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Abstract

LetH = (V,E) be an r-uniform hypergraph with the vertex set V and the edge set E.
For 1 ≤ s ≤ r/2, we define a weighted graph G(s) on the vertex set

(

V

s

)

as follows. Every
pair of s-sets I and J is associated with a weight w(I, J), which is the number of edges
in H passing through I and J if I∩J = ∅, and 0 if I∩J 6= ∅. The s-th Laplacian L(s) of
H is defined to be the normalized Laplacian of G(s). The eigenvalues of L(s) are listed as
λ
(s)
0 , λ

(s)
1 , . . . , λ

(s)

(ns)−1
in non-decreasing order. Let λ̄(s)(H) = maxi6=0{|1 − λ

(s)
i

|}. The

parameters λ̄(s)(H) and λ
(s)
1 (H), which were introduced in our previous paper [26],

have a number of connections to the mixing rate of high-ordered random walks, the
generalized distances/diameters, and the edge expansions.

For 0 < p < 1, letHr(n, p) be a random r-uniform hypergraph over [n] := {1, 2, . . . , n},
where each r-set of [n] has probability p to be an edge independently. For 1 ≤ s ≤ r/2,

p(1− p) ≫ log4 n

nr−s , and 1− p ≫ log n

n2 , we prove that almost surely

λ̄(s)(Hr(n, p)) ≤
s

n− s
+





2
√

(

r−s

s

)

+ 1 + o(1)





√

1− p
(

n−s

r−s

)

p
.

We also prove that the empirical distribution of the eigenvalues of L(s) for Hr(n, p)
follows the Semicircle Law if p(1− p) ≫ log n

nr−s .

1 Introduction

The spectrum of the adjacency matrix (and/or the Laplacian matrix) of a random graph
was well-studied in the literature [1, 10, 11, 13, 14, 15, 17, 18, 21]. Given a graph G, let
µ1(G), . . . , µn(G) be the eigenvalues of the adjacency matrix ofG in the non-decreasing order,
and λ0(G), . . . , λn−1(G) be the eigenvalues of (normalized) Laplacian matrix of G respec-
tively. Let G(n, p) be the Edős-Rényi random graph model. Füredi and Komlós [21] showed
that if np(1 − p) ≫ log6 n then almost surely µn = (1 + o(1))np and max{−µ1, µn−1} ≤
(2 + o(1))

√

np(1− p). The results are extended to sparse random graphs [17, 25] and gen-
eral random matrices [15, 21]. Alon-Krivelevich-Vu [1] proved the concentration of the s-th
largest eigenvalue of a random symmetric matrix with independent random entries of abso-
lute value at most 1. Friedman (in a series of papers [18, 19, 20]) proved that the second
largest eigenvalue of random d-regular graphs is almost surely (2+o(1))

√
d− 1 for any d ≥ 4.

Chung-Lu-Vu [11] studied the Laplacian eigenvalues of random graphs with given expected
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degrees; their results were supplemented by Coja-Oghlan [13, 14] for much sparser random
graphs.

In this paper, we study the spectra of the Laplacians of random hypergraphs. Laplacians
for regular hypergraphs was first introduced by Chung [5] in 1993 using homology approach.
Rodŕıguez [28, 29] treated a hypergraph as a multi-edge graph and then defined its Laplacian
to be the Laplacian of the corresponding multi-edge graph. Inspired by these work, we
[26] introduced the generalized Laplacian eigenvalues of hypergraphs through high-ordered
random walks. Let H = (V,E) be an r-uniform hypergraph on n vertices. We can associate
r − 1 Laplacians L(s) (1 ≤ s ≤ r − 1) to H ; roughly speaking, L(s) captures the incidence
relations between s-sets and edges in H . Our definition of the Laplacian at the spacial case
s = 1 is the same as the Laplacian considered by Rodŕıguez [28, 29]. The s-th Laplacian is
loose if 1 ≤ s ≤ r/2, and is tight if r/2 < s ≤ r − 1. Here we only consider the spectra of
loose Laplacians.

For 1 ≤ s ≤ r/2, we consider an auxiliary weighted graph G(s) defined as follows: the
vertex set of G(s) is

(

V
s

)

while the weighted function W :
(

V
s

)

×
(

V
s

)

→ Z is defined as

W (S, T ) =

{

|{F ∈ E(H) : S ∪ T ⊂ F}| if S ∩ T = ∅;
0 otherwise.

(1)

The s-th Laplacian of H , denoted by L(s), is the normalized Laplacian of G(s). For any
s-set S, let dS be the number of edges in H passing through S; the degree of S in G(s) is
(

r−s
s

)

dS . Let D be the diagonal matrix of the degrees {dS} and W be the weight matrix

{w(S, T )}. Note that T :=
(

r−s
s

)

D is the diagonal matrix of degrees in G(s). We have

L(s) = I − T−1/2WT−1/2. (2)

The eigenvalues of L(s) are listed as λ
(s)
0 , λ

(s)
1 , . . . , λ

(s)

(ns)−1
in non-decreasing order. We

have
0 = λ

(s)
0 ≤ λ

(s)
1 ≤ · · · ≤ λ

(s)

(ns)−1
≤ 2. (3)

The first non-trivial eigenvalue λ
(s)
1 > 0 if and only if G(s) is connected. When this occurs,

we say H is s-connected. The diameter of G(s) is called the s-th diameter of H . The largest

eigenvalue λ
(s)

(ns)−1
is also denoted by λ

(s)
max. The (Laplacian) spectral radius, denoted by λ̄(s),

is the maximum of 1− λ
(s)
1 and λ

(s)
max − 1.

This definition differs slightly with the one in [26], where the vertex set of the auxiliary
graph (denoted by G(s)′) is the set of all distinct s-tuples instead. Note that G(s)′ is the
blow-up of G(s). Their Laplacian spectra differ only by the multiplicity of 1’s. Therefore,

two different definitions give the same values of λ
(s)
1 , λ

(s)
max, and λ̄(s).

For different s, the following inequalities were proved in [26].

λ
(1)
1 ≥ λ

(2)
1 ≥ . . . ≥ λ

(⌊r/2⌋)
1 ; (4)

λ(1)
max ≤ λ(2)

max ≤ . . . ≤ λ(⌊r/2⌋)
max . (5)

The s-th Laplacian has a number of connections to the mixing rate of high-ordered
random walks, the generalized distances/diameters, and the edge expansions. Here we list
some applications, which are similar to results in [26], and results for graphs [4, 6, 7, 8, 9, 12].

Random s-Walks: The mixing rate of the random s-walk on H is at most λ̄(s).

2



The s-Diameter: The s-diameter of H is at most










log
|E(H)|(rs)

δ

log
λ
(s)
max+λ

(s)
1

λ
(s)
max−λ

(s)
1











.

Here δ = minS∈(Vs)
dS is the minimum degree among all s-sets.

