For � = 2the smaller components are of sizeO(log n=log log n).For � > �0 the graph almost surely has no giantcomponent. In addition we derive several resultson the sizes of the second largest component. Forexample, we show that for � > 4 the number ofcomponents of given sizes can be approximated bya power law as well.
Previous WorkStrictly speaking our model is a special case of ran-dom graphs with a given degree sequence, for whichthere is a large literature. For example, Wormald[1981] studied the connectivity of graphs whose de-grees are in an interval [r;R], where r � 3.  Luczak[1992] considered the asymptotic behavior of thelargest component of a random graph with given de-gree sequence as a function of the number of verticesof degree 2. His result was further improved by Mol-loy and Reed [1995; 1998], who considered a randomgraph on n vertices with the following degree distri-bution. The number of vertices of degree 0; 1; 2; : : :
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are about �0n, �1n, . . . , respectively, where the �'ssum to 1. In [Molloy and Reed 1995] it is shown thatif Q = Pi i(i�2)�i > 0 and the maximum degree isnot too large, then such random graphs have a gi-ant component with probability tending to 1 as ngoes to in�nity, while if Q < 0 then all componentsare small with probability tending to 1 as n ! 1.The paper also examines the threshold behavior ofsuch graphs. In this paper, we will apply these tech-niques to deal with the special case that concernsour model.Several other papers have taken an approach tomodeling power law graphs di�erent from the onetaken here [Aiello et al. � 2001; Barab�asi and Al-bert 1999; Barab�asi et al. 2000; Kleinberg et al.1999; Kumar et al. 1999b]. The essential idea ofthese papers is to de�ne a random process for grow-ing a graph by adding nodes and edges. The intentis to show that the de�ned processes asymptoticallyyield graphs with a power law degree sequence withvery high probability. While interesting and impor-tant, this approach has several di�culties. First, themodels are di�cult to analyze rigorously, since thetransition probabilities are themselves dependent onthe the current state. For example, [Barab�asi andAlbert 1999; Barab�asi et al. 2000] implicitly assumethat the probability that a node has a given degreeis a continuous function. Kumar et al. [2001] o�er apartial analysis of the situation. Second, while themodels may generate graphs with power law degreesequences, it remains to be seen if they generategraphs that duplicate other structural properties ofthe Web, the Internet, and call graphs. For example,the model in [Barab�asi and Albert 1999; Barab�asiet al. 2000] cannot generate graphs with a powerlaw other than c=x3. Moreover, all the graphs canbe decomposed into m disjoint trees, where m is aparameter of the model. The (�; �) model in [Ku-mar et al. 1999b] is able to generate graphs for whichthe power law for the indegree is di�erent than thepower law for the outdegree as is the case for theWeb. However, to do so, the model requires thatthere be nodes that have only indegree and no out-degree and vice versa. While this may be appropri-ate for call graphs (e.g., customer service numbers)it may not be right for modeling the Web. Thus,while the random graph generation approach holdsthe promise of accurately predicting a wide variety

of structural properties of many real world massivegraphs, much work remains to be done.In this paper we take a di�erent approach. We donot attempt to answer how a graph comes to havea power law degree sequence. Rather, we take thatas a given. In our model, all graphs with a givenpower law degree sequence are equiprobable. Thegoal is to derive structural properties that hold withprobability asymptotically approaching 1. Such anapproach, while potentially less accurate than thedetailed modeling approach above, has the advan-tage of being robust: the structural properties de-rived in this model will be true for the vast majorityof graphs with the given degree sequence. Thus, webelieve that this model will be an important com-plement to random graph generation models.The power law random graph model will be de-scribed in detail in the next section. In Sections 3and 4, our results on connectivity will be derived.Section 5 discusses the sizes of the second largestcomponents. Section 6 compares the results of ourmodel to exact connectivity data for call graphs. Ashort list of open questions concludes the article.A subsequent paper [Aiello et al. � 2001] exam-ines further several aspects of power law graphs, in-cluding their evolution, their \scale invariance", andthe asymmetry of in-degrees and out-degrees.
2. A RANDOM GRAPH MODELWe consider a random graph with the following de-gree distribution depending on two given values �and �. There are y vertices of degree x, where xand y satisfy log y = �� � log x:In other words,��fv : deg v = xg�� = y = e�x� :Basically, � is the logarithm of the size of the graphand � is the log-log growth rate of the graph.The number of edges should be an integer. Tobe precise, the expression above for y should berounded down to be�=x�c. If we use real numbersinstead of rounding down to integers, this may causesome error terms in further computation, but we willsee that the error terms can be easily bounded. Forsimplicity and convenience, we will use real numbers
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with the understanding that the actual numbers aretheir integer parts. Another constraint is that thesum of the degrees should be even. This can be as-sured by adding a vertex of degree 1 if the sum isodd. Furthermore, for simplicity, we assume herethat there are no isolated vertices.We can deduce the following facts for our graph:
(1) The maximum degree of the graph is e�=�. Notethat 0 � log y = �� � log x.
(2) The number n of vertices can be computed asfollows: By summing y(x) for x from 1 to e�=�,we have