Edge expansion: For 1 ≤ t ≤ s ≤ r
2 , S ⊂

(

V
t

)

, and T ⊂
(

V
t

)

, define

E(S, T ) = {F ∈ E(H) : ∃S ∈ S, ∃T ∈ T such that S ∩ T = ∅, and S ∪ T ⊂ F},

e(S, T ) =
|E(S, T )|

∣

∣

∣E(
(

V
s

)

,
(

V
t

)

)
∣

∣

∣

,

e(S) =
∑

S∈S dS
∑

S∈(Vs)
dS

,

e(T ) =

∑

T∈T dT
∑

T∈(Vt )
dT

.

Then we have

|e(S, T )− e(S)e(T )| ≤ λ̄(s)
√

e(S)e(T )e(S̄)e(T̄ ).

The proofs of these claims are very similar to those in [26] and are omitted here.
Our first result is the eigenvalues of the s-th Laplacian of the complete r-uniform hyper-

graph Kr
n.

Theorem 1 Let Kr
n be the complete r-uniform hypergraph on n vertices. For 1 ≤ s ≤ r/2,

the eigenvalues of s-th Laplacian of Kr
n are given by

1−
(−1)i

(

n−s−i)
s−i

)

(

n−s
s

) with multiplicity

(

n

i

)

−
(

n

i− 1

)

for 0 ≤ i ≤ s.

Here we point out an application of this theorem to the celebrated Erdős-Ko-Rado Theorem,
which states “if the n ≥ 2s, then the size of the maximum intersecting family of s-sets in [n]
is at most

(

n−1
s−1

)

.” (The theorem was originally proved by Erdős-Ko-Rado [16] for sufficiently
large n; the simplest proof was due to Katona [24].) Here we present a proof adapted from
Calderbank-Frankl [2], where they use the eigenvalues of Kneser graph instead. (The relation
between L(s)(Kr

n) and the Laplacian of the Kneser graph is explained in section 2.)
It suffices to show for any intersecting family U of s-sets, |U | ≤

(

n−1
s−1

)

. Note that U is an

independent set of G(s)(Kr
n). Restricting to U , L(s)(Kr

n) became an identity matrix; where
all eigenvalues are equal to 1. By Cauchy’s interlace theorem, we have

λ
(s)
k ≤ 1 ≤ λ

(s)

(ns)−|U|+k
(6)

for 0 ≤ k ≤ |U | − 1. Let N+ (or N−) be the number of eigenvalues of L(s)(Kr
n) which is ≥ 1

(or ≤ 1) respectively. Inequality (6) implies that |U | ≤ N+ and |U | ≤ N−. By Theorem 1,

N+ =
∑⌊(s−1)/2⌋

i=0

(

(

n
2i+1

)

−
(

n
2i

)

)

and N− =
∑⌊s/2⌋

i=0

(

(

n
2i

)

−
(

n
2i−1

)

)

. We have

|U | ≤ min{N+, N−} =
s−1
∑

i=0

(−1)s−1−i

(

n

i

)

=

(

n− 1

s− 1

)

.
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For 0 < p < 1, let Hr(n, p) be a random r-uniform hypergraph over [n] = {1, 2, . . . , n},
where each r-set of [n] has probability p to be an edge independently. We can estimate the
Laplacian spectrum of Hr(n, p) using the Laplacian spectrum of Kr

n as follows.

Theorem 2 Let Hr(n, p) be a random r-uniform hypergraph. For 1 ≤ s ≤ r/2, if p(1−p) ≫
log4 n
nr−s and 1− p ≫ log n

n2 , then almost surely the s-th spectral radius λ̄(s)(Hr(n, p)) satisfies

λ̄(s)(Hr(n, p)) ≤ s

n− s
+





2
√

(

r−s
s

)

+ 1 + o(1)





√

1− p
(

n−s
r−s

)

p
. (7)

Moreover, for 1 ≤ k ≤
(

n
s

)

− 1 almost surely we have

|λ(s)
k (Hr(n, p))− λ

(s)
k (Kr

n)| ≤





2
√

(

r−s
s

)

+ 1 + o(1)





√

1− p
(

n−s
r−s

)

p
. (8)

Note that G(n, p) is a special case of Hr(n, p) with r = 2. By choosing s = 1, Theorem
2 implies that

λ̄(G(n, p)) ≤ (3 + o(1))

√

1− p

(n− 1)p
for p(1− p) ≫ log4 n

n
. (9)

Chung-Lu-Vu’s result[11], when restricted to G(n, p), implies

λ̄(G(n, p)) ≤ (4 + o(1))
1√
np

for 1− ǫ ≥ p ≫ log6 n

n
. (10)

Inequality 9 has a smaller constant and works for a larger range of p than inequality 10.
Füredi and Komlós [21] proved the empirical distribution of the eigenvalues of G(n, p)

follows the Semicircle Law. Chung, Lu, and Vu [11] proved a similar result for the random
graphs with given expected degrees. Here we prove a similar result for random hypergraphs.

Theorem 3 For 1 ≤ s ≤ r/2, if p(1− p) ≫ log n
nr−s , then almost surely the empirical distribu-

tion of eigenvalues of the s-th Laplacian of Hr(n, p) follows the Semicircle Law centered at

1 and with radius (2 + o(1))
√

1−p

(r−s
s )(n−s

r−s)p
.

Remark 1 The proof of Theorem 3 actually implies the eigenvalues of L(s)(Hr(n, p)) −
L(s)(Kr

n) follows the Semicircle Law centered at 0 and with radius (2 + o(1))
√

1−p

(r−s
s )(n−s

r−s)p
.

Thus we have

max
1≤k≤(ns)−1

|λ(s)
k (Hr(n, p))− λ

(s)
k (Kr

n)| ≥





2
√

(

r−s
s

)

+ o(1)





√

1− p
(

n−s
r−s

)

p
. (11)

This shows that the upper bound of |λ(s)
k (Hr(n, p))− λ

(s)
k (Kr

n)| in inequality (8) in Theorem
2 is best up to a constant factor.

The rest of the paper is organized as follows. In section 2, we introduce the notation and
prove some basic lemmas. We will prove Theorem 1 in section 3 and Theorem 2 in section
4.

4



2 Notation and Lemmas

2.1 Laplacian eigenvalues of hypergraphs

Let H = (V,E) be an r-uniform hypergraph. For any subset S (|S| < r), the degree of S,
denoted by dS , is the number of edges passing through S. For each 1 ≤ s ≤ r/2, we associate
a weighted graph G(s) on the vertex set

(

V
s

)

to H as follows. Every pair of s-sets S and T
is associated with a weight w(S, T ), which is given by

w(S, T ) =

{

dS∪T if S ∩ T = ∅,
0 otherwise .

The s-th Laplacian L(s) of H is defined to be the normalized Laplacian of G(s). The degree
of S in G(s) is

∑

T w(S, T ) =
(

r−s
s

)

dS .

We assume that the s-sets in
(

V
s

)

are ordered alphabetically. Let N :=
(

n
s

)

; all square
matrices considered in the paper have the dimension N ×N and all vectors have dimension
N . Let W := (W (S, T )) be the weight matrix, D be the diagonal matrix with diagonal
entries D(S, S) = dS , d be the column vector with entries dS at position S ∈

(

V
S

)

, J be the

square matrix of all 1’s, and 1 be the column vector of all 1’s. Let T :=
(

r−s
s

)

D; here T is

the diagonal matrix of degrees in G(s). Then, we have

L(s) = I − T−1/2WT−1/2.