n = e�=�Xx=1 e�x� �
8><>: �(�)e� if � > 1,�e� if � = 1,e�=�=(1��) if 0 < � < 1,where �(t) = P1n=1 n�t is the Riemann zeta func-tion.

(3) The number of edges E is given by
E = 12 e�=�Xx=1 xe�x�

8><>:
12�(��1)e� if � > 2,14�e� if � = 2,12e2�=�=(2��) if 0 < � < 2.The excess of the real numbers in (1){(3) over theirinteger parts can be estimated as follows: For thenumber n of vertices, the error term is at most e�=�.For � � 1, it is o(n), which is a lower order term.For 0 < � < 1, the error term for n is relativelylarge. In this case, we haven � e�=�1� � � e�=� = �e�=�1� � :Therefore, n has same magnitude as e�=�=(1��).The number E of edges can be treated similarly.For � � 2, the error term of E is o(E), a lower orderterm. For 0 < � < 2, E has the same magnitudeas in the formula of item (3). In this paper we dealmainly with the case � > 2. The case 0 < � < 2 isconsidered only in the next section, where we referto 2�� as a constant. By using real numbers insteadof rounding down to their integer parts, we simplifythe arguments without a�ecting the conclusions.To study the random graph model, we must con-sider large n. We say a property holds almost surely(a. s.) if the probability that it holds tends to 1 asthe number n of the vertices goes to in�nity. Thuswe consider � to be large but � is �xed.

We use the following random graph model for agiven degree sequence:
The model:

1. Form a set L containing deg v distinct copies ofeach vertex v.
2. Choose a random matching of the elements of L.
3. For two vertices u and v, the number of edgesjoining u and v is equal to the number of edgesin the matching of L joining copies of u to copiesof v.We remark that the graphs that we are consider-ing are in fact multi-graphs, possibly with loops.This model is a natural extension of the model fork-regular graphs, formed by combining k randommatchings. For references and unde�ned terminol-ogy, see [Alon and Spencer 1992; Wormald 1999].This random graph model is slightly di�erent fromthe uniform selection model P (�; �) described inSection 1.1. However, by using the techniques of[Molloy and Reed 1998, Lemma 1], it can be shownthat if a random graph with a given degree sequencea. s. has property P under one of these two models,then it a. s. has property P under the other model,provided some general conditions are satis�ed.
3. THE CONNECTED COMPONENTSMolloy and Reed [1995] showed that for a randomgraph with (�i + o(1))n vertices of degree i, wherethe �i are nonnegative values that sum to 1, thegiant component emerges whenQ := Xi�1 i(i�2)�i > 0;
so long as the maximum degree is less than n1=4�".They also show that almost surely there is no giantcomponent when Q < 0 and the maximum degree isless than n1=8�".Here we compute Q for our (�; �)-graphs:
Q = e�=�Xx=1 x(x�2)j e�x� k � e�=�Xx=1 e�x��2 � 2 e�=�Xx=1 e�x��1� ��(��2)� 2�(��1)�e� if � > 3:We are thus led to consider the value �0 � 3:47875,which is a solution to�(��2)� 2�(��1) = 0:
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If � > �0, we havee�=�Xx=1 x(x�2)j e�x� k < 0:
We summarize our results here:

1. When � > �0 = 3:47875 : : : , the random graphalmost surely has no giant component. When� < �0 = 3:47875 : : : , there is almost surely aunique giant component.
2. When 2 < � < �0 = 3:47875 : : : , almost surelythe second largest components have size �(logn).For any 2 � x < �(logn), there is almost surelya component of size x.
3. When � = 2, almost surely the second largestcomponents are of size �(logn=log log n). Forany 2 � x < �(logn=log log n), there is almostsurely a component of size x.
4. When 1 < � < 2, the second largest componentsare almost surely of size �(1). The graph is al-most surely not connected.
5. When 0 < � < 1, the graph is almost surelyconnected.
6. For � = �0 = 3:47875 : : : , the case is compli-cated. It corresponds to the double jump of arandom graph G(n; p) with p = 1=n.
7. For � = 1, there is a nontrivial probability foreither case: that the graph is connected or dis-connected.We remark that for � > 8, Molloy and Reed's resultimmediately implies that almost surely there is nogiant component. When � � 8, additional analysisis needed to deal with the degree constraints. Wewill prove in Theorem 4.2 that almost surely thereis no giant component when � > �0. In Section 5,we will deal with the range � < �0. We will showin Theorem 5.1 that almost surely there is a uniquegiant component when � < �0. Furthermore, we willdetermine the size of the second largest componentwithin a constant factor.
4. THE SIZES OF CONNECTED COMPONENTS IN

CERTAIN RANGES FOR �For � > �0 = 3:47875 : : : , almost surely there is nogiant component. This range is of special interestsince it is quite useful later for describing the distri-bution of small components.

Theorem 4.1. For (�; �)-graphs with � > 4, the dis-tribution of the number of connected components isas follows :
1. For each vertex v of degree d = 
(1), let � bethe size of the connected component containingv. ThenPr����� � dc1 ��� > 2�c1rdc2c1 � � 2�2 ;wherec1 = 2� �(��2)�(��1) and c2 = �(��3)�(��1)���(��2)�(��1)�2are constants and where � = d" with " an arbi-trary small positive number and d a (slowly) in-creasing function of n. In other words , the vertexv almost surely belongs to a connected componentof size dc1 + O(d1=2+"):
2. The number of connected components of size x isalmost surely at least(1 + o(1)) e�c��11 x� :and at most c3 e� log�=2�1 nx�=2+1 ;where c3 = 41+�c2(��2)c1+�1is a constant depending only on �.
3. A connected component of the (�; �)-graph al-most surely has size at moste2�=(�+2)� = �(n2=(�+2) log n):In our proof of this result we use the second moment,whose convergence depends on � > 4. In fact for� � 4 the second moment diverges as the size ofthe graph goes to in�nity, so our method no longerapplies.Theorem 4.1 strengthens the following result |which can be derived from [Molloy and Reed 1995,Lemma 3] | for the range of � > 4.
Theorem 4.2. For � > �0 = 3:47875 : : : , a connectedcomponent of the (�; �)-graph almost surely has sizeat most Ce2�=�� = �(n2=� log n), where C = 16=c21is a constant depending only on �.
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The proof of Theorem 4.2, which we briey describehere because it is needed in proving Theorem 4.1,uses the branching process method. Pick any ver-tex v in the graph, expose its neighbors, then theneighbors of its neighbors, repeating until the entirecomponent is exposed. We expose only one vertexat each stage. At stage i, let Li the set of verticesexposed and Xi be the random variable that countsthe number of vertices in Li. We mark all verticesin Li as either live or dead. A vertex in Li whoseneighbors have not all been exposed yet is markedlive. One whose neighbors have all been exposed ismarked dead. Let Oi be the set of live vertices andYi the random variable that is the number of ver-tices in Oi. At each step we mark exact one deadvertex, so the total number of dead vertices at thei-th step is i. We have Xi = Yi + i. Initially weassign L0 = O0 = fvg. Then at stage i � 1, we dothe following:
1. If Yi�1 = 0, stop and output Xi�1.
2. Otherwise, randomly choose a live vertex u fromOi�1 and expose its neighbors in Nu. Then marku dead and mark each vertex live if it is in Nubut not in Li�1. We haveLi = Li�1 [Nu;Oi = (Oi�1 n fug) [ (Nu n Li�1):Suppose that v has degree d. Then X1 = d+ 1, andY1 = d. Eventually Yi will hit 0 if i is large enough.Let � denote the stopping time of Y , namely, Y� = 0.Then X� = Y� + � = � measures the size of the con-nected component. We �rst compute the expectedvalue of Yi and then use Azuma's Inequality [Molloyand Reed 1995] to prove Theorem 4.2.Suppose that vertex u is exposed at stage i. ThenNu \Li�1 contains at least one vertex v, which wasexposed to reach u. However, Nu\Li�1 may containmore than one vertex. We call an edge from u to avertex in Li�1 other than v a backedge. Backedgescause the exploration to stop sooner, especially whenthe component is large. However in our case � >�0 = 3:47875 : : : , the contribution of backedges isquite small. We set Zi = #fNug and Wi = #fNu \Li�1g � 1, so Zi measures the degree of the vertexexposed at stage i, while Wi measures the numberof backedges. By de�nition,Yi � Yi�1 = Zi � 2�Wi:

We have
E(Zi) = e�=�Xx=1 xx(e�=x�)E = e�E e�=�Xx=1 x2��= �(��2) + O(n3=��1)�(��1) + O(n2=��1)= �(��2)�(��1) + O(n3=��1):Now we bound Wi. Suppose there are m edges ex-posed at stage i � 1. Then the probability that anew neighbor is in Li�1 is at most m=E. We have
E(Wi) � 1Xx=1 x�mE �x = m=E(1�m=E)2= mE + O��mE �2�; (4–1)provided that m=E = o(1).When i � Ce2�=��, m is at most ie�=� � Ce3�=��.Hence, mE = O(n3=��1 log n) = o(1):We haveE(Yi) = Y1 + iXj=2 E(Yj � Yj�1)
= d + iXj=2 E(Zj � 2�Wj)
= d + (i�1)��(��2)�(��1) � 2�� iO(n3=��1 log n)= d� c1(i�1) + io(1):

Proof of Theorem 4.2. Since jYj � Yj�1j � e�=�, byAzuma's martingale inequality, we havePr�jYi �E(Yi)j > t� � 2e�t2=(2ie2�=�);where i = (16=c21)e2�=� log n and t = 12c1i. SinceE(Yi) + t =d� c1(i� 1) + io(1) + 12c1i=� 12c1i + d + c1 + io(1) < 0;we havePr�� > (16=c21)e�=� log n� = Pr�� > i� � Pr(Yi� 0)� Pr�Yi>E(Yi) + t�� 2 exp�t2=2ie2�=� = 2n2 :
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Hence, the probability that there exists a vertex vsuch that v lies in a component of size greater than16c21 e2�=� log nis at most n 2n2 = 2n = o(1): �The proof of Theorem 4.1 uses the methodologyabove as a starting point while introducing the cal-culation of the variance of the above random vari-ables.
Proof of Theorem 4.1. We follow the notation and pre-vious results of Section 4. Under the assumption� > 4, we consider

Var(Zi) = e�=�Xx=1 x2x(e�=x�)E � E(Zi)2
= e�E e�=�Xx=1 x3�� � E(Zi)2
= �(��3) + O(n4=��1)�(��1) + O(n2=��1) � ��(��2)�(��1)�2+ O(n3=��1)= �(��3)�(��1) � ��(��2)�(��1)�2 + O(n4=��1)= c2 + o(1);since � > 4.We need to compute the covariance. There aremodels for random graphs in which the edges arein dependently chosen. Then, Zi and Zj are in-dependent. However, in the model based on ran-dom matchings, there is a small correlation. Forexample, Zi = x slightly e�ects the probability ofZj = y. Namely, Zj = x has slightly less chance,while Zj = y 6= x has slightly more chance. Bothdi�erences can be bounded by1E � 1 � 1E � 2E2 :Hence Covar(Zi; Zj) � E(Zi)E (2=E2)= O� 1n� if i 6= j:Now we will bound Wi. Suppose that there are medges exposed at stage i � 1. Then the probability

that a new neighbor is in Li�1 is at most m=E. Wehave Var(Wi) � 1Xx=1 x3 �mE �x � E(Wi)2
= m=E(m=E + 1)(1�m=E)3 �O��mE �2�= mE + O��mE �2�;Covar(Wi;Wj) �qVar(Wi) Var(Wj)� mE + O��mE �2�;Covar(Zi;Wj) �qVar(Zi) Var(Wj) = O�rmE�:When i = O(e�=�), m � ie�=� = O(e2�=�), we haveE(Yi) = d+ (i�1)��(��2)�(��1) � 2�+ iO(n3=��1) + imE= d� (i�1)c1 +O(n4=��1)= d� (i�1)c1 + o(1)andVar(Yi) = Var�d + iXj=2(Yj � Yj�1)�= Var� iXj=2(Zj �Wj)�

= iXj=2�Var(Zj) + Var(Wj)�
+ X2�j 6=k�i�Covar(Zj ; Zk)� Covar(Zj ;Wk)+ Covar(Wj;Wk)�= ic2 + io(1) + i2�O(1=n) + O(pe(2=��1)�)+ O(e(2=��1)�)�= ic2 + io(1) + i�O(e(2=��1=2)�) + O(e(3=��1)�)�= ic2 + io(1):Chebyshev's inequality givesPr�jYi �E(Yi)j > ��� < 1�2 ;where � is the standard deviation of Yi, and � =pic2 + o(pi). Seti1 = � dc1 � 2�c1rdc2c1 �; i2 = � dc1 + 2�c1rdc2c1 �:
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ThenE(Yi1)��� = d�(i1�1)c1+o(1)���pc2i1+o(pi1)�� 2�rdc2c1 ��rc2 dc1�o(pd)
= �rdc2c1 �o(pd) > 0:Hence,Pr(� < i1) � Pr(Yi1 � 0)� Pr�Yi1 < E(Yi1)� ��� � 1�2 :Similarly,E(Yi2)+�� = d�(i2�1)c1+o(1)+��pc2i2+o(pi2)�� �2�rdc2c1 +�rc2 dc1 +o(pd)
= ��rdc2c1 +o(pd) < 0:Hence,Pr(� > i2) � Pr(Yi2 > 0)� Pr�Yi2 > E(Yi2) + ��� � 1�2 :ThereforePr����� � dc1 ��� > 2�c1rdc2c1 � � 2�2 :For a �xed v and � a function slowly increasing toin�nity, the preceding inequality implies that almostsurely we have � = d=c1 + O(�pd).Almost all components generated by vertices ofdegree x have size about d=c1. One such componentcan have at most about 1=c1 vertices of degree d.Hence, the number of components of size d=c1 is atleast c1e�=�=d�. Let d = c1x. Then the number ofcomponents of size x is at leaste�=�c��11 x� �1 + o(1)�:The argument above actually gives the followingresult. The size of every component whose verticeshave degree at most d0 is almost surely Cd20 log n,where C = 16=c21 is the same constant as in Theorem4.2. Set x = Cd20 log n and consider the number ofcomponents of size x. A component of size x almostsurely contains at least one vertex of degree greaterthan d0.

For each vertex v with degree d � d0, by part 1in the statement of Theorem 4.1, we havePr����� � dc1 ��� > 2�dc1 rdc2c1 � � 2�2d :Letting �d = c1Cd20 log n4 r c1c2d;we havePr(� � Cd20 logn) � Pr�� > dc1 + 2�dc1 rdc2c1 �� C3 dd40 log2 n;where C3 = 32c2=(c31C2) = c1c2=8 is a constant de-pending only on �. Since there are only e�=d� ver-tices of degree d, the number of components of sizeat least x is at moste�=�Xd=d0 e�d�C3 dd40 log2 n � C3e�d40 log2 n 1Xd=d0 1d��1� C3e�d40 log2 n 2� � 2 1d��20= 2C3e�(��2)d�+20 log2 n= c3 e� log�=2�1 nx�=2+1 ;where c3 = 2C3(��2)C1+�=2 = 41+�c2(��2)c1+�1 :
For x = e2�=(�+2)�, the preceding inequality impliesthat the number of components of size at least x is atmost o(1). In other words, almost surely no compo-nent has size greater than e2�=(�+2)�: This completesthe proof of Theorem 4.1. �
5. ON THE SIZE OF THE SECOND LARGEST