We list the eigenvalues of L(s) as

0 = λ
(s)
0 ≤ λ

(s)
1 , . . . , λ

(s)

(ns)−1
≤ 2.

We aim to compute the spectral radius λ̄(s)(H) = maxi6=0 |1 − λ
(s)
i |. Let vol(s)(H) :=

∑

S∈(Vs)
ds and φ0 := 1√

vol(s)(H)
D1/21. Note that φ0 is the unit eigenvector corresponding

to the trivial eigenvalue 0 of L(s).
We are ready to prove theorem 1.
Proof of Theorem 1: We can write down L(s)(Kr

n) using the following notation. The

Kneser graph K(n, s) is a graph over the vertex set
(

[n]
s

)

; two s-sets S and T form an edge of
K(n, s) if and only if S∩T = 0. Let K be the adjacency matrix of K(n, s); the eigenvalues of

K are (−1)i
(

n−s−i)
s−i

)

with multiplicity
(

n
i

)

−
(

n
i−1

)

for 0 ≤ i ≤ s (see [22]). Note that K(n, s)
is a regular graph; so the Laplacian eigenvalues can be determined from the eigenvalues of
its adjacency matrix. We observe that the associated weighted graph G(s) for the complete
r-uniform hypergraph Kr

n is essentially the Kneser graph with each edge associated with a
weight

(

n−2s
r−2s

)

. Note that the multiplicative factor
(

n−2s
r−2s

)

is canceled after normalization.

The L(s) (for Kr
n) is exactly the Laplacian of Kneser graph. Hence,

L(s)(Kr
n) = I − 1

(

n−s
s

)K.

Thus, the eigenvalues of s-th Laplacian of Kr
n are given by

1−
(−1)i

(

n−s−i)
s−i

)

(

n−s
s

) with multiplicity

(

n

i

)

−
(

n

i− 1

)

for 0 ≤ i ≤ s.

�
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Remark 2 For 1 ≤ s ≤ r/2, we have

λ
(s)
1 (Kr

n) = 1− s(s− 1)

(n− s)(n− s− 1)
, (12)

λ(s)
max(K

r
n) = 1 +

s

n− s
, (13)

λ̄(s)(Kr
n) =

s

n− s
. (14)

2.2 Random hypergraphs

Let Hr(n, p) be a random r-uniform hypergraph over the vertex set V = [n] and each r-set
has probability p to be an edge independently. We would like to bound the spectral radius
of the s-th Laplacian of Hr(n, p) for 1 ≤ s ≤ r/2.

For any F ∈
(

V
r

)

, letXF be the random indicator variable for F being an edge inHr(n, p);

all XF ’s are independent to each other. For any S, T ∈
(

V
s

)

, we have

W (S, T ) =

{
∑

F∈(nr)
S∪T⊂F

XF if S ∩ T = ∅;

0 otherwise.

Thus,

E(W (S, T )) =

{ (

n−2s
r−2s

)

p if S ∩ T = ∅;
0 otherwise.

(15)

The degree dS =
∑

S⊂F∈(Vr )
XF ; we have E(dS) =

(

n−s
r−s

)

p. For simplicity, let d :=
(

n−s
r−s

)

p.

We use the following Lemma to compare the eigenvalues of two matrices.

Lemma 1 Given any two (N ×N)-Hermitian matrices A and B, for 1 ≤ k ≤ N , let µk(A)
(or µk(B)) be the k-th eigenvalues of A (or B) in the increasing order. We have

|µk(A)− µk(B)| ≤ ‖A− B‖.

Proof: By the Min-Max Theorem (see [27]), we have

µk(A) = min
Sk

max
x∈Sk,‖x‖=1

x′Ax,

µk(B) = min
Sk

max
x∈Sk,‖x‖=1

x′Bx.

where the minimum is taken over all k-th dimensional subspace Sk ⊂ R
N . We have

µk(A) = min
Sk

max
x∈Sk,‖x‖=1

x′Ax

= min
Sk

max
x∈Sk,‖x‖=1

(x′Bx+ x′(A− B)x)

≤ min
Sk

max
x∈Sk,‖x‖=1

(x′Bx+ ‖A−B‖)

= µk(B) + ‖A−B‖.

Similarly, we can show µk(A) ≥ µk(B)− ‖A−B‖. The proof of the Lemma is finished. �

Our idea is to bound the spectral norm of the difference of L(s)(Hr(n, p)) and L(s)(Kr
n).

Let M := L(s)(Kr
n)−L(s)(Hr(n, p)) = T−1/2WT−1/2 − 1

(n−s
s )

K. We write M = M1 +M2 +

6



M3 +M4, where

M1 =
1

(

r−s
s

)

(

D−1/2(W − E(W ))D−1/2 − d−1(W − E(W ))
)

,

M2 =
1

(

r−s
s

)

d
(W − E(W )),

M3 =
1

(

r−s
s

)D−1/2E(W )D−1/2 − d
(

n
s

)D−1/2JD−1/2 − 1
(

n−s
s

)K +
1
(

n
s

)J,

M4 =
1
(

n
s

) (dD−1/2JD−1/2 − J).

By the triangular inequality of matrix norms, we have

‖M‖ ≤ ‖M1‖+ ‖M2‖+ ‖M3‖+ ‖M4‖.

Through this paper, the norm of any square matrix is the spectral norm. We would like to
bound ‖Mi‖ for i = 1, 2, 3, 4. We use the following Chernoff inequality.

Theorem 4 [3] Let X1, . . . , Xn be independent random variables with

Pr(Xi = 1) = p, Pr(Xi = 0) = 1− p.

We consider the sum X =
∑n

i=1 Xi, with expectation E(X) = np. Then we have

(Lower tail) Pr(X ≤ E(X)− λ) ≤ e−λ2/2E(X),

(Upper tail) Pr(X ≥ E(X) + λ) ≤ e−
λ2

2(E(X)+λ/3) .

Lemma 2 Suppose d ≥ logN . With probability at least 1 − 1
N3 , for any S ∈

(

V
s

)

, we have
dS ∈ (d− 3

√
d logN, d+ 3

√
d logN).

Proof: Note ds =
∑

F :S⊂F XF and E(dS) = d. Applying the lower tail of Chernoff’s

inequality with λ = 3
√

E(X) logN , we have

Pr (X − E(X) ≤ −λ) ≤ e−λ2/2E(X) =
1

N9/2
.

Applying the upper tail of Chernoff’s inequality with λ = 3
√

E(X) logN , we have

Pr (X − E(X) ≥ λ) ≤ e−
λ2

2(E(X)+λ/3) ≤ 1

N27/8
.

�

For convenience, let dmin := d − 3
√
d logN , dmax := d + 3

√
d logN ; almost surely we

have dmin ≤ dS ≤ dmax for all S.

Lemma 3 If d ≥ logN , then almost surely ‖M3‖ = O
(√

logN

n
√
d

)

.

Proof: Note E(W ) =
(

n−2s
r−2s

)

pK, where K is the adjacency matrix of the Kneser graph

K(n, s). Let M0 := 1

(n−s
s )

K − 1

(ns)
J . We can rewrite M3 as

M3 = dD−1/2M0D
−1/2 −M0.