COMPONENTFor � < �0 = 3:47875 : : : , we consider the giantcomponent as well as the size of the second largestcomponent.
Theorem 5.1. Consider an (�; �)-graph with � < �0 =3:47875 : : : .
1. There is a unique giant component of size �(n).
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2. When 2 < � < �0, almost surely the size of thesecond largest component is �(logn).
3. When � = 2, almost surely the size of the secondlargest component is �(logn=log logn).
4. When 1 � � < 2, almost surely the size of thesecond largest component is �(1).
5. When 0 < � < 1, almost surely the graph is con-nected .
Proof. When � < �0, the branching process methodis no longer feasible when vertices of large degreesare involved. Thus, we cannot apply Azuma's mar-tingale inequality for bounding Yi as we did in ear-lier proofs. We will modify the branching processmethod as follows.
(a) Choose a number x� (to be speci�ed later de-pending on �).
(b) Start with Y �0 live vertices and Y �0 � C log n. Allother vertices are unmarked.
(c) At the i-th step, choose one live vertex u and ex-posed its neighbors. If the degree of u is less thanor equal to x�, proceed as in Section 4, by mark-ing u dead and all vertices v 2 Nu live (providedv is not marked before). If the degree of u isgreater than x�, mark exactly one vertex v 2 Nulive and others dead, provided v is unmarked. Inboth cases u is marked dead.The main idea is to show that Y �i , a truncated ver-sion of Yi, is well-concentrated around E(Y �i ). Al-though it is di�cult to directly derive such a resultfor Yi because of vertices of large degrees, we will beable to bound the distribution Y �i . Indeed, we willshow that the set of marked vertices (live or dead)grows to a giant component if Y �0 exceeds a certainbound. We consider three ranges for �.
Case 1: 2 < � < �0. We consider the positive constant

Q = 1E e�=�Xx=1 x(x�2)j e�x� k:There is a constant integer x0 satisfying1E x0Xx=1 x(x�2)j e�x� k > Q2 :We choose � satisfying�(1��)2 = Q4 :

If the component has more than �E edges, it musthave �(n) vertices since � > 2. So it is a giantcomponent and we are done. We may assume thatthe component has no more than �E edges.We now choose x� = x0 and apply the modi�edbranching process. Then, Y �i satis�es:� Y �0 � dC log ne, where C = 130x20=Q is a con-stant depending only on �.� �1 � Y �i � Y �i�1 � x0.� Let Wi be the number of backedges as de�ned inSection 4. By inequality (4{1) and the assump-tion that the number of edges m in the compo-nent is at most �n, we haveE(Wi) � �(1� �)2 = Q4 :Hence,E(Y �i � Y �i�1) � 1E x0Xx=1 x(x�2)j e�x� k� E(Wi)
� Q2 � Q4 = Q4 :By Azuma's martingale inequality,Pr�Y �i � Qi8 � � Pr�Y �i �E(Y �i ) � �Qi8 �< exp�(Qi=8)22ix20 = o(n�1)provided that i > C logn.The preceding inequality implies that with prob-ability at least 1 � o(n�1), we have Y �i > Qi=8 > 0when i > dC log ne. Since Y �i decreases by at most 1at each step, Y �i cannot be zero if i � dC logne. SoY �i > 0 for all i. In other words, a. s. the branchingprocess will not stop. However, it is impossible tohave Y �n > 0 | a contradiction. Thus we concludethat the component must have at least �n edges. Soit is a giant component. We note that if a compo-nent has more than dC log ne edges exposed, thenalmost surely it is a giant component. In particu-lar, any vertex with degree more than dC log ne isalmost surely in the giant component. Hence, thesecond components have size of at most �(log n).Next we show that the second largest has size atleast �(logn). We consider the vertices v of degreex = c�, where c is some constant. There is a positiveprobability that all neighboring vertices of v havedegree 1. In this case, we get a connected component
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of size x + 1 = �(logn). The probability of this isabout � 1�(��1)�c�:There are e�=(c�)� vertices of degree x. Thus theprobability that none of them has the precedingproperty is about�1� 1�(��1)c�� e�(c�)� � exp�� 1�(��1)c� e�(c�)��= exp���e=�(��1)c��(c�)� �
= o(1);where

c = 8<: 1 if � � 3,1�2 log(��2) if 3 > � > 2.In other words, a. s. there is a component of sizec� + 1 = �(logn). Therefore, the second largestcomponent has size �(logn). Moreover, the argu-ment still holds if we replace c� by any small num-ber. Hence, small components exhibit a continuousbehavior.
Case 2: � = 2. We choose x� = 10�. We note thata component with more than 2E=3 edges must beunique. We will prove that almost surely the uniquecomponent contains all vertices with degree greaterthan 101�2. So it contains (1� o(1))E edges and itis the giant component.We further modify the branching process by start-ing from Y �0 � d101�2e vertices. If the componenthas more than 23E edges, we are done. Otherwise,the expected number of backeges is small.E(Wi) � 2=3(1� 2=3)2 = 6from inequality (4{1). Hence, Y �i satis�esY �0 � d101�2e;�1 � Y �i � Y �i�1 � 10�;E(Y �i � Y �i�1) � 1E 10�Xx=1 x(x�2)j e�x� k�E(Wi)> 10� 2� 6 = 2:

By Azuma's martingale inequality,Pr(Y �i � i) � Pr(Y �i � E(Y �i ) � �i< exp�� i2i(10�)2� = o(n�1)provided that i � 101�2.This inequality implies that with proability atleast 1 � o(n�1), we have Y �i � i > 0 when i >d101�2e. Since Y �i decreases at most by 1 at eachstep, Y �i cannot be zero if i � d101�2e. So Y �i > 0for all i. In other words, a. s. the branching pro-cess will not stop. However, it is impossible to haveY �n > 0 | a contradiction. Thus we conclude thatthe component must have at least 23E edges. Wenote that a. s. all vertices with degree more thand101�2e are in the unique component with at least23E edges, hence the giant component.The probability that a random vertex is in thegiant component is at most1E 101�2Xx=1 xe�x2 � 2 log�� :
The probability that there are 2:1�=log� verticesnot in the giant component is at most�2 log�� �2:1�=log� = e�(2:1+o(1))� = o(n�2):Since there is at most n connected components, weconclude that a. s. a connected component of sizegreater that 2:1 �log� = �� log nlog log n�must be the giant component.Now we �nd a vertex v of degree x with x �0:9�=log�. The probability that all its neighborsare of degree 1 is (1=�)x. The probability that nosuch vertex exists is at most�1� � 1��x�e�=x2 � exp��� 1��x e�x2�= exp�e0:1�x2 = o(1):Hence, almost surely there is a vertex of degreex � 0:9�=log� that, which forms a connected com-ponent of size x+1. This proves that a. s. the secondlargest component has size �(logn=log logn).
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Case 3: 0 < � < 2. We use the modi�ed branchingprocess by choosingx� = exp (5�2�)�(6�2�)� :If a component has more than 2E=3 edges, it is theunique giant component and we are done. Other-wise, E(Wi) � 2=3(1� 2=3)2 = 6:Hence, Y �i satis�esY �0 � 5C2 exp (2��)�(3��)� ;�1 � Y �i � Y �i�1 � exp (5�2�)�(6�2�)� ;
E(Y �i � Y �i�1) � 1E exp (5�2�)�(6�2�)�Xx=1 x(x�2)j e�x� k�E(Wi)� Ce�=(2�):Here C is a constant depending only on �.By Azuma's martingale inequality,Pr�Y �i �12Ce�=(2�)i�<Pr�Y �i �E(Y �i )��12Ce�=(2�)i�< exp � (12Ce�=(2�)i)2i�exp (5�2�)�(6�2�)��2

!
= o(n�1)provided that i � 5C2 exp (2��)�(3��)� :This inequality shows that with probability atleast 1 � o(n�1), we have Y �i > 12Ce�=(2�)i > 0 pro-vided that i > 5C2 exp (2��)�(3��)� :Since Y �i decreases at most by 1 at each step, Y �icannot be zero ifi � 5C2 exp (2��)�(3��)� :So Y �i > 0 for all i. In other words, a. s. the branch-ing processing will not stop. However, it is impos-sible to have Y �n > 0 | a contradiction. So, a. s. allvertices with degree more than5C2 exp (2��)�(3��)�

are in the giant component. The probability that arandom vertex is in the giant component is at most
1E

5C2 exp (2��)�(3��)�Xx=1 xe�x� = �� exp�(2��)�(3��)��:The probability that all2j3��2�� k+ 1vertices are not in the giant vertex is at most
��exp��(2��)�(3��)���2