7



Note ‖M0‖ = λ̄(s)(Kr
n) =

s
n−s . We have

‖M3‖ = ‖dD−1/2M0D
−1/2 −M0‖

≤ ‖(dD−1/2 − d1/2I)M0D
−1/2‖+ ‖M0(d

1/2D−1/2 − I)‖
≤ ‖(d1/2I − dD−1/2)‖‖M0‖‖D−1/2‖+ ‖M0‖‖(d1/2D−1/2 − I)‖
≤

∣

∣

∣
d1/2 − dd

−1/2
min

∣

∣

∣

s

n− s
d
−1/2
min +

s

n− s

∣

∣

∣
d1/2d

−1/2
min − 1

∣

∣

∣

= O

(√
logN

n
√
d

)

.

�

Lemma 4 If p(1− p) ≫ logn
nr−s , then almost surely

∑

S∈(Vs)

(dS − d)2 = (1 + o(1))

(

n

s

)

d(1 − p).

Proof: For S ∈
(

V
s

)

, let XS = (dS − d)2. We have

E(XS) = E((dS − d)2) = Var(dS) =

(

n− s

r − s

)

p(1− p) = d(1− p).

We use the second moment method to prove that
∑

S Xs concentrates around its expectation
(

n
s

)

d(1 − p). For any S, T ∈
(

V
s

)

, the covariance can be calculated as follows.

Cov(XS , XT ) = E(XSXT )− E(XS)E(XT )

= E((dS − d)2(dT − d)2)− d2(1− p)2.

For F ∈
(

V
r

)

, let YF = XF − E(XF ). Then we have dS − d =
∑

S⊂F YF .

E((dS − d)2(dT − d)2) =
∑

F1,F2 : S⊂F1∩F2
F3,F4 : T⊂F3∩F4

E(YF1YF2YF3YF4).

Since E(YFi) = 0, the non-zero terms occur only if

1. F1 = F2 = F3 = F4. In this case, we have

E(YF1YF2YF3YF4) = E(Y 4
F1
) = (1− p)4p+ (−p)4(1− p) = p(1− p)(1− 3p+ 3p2).

The number of choices is
(n−|S∪T |
r−|S∪T |

)

.

2. F1 = F2 6= F3 = F4. In this case, we have

E(YF1YF2YF3YF4) = E(Y 2
F1
)E(Y 2

F3
) = p2(1− p)2.

The number of choices is
(

n−s
r−|S|

)(

n−s
r−|T |

)

−
(n−|S∪T |
r−|S∪T |

)

.

3. F1 = F3 6= F2 = F4. In this case, we have

E(YF1YF2YF3YF4) = E(Y 2
F1
)E(Y 2

F2
) = p2(1− p)2.

The number of choices is
(n−|S∪T |
r−|S∪T |

)2 −
(n−|S∪T |
r−|S∪T |

)

.

8



4. F1 = F4 6= F2 = F3. This is the same as item 3.

Thus, we have

E(XSXT ) =

(

n− |S ∪ T |
r − |S ∪ T |

)

p(1− p)(1 − 3p+ 3p2)

+

(

(

n− s

r − s

)2

+ 2

(

n− |S ∪ T |
r − |S ∪ T |

)2

− 3

(

n− |S ∪ T |
r − |S ∪ T |

)

)

p2(1− p)2.

=

(

n− |S ∪ T |
r − |S ∪ T |

)

p(1− p)(1 − 6p+ 6p2) +

(

(

n− s

r − s

)2

+ 2

(

n− |S ∪ T |
r − |S ∪ T |

)2
)

p2(1− p)2.

This expression on the right depends only on the size of S ∪ T . Putting together, we get

Var







∑

S∈(Vs)

XS






=

∑

S,T∈(Vs)

Cov(XS , XT )

=
∑

S,T∈(Vs)

(E(XSXT )− d2(1− p)2)

=
∑

S,T∈(Vs)

(

E(XSXT )−
(

n− s

r − s

)2

p2(1− p)2

)

=

2s
∑

i=s

∑

|S∪T |=i

(

(

n− i

r − i

)

p(1− p)(1 − 6p+ 6p2) + 2

(

n− i

r − i

)2

p2(1 − p)2

)

≤
2s
∑

i=s

∑

|S∪T |=i

(

n− i

r − i

)

p(1− p)

(

1− 6p+ 6p2 + 2

(

n− s

r − s

)

p(1− p)

)

≤
2s
∑

i=s

∑

|S∪T |=i

(

n− i

r − i

)

3dp(1− p)2

=

(

n

r

)

3dp(1− p)2
2s
∑

i=s

r!

(i− s)!2(2s− i)!(r − i)!

< 3 · 4r
(

n

r

)

dp(1− p)2

= O

((

n

s

)

d2(1− p)2
)

.

Let X =
∑

S XS . We have E[X ] =
(

n
s

)

d(1− p) and Var(X) = O
((

n
s

)

d2(1− p)2
)

. Apply-
ing Chebyshev’s inequality to X =

∑

S∈(Vs)
, we have

Pr
(

|X − E(X)| ≥ logn
√

Var(X)
)

≤ 1

log2 n
.

Thus, almost surely X = E(X) +O(log n
√

Var(X)) = (1 + o(1))
(

n
s

)

d(1 − p). �

Lemma 5 If p(1− p) ≫ logn
nr−s , then almost surely ‖M4‖ ≤ (1 + o(1))

√

1−p
d .
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Proof: We can rewrite M4 as

M4 =
1
(

n
s

) (dD−1/2JD−1/2 − J)

=
1
(

n
s

)

((

d1/2D−1/2 − I
)

JD−1/2d1/2 + J
(

d1/2D−1/2 − I
))

=
1
(

n
s

)

(

α1′D−1/2d1/2 + 1α′
)

.

Here α := d1/2D−1/21 − 1. Note that the spectral norm of a vector is the same as the
L2-norm. We have

‖α‖ = ‖d1/2D−1/21− 1‖

=

√

√

√

√

√

∑

S∈(Vs)

( √
d√
dS

− 1

)2

=

√

√

√

√

∑

S∈(Vs)

(dS − d)2

dS(
√
d+

√
dS)2

≤

√

∑

S∈(Vs)
(dS − d)2

√
dmin(

√
d+

√
dmin)

= (
1

2
+ o(1))

√

(1− p)
(

n
s

)

d
.

In the last step, we applied Lemma 4. Therefore, we have

‖M4‖ =

∥

∥

∥

∥

∥

1
(

n
s

)

(

α1′D−1/2d1/2 + 1α′
)

∥

∥

∥

∥

∥

=
1
(

n
s

)

(∥

∥

∥α1′D−1/2d1/2
∥

∥

∥+ ‖1α′‖
)

≤ 1
(

n
s

)‖α‖
(

‖1′D−1/2d1/2‖+ ‖1‖
)

=
1
(

n
s

)‖α‖







√

√

√

√

∑

S∈(ns)

d

dS
+

√

(

n

s

)







≤ 1
(

n
s

)

(

1

2
+ o(1)

)

√

(1− p)
(

n
s

)

d
(2 + o(1))

(
√

(

n

s

)

)

= (1 + o(1))

√

1− p

d
.

3 Proof of Theorem 2

To estimate the spectral norm of M1 and M2, we need consider the matrix C := W −E(W ).
We estimate the trace of Ct as follows.
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Lemma 6 For any k ≪ (nr−sp(1− p))1/4, we have

E
(

Trace(C2k)
)

= (1 + o(1))
ns+k(r−s)

(k + 1)(s!)k+1((r − 2s)!)k

(

2k

k

)

pk(1− p)k, (16)

E
(

Trace(C2k+1)
)

= O

(

k(2k + 1)ns+k(r−s)

(k + 1)(s!)k+1((r − 2s)!)k

(

2k

k

)

pk(1 − p)k
)

. (17)

The proof of this technical Lemma is quite long. We will delay its proof until the end of this
section.

Lemma 7 Suppose p(1−p) ≫ log4 n
nr−s . Almost surely, we have ‖C‖ ≤ (2+o(1))

√

(

r−s
s

)

d(1 − p).

Proof: By Lemma 6, we have E(Trace(C2k)) = (1+o(1)) ns+k(r−s)

(k+1)(s!)k+1((r−2s)!)k

(

2k
k

)

pk(1−p)k.

As E(‖C‖2k) ≤ E(Trace(C2k)), we have

E(‖C‖2k) ≤ (1 + o(1))
ns+k(r−s)

(k + 1)(s!)k+1((r − 2s)!)k

(

2k

k

)

pk(1− p)k.

Let U := ns+k(r−s)

(k+1)(s!)k+1((r−2s)!)k

(

2k
k

)

pk(1 − p)k. By Markov’s inequality,

Pr
(

‖C‖ ≥ (1 + ǫ)
2k
√
U
)

= Pr
(

‖C‖2k ≥ (1 + ǫ)2kU
)

≤ E(‖C‖2k)
(1 + ǫ)2kU

≤ (1 + o(1))U

(1 + ǫ)2kU

=
1 + o(1)

(1 + ǫ)2k
.

Let g(n) be a slowly growing function such that g(n) → ∞ as n approaches the infinity

and g(n) ≪ (nr−sp(1−p))1/4

s logn . This is possible because nr−sp(1 − p) ≫ log4 n. Choose k =

sg(n) logn and ǫ = 1/g(n). We have k ≪ (nr−sp(1 − p))1/4 and ǫ → 0. Then we have
(1 + o(1))/(1 + ǫ)2k = O(n−s), which implies that almost surely

|‖C‖ ≤ (1 + o(1))
2k
√
U

= (1 + o(1))

(

ns+k(r−s)

(k + 1)(s!)k+1((r − 2s)!)k

(

2k

k

)

pk(1− p)k
)

1
2k

< n
s
2k 2

√

nr−sp(1− p)

s!(r − 2s)!

= (2 + o(1))

√

(

r − s

s

)

d(1− p).

�

Recall M2 = 1

(r−s
s )d

C. We have

Lemma 8 Suppose p(1− p) ≫ log4 n
nr−s . Almost surely, we have ‖M2‖ ≤ (2+o(1))

√
1−p

√

(r−s
s )d

.
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Lemma 9 Suppose p(1− p) ≫ log4 n
nr−s . Almost surely, we have ‖M1‖ = O

(√
(1−p) logN

d

)

.

Proof: We have

M1 =
1

(

r−s
s

)

(

D−1/2CD−1/2 − d−1C
)

=
1

(

r−s
s

)

(

(D−1/2 − d−1/2I)CD−1/2 + d−1/2C(D−1/2 − d−1/2I)
)

.

Note ‖D−1/2 − d−1/2I‖ ≤ |d−1/2
min − d−1/2| = O(

√
logN
d ), ‖D−1/2‖ ≤ d

−1/2
min = (1 +

o(1))d−1/2, and ‖C‖ = (2 + o(1))
√

(

r−s
s

)

d(1 − p). We have

‖M1‖ =
1

(

r−s
s

)

∥

∥

∥(D−1/2 − d−1/2I)CD−1/2 + d−1/2C(D−1/2 − d−1/2I)
∥

∥

∥

= O

(

√

(1 − p) logN

d

)

.

�

Proof of Theorem 2: Combining Lemmas 3, 5, 8, and 9, we have

‖M‖ = ‖M1 +M2 +M3 +M4‖
≤ ‖M1‖+ ‖M2‖+ ‖M3‖+ ‖M4‖

≤ O

(

√

(1− p) logN

d

)

+
(2 + o(1))

√
1− p

√

(

r−s
s

)

d
+O

(√
logN

n
√
d

)

+ (1 + o(1))

√

1− p

d

=





2
√

(

r−s
s

)

+ 1 + o(1)





√

1− p

d
.

In the last step, we use the fact
√
logN

n
√
d

= o

(

√

1−p
d

)

since 1− p ≫ logn
n2 .

By Lemma 1, for 1 ≤ k ≤
(

n
s

)

− 1, we have

|λ(s)
k (Hr(n, p))− λ

(s)
k (Kr

n)| ≤ ‖M‖ ≤





2
√

(

r−s
s

)

+ 1 + o(1)





√

1− p

d
.

�

Proof of Lemma 6: For any fixed positive integer t, the terms in Trace(Ct) are of the
form

cS1S2cS2S3 . . . cStSS1
.

Here cST = W (S, T )−E(W (S, T )) =
∑

F∈(Vr)
S∪T⊂F

(XF −E(XF )) if S∩T = ∅; cST = 0 otherwise.

Note cSiSj = 0 if Si ∩ Sj 6= ∅. Thus we need only to consider the sequence S1S2 . . . StS1

such that Si ∩ Si+1 = ∅ for each 1 ≤ i ≤ t, here t+ 1 = 1.
For F ∈

(

V
r

)

and S, T ∈
(

V
s

)

, we define a random variable cFST as follows.

cFST =

{

XF − E(XF ) if S ∩ T = ∅ and S ∪ T ⊆ F ;
0 otherwise.

The sequence S1F1S2F2S3 . . . StFtS1 is called a closed s-walk of length t if

12



1. S1, . . . , St ∈
(

V
s

)

,

2. F1, . . . , Ft ∈
(

V
r

)

,

3. Si ∩ Si+1 = ∅, for i = 1, 2, . . . , t,

4. Si ∪ Si+1 ⊂ Fi, for i = 1, 2, . . . , t.

Here we use the convention St+1 = S1. Those r-sets Fi’s are referred as edges while those
s-sets Si’s are referred as stops.

Using the notation above, we rewrite the trace as

Trace(Ct) =
∑

closed s-walks

cF1

S1S2
cF2

S2S3
. . . cFt

StS1
,

where the summation is over all possible closed s-walk of length t.
Taking the expectation on both sides, we get

E(Trace(Ct)) =
∑

closed s-walks

E(cF1

S1S2
cF2

S2S3
. . . cFt

StS1
).