�3��2���+1= o(n�2):Since there are at most n connected components,we conclude that a. s. a connected component ofsize greater that 2j3��2�� k = �(1)must be the giant component.For 1 < � < 2, we �x a vertex v of degree 1. Theprobability that the other vertex that connects to vis also of degree 1 is �� e�e2�=� �:Therefore the probability that no component hassize of 2 is at most�1��� e�e2�=� ��e�� e��(e2��2�=�) � o(1):In other words, the graph a. s. has at least one com-ponent of size 2.For 0 < � < 1, we want to show that the ran-dom graph is a. s. connected. Since the size of thepossible second largest component is bounded by aconstant M , all vertices of degree � M are almostsurely in the giant component. We only need toshow the probability that there is an edge connect-ing two small degree vertices is small. There areonly MXx=1 xj e�x� k � Ce�vertices with degree less than M . For any randompair of vertices (u; v), the probability that there isan edges connecting them is about1E = �(e�2�=�):
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Hence the probability that there is edge connectingtwo small degree vertices is at mostXu;v 1E = (Ce�)2�(e2�=�) = o(1):
Thus every vertex is a. s. connected to a vertex withdegree � M , which a. s. belongs to the giant expo-nent. Hence, the random graph is a. s. connected.�
6. COMPARISONS WITH REALISTIC MASSIVE GRAPHSOur (�; �)-random graph model was originally de-rived from massive graphs generated by long dis-tance telephone calls. These so-called call graphsare taken over di�erent time intervals. For the sakeof simplicity, we consider all the calls made in oneday. Every completed phone call is an edge in thegraph. Every phone number that either originatesor receives a call is a node in the graph. When anode originates a call, the edge is directed out ofthe node and contributes to that node's outdegree.Likewise, when a node receives a call, the edge is di-rected into the node and contributes to that node'sindegree.

The particular call graph we used for the statis-tics in this section correspond to the date August 10,1998, a typical day. The data were compiled by J.Abello and A. Buchsbaum of AT&T Labs from rawphone call records using, in part, the external mem-ory algorithm of [Abello et al. 1998] for computingconnected components of massive graphs.In Figure 1, we plot the number of vertices versusthe indegree and the outdegree for the call graph.Let y(i) be the number of vertices with indegree i.For each i such that y(i) > 0, a dot on the left plotis placed at �i; y(i)�. The plot on the right is builtin the same way. Plots of the number of verticesversus the indegree or outdegree for the call graphsof other days are very similar.Figure 2 plots for the same call graph the numberof connected components for each possible size.The degree sequence of the call graph does notobey perfectly the (�; �)-graph model. The num-ber of vertices of a given degree does not even de-crease monotonically with increasing degree. More-over, the call graph is directed: for each edge thereis a node that originates the call and a node that re-ceives the call. The indegree and outdegree of a nodeneed not be the same. Clearly the (�; �)-randomy(i)
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FIGURE 1. Left: number of vertices y(i) versus indegree i, plotted on a log-log scale, for a representative real-lifegraph. Right: number of vertices versus outdegree o for the same graph.
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FIGURE 2. Left: number of connected componentsfor each possible component size s for our examplegraph. Note the giant component on the lower right.
graph model does not capture all of the random be-havior of the real world call graph.Nonetheless, our model does capture some of thebehavior of the call graph. To see this we �rst esti-mate � and � in Figure 1. Recall that for an (�; �)-graph, the number of vertices as a function of degreeis given by log y = � � � log x. By approximatingFigure 1 by a straight line, � can be estimated usingthe slope of the line to be approximately 2:1. Thevalue of e� for Figure 1 is approximately 30 � 106.The total number of nodes in the call graph can beestimated by �(2:1)e� = 1:56e� � 47� 106.For � between 2 and �0, the (�; �)-graph will havea giant component of size �(n). In addition, a. s. allother components are of size O(logn). Moreover, forany 2 � x � O(logn), a component of size x exists.This is qualitatively true of the distribution of com-ponent sizes of the call graph in Figure 2. The onegiant component contains nearly all of the nodes.The maximum size of the next largest componentis indeed exponentially smaller than the size of thegiant component. Also, a component of nearly ev-ery size below this maximum exists. Interestingly,the distribution of the number of components of sizesmaller than the giant component is nearly log-log

linear. This suggests that after removing the gi-ant component, one is left approximately with an(�; �)-graph with � > 4. (Theorem 4.1 yields a log-log linear relation between number of componentsand component size for � > 4.) This seems intu-itively reasonable, since the greater the degree, thefewer nodes of that degree we expect to remain afterdeleting the giant component. This will increase thevalue of � for the resulting graph.
7. OPEN QUESTIONSNumerous questions remain to be studied. For ex-ample, what is the e�ect of time scaling? How doesit correspond with the evolution of �? What arethe structural behaviors of the call graphs? Whatare the correlations between the directed and undi-rected graphs? It is of interest to understand thephase transition of the giant component in the re-alistic graph. In the other direction, the number oftiny components of size 1 is leading to many inter-esting questions as well. Clearly, there is much workto be done in our understanding of massive graphs.
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