The terms in the product above can be regrouped according to the values of Fi’s; those
terms with distinct F ’s are independent to each other. Since E(cFS,T ) = 0, the contribution
of a closed walk is 0 if some F appears just once. Thus we need only to consider the set
of closed walks where each edge appears at least twice or do not occur; we call these closed
walks as good closed walks. A good closed walk can contain at most ⌊ t

2⌋ distinct edges.

Let G be the set of good closed walks. For 1 ≤ i ≤ ⌊ t
2⌋, let G

j
i be the set of good closed

walks with exactly i distinct edges and j distinct vertices; and let Gi := ∪jGj
i .

We consider a good closed walk in Gi. When a new edge comes in the walk, it can visit
at most (r− s) new vertices. Thus such a good closed walk covers at most mi := s+ i(r− s)
vertices. Any walk contains at least one edge. Hence, the number of vertices in a walk from
Gi is in the interval [r,mi].

Let aji :=
∑

S1F1S2...StS1∈Gj
i
E(cF1

S1S2
cF2

S2S3
. . . cFt

StS1
) and ai :=

∑mi

j=r a
j
i . We have

E(Trace(Ct)) =

⌊ t
2 ⌋
∑

i=1

ai =

⌊ t
2 ⌋
∑

i=1

mi
∑

j=r

aji . (18)

Assume that an edge F occurs l times in a good closed walk and T := {i : 1 ≤ i ≤
t and Fi = F}. We have Pr

(

Πi∈T c
F
SiSi+1

= (1− p)l
)

= p and Pr
(

Πi∈T c
F
SiSi+1

= (−p)l
)

=

1− p. Thus, for each positive integer l ≥ 2, we have

E
(

Πi∈T c
F
SiSi+1

)

= (1− p)lp+ (−p)l(1− p) ≤ p(1− p).

The equality holds if l = 2.
Pick a good closed walk S1F1S2F2S3 . . . StFtS1 in Gq. Say, it contains q distinct edges

F 1, F 2, . . . , F q. For each 1 ≤ i ≤ q, let Ti := {1 ≤ j ≤ t : Fj = F i}; then ∑q
i=1 |Ti| = t. We

have

E(cF1

S1S2
cF2

S2S3
. . . cFt

StS1
) = Πq

i=1Πj∈TiE(c
F i

SjSj+1
) ≤ Πq

i=1p(1− p) = pq(1 − p)q.

This implies

aji ≤
∣

∣

∣Gj
i

∣

∣

∣ pi(1− p)i (19)
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for all 1 ≤ i ≤ ⌊ t
2⌋ and r ≤ j ≤ mi. In particular, the equality holds when t = 2i.

Claim a: For 1 ≤ i ≤ ⌊ t
2⌋, we have

|Gi| = (1 + o(1))|Gmi

i |. (20)

Proof: Let Bj
i := Gj

i (K
r
j ) be the set of good closed walks (of length t) with i distinct

edges and j distinct vertices on Kr
j . We have

|Gj
i | =

(

n

j

)

∣

∣

∣Bj
i

∣

∣

∣ . (21)

We define a map φi : Bj
i → Bmi

i as follows. For any good closed walk S1F1S2F2S3 . . . StFtS1 ∈
Bj
i , we scan the walk from left to right. Suppose that an edge F appears in the walk for the

first time, say F = Fl. If |F∩(∪x<lFx)| > |Sl|, then we replace the vertices in F∩(∪x<lFx)\Sl

by next available vertices in [mi] \ [j]. We keep the procedure for all distinct edges. At the
end, the resulted walk has the following property “Any new edge visits r − s new vertices.”
Observe the resulted walk is in Bmi

i . It is possible that different walks in Bj
i be mapped into

the same walk in Bmi

i ; there is at most jmi−j sequences from Bj
i with the same image. We

have
|Bj

i | ≤ |Bmi

i |jmi−j . (22)

Combining equations (21) and (22), we get

|Gi| =

mi
∑

j=r

|Gj
i |

=

mi
∑

j=r

(

n

j

)

∣

∣

∣Bj
i

∣

∣

∣

≤
mi
∑

j=r

(

n

j

)

|Bmi

i |jmi−j

=

(

n

mi

)

|Bmi

i |
mi
∑

j=r

(

n
j

)

(

n
mi

)jmi−j

< |Gmi

i |
mi
∑

j=r

(

mij

n−mi + 1

)mi−j

< |Gmi

i |
mi
∑

j=r

(

m2
i

n−mi + 1

)mi−j

< |Gmi

i | 1

1− m2
i

n−mi+1

= (1 + o(1))|Gmi

i |.

It is enough to estimate |Gmi

i | for 1 ≤ i ≤ ⌊ t
2⌋. Given a walk w := S1F1S2F2S3 . . . StFtS1 ∈

Bmi

i , let S be the set of distinct stops in w and F be the set of distinct edges in w. List the
edges in F as {F 1, F 2, . . . , F i} with the indices in an increasing order. We define an auxiliary
graph Tw with the vertex set S ∪ T and the edge set {SF : if S ∈ S, F ∈ F , and S ⊂ F}.

Claim b: The graph Tw is a tree.
Proof: A closed walk w induces a closed walk on Tw. Thus Tw is connected. Suppose

that Tw is not a tree, then there is a cycle C in Tw. Let Fj be the edge in C with the highest
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index. When Fj is first created, Fj brings in r − s new vertices; thus, |Fj ∩ (∪l≤jFl)| = s.
This contradicts the fact that Fj contains two different stops in C. Hence, Tw is a tree.

For 1 ≤ j ≤ i, let Sj be the stop right after the first occurrence of F j in the walk w and
T j be the stop right before the first occurrence of F j in the walk w, and Ej = F j \ (Sj∪T j).
We also let S0 := S1 be the first stop of w. Observe that

[mi] =
(

∪i
j=0S

j
)

∪
(

∪i
j=1Ej

)

is a partition of [mi]; each Sj is an s-set while each Ej is an (r − 2s)-set. The number of
choices of such partition is

(

mi

s, . . . , s, r − 2s, . . . , r − 2s

)

=
mi!

(s!)i+1((r − 2s)!)i
.

We can associate a walk w with a code of length t consisting of symbols ‘(’, ‘)’, and ‘∗’. We
read the walk w from left to right. If w visit the stop Sj through the edge F j for the first
time, we encode it by an open parenthesis; if w visit a stop from Sj through the edge F j

for the first time, we use a close parenthesis; else we use ‘∗’. A walk w can be viewed as a
walk on Tw; an open parenthesis means the walk passing through an edge F jSj (for some j)
while a closed parenthesis means the walk passing through an edge SjF j (for some j). Since
{SjFj}j=1,...,i is a matching of the tree Tw, the resulted parenthesis sequence is valid; where
valid means that each open parenthesis can be matched to a closed parenthesis. There are
exactly i pairs of parentheses and t− 2i ‘∗’s; the number of ways to choose the positions of
∗’s is

(

t
2i

)

. The number of ways to arrange the parentheses is the Catalan number 1
i+1

(

2i
i

)

.

At each of position ‘∗’, there is at most i ways to choose an existed edge and
(

r−s
s

)

ways to
choose the next stop in the edge. Putting together, we have

|Bmi

i | ≤ mi!

(s!)i+1(r − 2s)i

(

t

2i

)

1

i + 1

(

2i

i

)(

i

(

r − s

s

))t−2i

. (23)

Case 1: t = 2k is even. We would like to show the inequality (23) is tight for i = k.
In this case, each edge appears exactly twice in any walk w of Bmk

k . The structure of Tw is
more clear in this case.

Claim c: There are exactly k + 1 stops in w, namely S0, S1, . . . , Sk.
Proof: Since each edge F j appears exactly twice in a closed walk, the degree of F j

in Tw is exactly 2. Contracting these F j’s in Tw, (i.e., deleting F j and connecting the two
neighbors of F j), we get a new tree T ; where F j ’s can be viewed as edge labellings of the tree
T . Now T has exactly k edges; it implies hat T has exactly k+1 vertices. Thus |S| = k+1.
Since S0, S1, . . . , Sk ∈ S, we must have S = {S0, S1, . . . , Sk}.

Claim d: We have

|Bmk

k | = mk!

(k + 1)(s!)k+1((r − 2s)!)k

(

2k

k

)

. (24)

Proof: From the proof equation (23), a walk in Bmk

k determine a partition [mi] =
(

∪i
j=0S

j
)

∪
(

∪i
j=1Ej

)

and a valid sequence of k pairs of parentheses. (In this case, the
number of ‘∗’s is zero.) It suffices to recover a walk from a partition of [mk] and a sequence
of valid parentheses.

Given a partition
[mi] =

(

∪i
j=0S

j
)

∪
(

∪i
j=1Ej

)

and a valid sequence of k pairs of parentheses, we first build a rooted tree T as follows.
At each time, we maintain a tree T , a current stop S, a set of unused stops S. Initially T

15



contains nothing but the root stop S0, S := S0, and S = {S1, S2, . . . , Sk}. At each time,
read a symbol from the sequence. If the symbol is an open parenthesis, then find an Si in S
with index i as small as possible, delete Si from S, attach Si to T as a child stop of S, and
let S := Si; if the symbol is “)”, then let S point to the the parent stop of the current S.
Repeat this process until all symbols from the sequence are processed.

Since every closed parenthesis has a matching open parenthesis, this process never get
stuck. When the precess ends, a rooted tree T on the vertex set {S0, . . . , Sk} is created. For
1 ≤ i ≤ k, let Fi be the union of Ei and two ends of i-th edge, which created in the process.
For example, for k = 3, if the sequence is (())(), then the corresponding rainbow closed walk
is

S1F1S2F2S3F2S2F1S1F3S4F3S1

where F1 = S1 ∪ S2 ∪ E1, F2 = S2 ∪ S3 ∪ E2, and F3 = S4 ∪ S1 ∪E3.
Thus, this is a bijection from Bmk

k to the combination of a partition of [mk]and a valid
sequence of parentheses.

The number of ways to choose these sets S0, S1, . . . , Sk, E1, . . . , Ek as a partition of [mk]
is

(

mk

s, . . . , s, r − 2s, . . . , r − 2s

)

=
mk!

(s!)k+1((r − 2s)!)k
.

The number of valid sequences of k pairs of parentheses is the Catalan number 1
k+1

(

2k
k

)

. By
taking product of these two numbers, we get equation (24).

For each 1 ≤ i ≤ k, by inequality (19) and equation (20), we have

ai ≤
mi
∑

j=r

aji ≤
mi
∑

j=r

|Gj
i |pi(1− p)i = (1 + o(1))|Gmi

i |pi(1− p)i.

By equation (21) and inequality (23), for 1 ≤ i ≤ k, we have

ai ≤ (1 + o(1))|Gmi

i |pi(1− p)i

≤ (1 + o(1))

(

n

mi

)

|Bmi

i |pi(1− p)i

≤ (1 + o(1))
mi!p

i(1− p)i

(s!)i+1((r − 2s)!)i

(

n

mi

)(

2k

2i

)

1

i+ 1

(

2i

i

)(

i

(

r − s

s

))2k−2i

.

By equations (19), (20), (21), and (24), we have

ak = (1 + o(1))

(

n

mk

)

|Bmk

k |pk(1 − p)k

= (1 + o(1))
mk!p

k(1− p)k

(s!)k+1((r − 2s)!)k

(

n

mk

)

1

k + 1

(

2k

k

)

.

For each 1 ≤ i ≤ k − 1, we have

ai
ak

≤ (1 + o(1))
(k + 1)(k!)2

(i+ 1)(2k − 2i)!(i!)2

(

i2

s!(r − 2s)!nr−sp(1− p)

)k−i

= (1 + o(1))

(

2k+1
2i+1

)(

2i+1
i

)

(

2k+1
k

)

(

i2

s!(r − 2s)!nr−sp(1− p)

)k−i

≤ (1 + o(1))

(

9k4

s!(r − 2s)!nr−sp(1− p)

)k−i

,

16



As we assume k4 ≪ nr−sp(1− p), then ai

ak
< ǫk−i for any constant ǫ > 0 and 1 ≤ i ≤ k − 1.

Thus ak is the dominating term in E(Trace(C2k)), i.e.,

E
(

Trace(C2k)
)

=
k
∑

i=1

ai = (1+o(1))ak = (1+o(1))
ns+k(r−s)

(k + 1)(s!)k+1((r − 2s)!)k

(

2k

k

)

pk(1−p)k.

Case 2: t = 2k+1 is odd. Since each edge in a good walk appears at least twice, a good
sequence S1F1S2F2S3 . . . S2k+1F2k+1S1 contains at most k distinct edges. By equations (19),
(20), (21), and (24), we have ai ≤ (1 + o(1))f(i), where

f(i) =
ns+i(r−s)

(i+ 1)(s!)k+1((r − 2s)!)k

(

2k + 1

2i

)(

2i

i

)(

i

(

r − s

s

))2k+1−2i

pi(1− p)i.

Similarly, we can show f(i) = o(f(k)) for 1 ≤ i ≤ k − 1 and
∑k

i=1 f(i) = (1 + o(1))f(k).
We have

E
(

C2k+1
)

≤
k
∑

i=1

f(i)

= (1 + o(1))f(k)

= (1 + o(1))
k(2k + 1)ns+k(r−s)

(k + 1)(s!)k+1((r − 2s)!)k

(

2k

k

)(

r − s

s

)

pk(1 − p)k

= O

(

k(2k + 1)ns+k(r−s)

(k + 1)(s!)k+1((r − 2s)!)k

(

2k

k

)

pk(1− p)k
)

.

�

4 The semicircle law

Let us review the defintion of the Semicircle Law. Let F (x) be the continuous distribution
function with density f(x) such that f(x) = (2/π)

√
1− x2 when |x| ≤ 1 and f(x) = 0 when

|x| > 1. Let A be a Hermitian matrix of dimension N ×N . The empirical distribution of the
eigenvalues of A is

F (A, x) :=
1

N
|{ eigenvalues of A less than x}|.

We say, the empirical distribution of the eigenvalues of A asymptotically follows the
Semicircle Law centered at c with radius R if F ( 1

R (A − cI), x) tends to F (x) in probability

as N goes to infinity. (In this case, we write F ( 1
R (A− cI), x)

p→ F (x).) If c is the center of
the Semicircle Law, then any c′ = c+ o(R) is also the center of the Semicircle Law.

Theorem 5 If nr−sp(1 − p) → ∞, then the empirical distribution of the eigenvalues of

W − E(W ) follows the semicircle law centered at 0 with radius 2
√

(

r−s
s

)(

n−s
r−s

)

p(1− p).

Proof: Let R := 2
√

(

r−s
s

)(

n−s
r−s

)

p(1− p), C := W − E(W ), and Cnor := 1
RC.

To prove the theorem, we need to show that for any fixed t, the t-th moment of F (Cnor, x)
(with n goes to infinity) is asymptotically equal to the t-th moment of F (x). We know the

t-th moment of F (Cnor, x) equals
(

n
s

)−1
E(Trace(Ct

nor)). For even t = 2k, the t-th moment
of F (x) is (2k)!/22kk!(k + 1)!. For odd t, the t-th moment of F (x) is 0.
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In order to prove the theorem, we need to show for any fixed k,

1
(

n
s

)E(Trace(C2k
nor)) = (1 + o(1))

(2k)!

22kk!(k + 1)!

and
1
(

n
s

)E(Trace(C2k+1
nor )) = o(1).

We know

E(Trace(Ct
nor)) =

1

Rt
E(Trace(Ct))

for any t. By Lemma 6, we have

E(Trace(C2k)) = (1 + o(1))
ns+k(r−s)

(k + 1)(s!)k+1((r − 2s)!)k

(

2k

k

)

pk(1− p)k.

Then
1
(

n
s

)E(Trace(C2k
nor)) = (1 + o(1))

(2k)!

22kk!(k + 1)!

as desired.
By Lemma 6 again, we have

E(Trace(C2k+1)) = O

(

k(2k + 1)ns+k(r−s)pk(1− p)k

(k + 1)(s!)k+1((r − 2s)!)k

(

2k

k

))

.

Thus

1
(

n
s

)E(Trace(C2k+1
nor )) = O

(

(2k + 1)!

22k(k − 1)!(k + 1)!R

)

= o(1).

Here k is any constant but R → ∞. The theorem is proved. �

The following Lemma is useful to derive the Semicircle Law from one matrix to the other.

Lemma 10 Let A and B be two (N ×N)-Hermitian matrices. Suppose that the empirical
distribution of the eigenvalues of A follows the Semicircle Law centered at c with radius R. If
either ‖B‖ = o(R) or the rank of B is o(N), then the empirical distribution of the eigenvalues
of A+B also follows the Semicircle Law centered at c with radius R.

Proof: It suffices to show F ( 1
R (A +B − cI), x)

p→ F (x). First we assume ‖B‖ = o(R). By
Lemma 1, for 1 ≤ k ≤ N , we have

∣

∣

∣

∣

µk

(

1

R
(A+B − cI)

)

− µk

(

1

R
(A− cI)

)∣

∣

∣

∣

≤ ‖B‖
R

= o(1).

Hence

F

(

1

R
(A− cI), x− ‖B‖

R

)

≤ F

(

1

R
(A+B − cI), x

)

≤ F

(

1

R
(A− cI), x+

‖B‖
R

)

.

Since ‖B‖ = o(R), we have F
(

1
R (A− cI), x− ‖B‖

R

)

p→ F (x) and F
(

1
R (A− cI), x+ ‖B‖

R

)

p→
F (x). By the Squeeze theorem, we have F ( 1

R (A+B − cI), x)
p→ F (x).
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Now we assume rank(B) = o(N). Let U be the kernel of B (i.e. B|U = 0); U has
co-dimension rank(B). Let Z := 1

R (A − cI)|U = 1
R (A + B − cI)|U . By Cauchy’s interlace

theorem [23], for 1 ≤ j ≤ N − rank(B), we have

µj

(

1

R
(A− cI)

)

≤ µj(Z) ≤ µj+rank(B)

(

1

R
(A− cI)

)

,

µj

(

1

R
(A+B − cI)

)

≤ µj(Z) ≤ µj+rank(B)

(

1

R
(A+B − cI)

)

.

Thus, for rank(B) + 1 ≤ j ≤ N − rank(B), we have

µj−rank(B)

(

1

R
(A− cI)

)

≤ µj

(

1

R
(A+B − cI)

)

≤ µj+rank(B)

(

1

R
(A− cI)

)

.

It implies

F

(

1

R
(A− cI), x

)

+
rank(B)

N
≤ F

(

1

R
(A+B − cI), x

)

≤ F

(

1

R
(A− cI), x

)

+
rank(B)

N
.

Since rank(B) = o(N), we have F
(

1
R (A− cI), x

)

± rank(B)
N

p→ F (x). By the Squeeze

theorem, we have F ( 1
R (A+B − cI), x)

p→ F (x). �

Proof of Theorem 3: Recall

L(s)(Kr
n)− L(s)(Hr(n, p)) = M1 +M2 +M2 +M4.

We can write L(s)(Hr(n, p)) as −M2 +

(

1− (−1)s

(ns)

)

I + B1 −M3 −M4 −M1, where B1 =

L(s)(Kr
n)−

(

1− (−1)s

(ns)

)

I.

By Theorem 5, the empirical distribution of the spectrum of W − E(W ) follows the

Semicircle Law centered at 0 with radius (2 + o(1))
√

(

r−s
s

)(

n−s
r−s

)

p(1 − p). Since M2 =

1

(r−s
s )d

(W −E(W )),

(

1− (−1)s

(ns)

)

I−M2 follows the Semicircle Law centered at c := 1− (−1)s

(ns)

with radius R := (2 + o(1))
√

1−p

(r−s
s )(n−s

r−s)p
. Note (−1)s

(ns)
= o(R). We can change the center to

1.

By Theorem 1, L(s)(Kr
n) has an eigenvalue 1− (−1)s

(n−s
s )
(ns)

with multiplicity
(

n
s

)

−
(

n
s−1

)

.

Thus B1 has rank
(

n
s−1

)

= o
((

n
s

))

. We also observe that M4 has rank at most 2, ‖M1‖ =

O

(√
(1−p) logN

d

)

= o(R), and ‖M3‖ = O(
(√

logN

n
√
d

)

= o(R). Here we use the assumption

d ≫ logn.
By Lemma 10, the matrices B1, M1, M3, and M4 will not affect the Semicircle Law. The

proof of this Lemma is finished. �
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[18] J. Friedman, J. Kahn, and E. Szemerédi, On the second eigenvalue in random regu-
lar graphs, in Proc. 21st ACM Symposium on Theory of Computing, Association for
Computing Machinery, New York, 1989, 587-598.

[19] J. Friedman, On the second eigenvalue and random walks in randomd-regular graphs,
Combinatorica 11, Number 4, (1991) 331-362.

[20] J. Friedman, A Proof of Alon’s Second Eigenvalue Conjecture and Related Problem,
Memoirs of the American Mathematical Society 2008; 100 pp.
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[28] J. A. Rodŕıguez, On the Laplacian Spectrum and Walk-regular Hypergraphs, Linear
and Multilinear Algebra, 51 (3) (2003), 285-297.
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