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Abstract

Randomly generated graphs with power law degree distribution are typically used to model large
real-world networks. These graphs have small average distance. However, the small world phenomenon
includes both small average distance and the clustering effect, which is not possessed by random graphs.
Here we use a hybrid model which combines a global graph (a random power law graph) with a local
graph (a graph with high local connectivity defined by network flow). We present an efficient algorithm
which extracts a local graph from a given realistic network. We show that the hybrid model is robust
in the sense that for any graph generated by the hybrid model, the extraction algorithm approximately
recovers the local graph.

1 Introduction

The small world phenomenon usually refers to two distinct properties — small average distance and the
clustering effect— that are ubiquitous in realistic networks. An experiment by Stanley Milgram [36] titled
“The small world problem” indicated that any two strangers are linked by a short chain of acquaintances.
The clustering effect implies that any two nodes sharing a neighbor are more likely to be adjacent.

To model networks with the small world phenomenon, one approach is to utilize randomly generated
graphs with power law degree distribution. This is based on the observations by several research groups
that numerous networks, including Internet graphs, call graphs and social networks, have a power law degree
distribution, where the fraction of nodes with degree k is proportional to k−β for some positive exponent
β [1, 2, 5, 6, 7, 11, 13, 18, 23, 27, 29, 31, 37, 40]. Indeed, a random power law graph has small average
distances and small diameter. It was shown in [16] that a random power law graph with exponent β, where
2 < β < 3, almost surely has average distance of order log logn and has diameter of order logn. (Here,
average distance is the average of the distances between pairs of nodes that are connected, and the diameter
is the maximum distance between connected pairs.)

In contrast, the clustering effect in realistic networks is often determined by local connectivity and is not
amenable to modeling using random graphs. A previous approach to modelling the small world phenomenon
was to add random edges to an underlying graph like a grid graph (see Watts and Strogatz [38, 39]). Kleinberg
[28] introduced a model where an underlying grid graph G was augmented by random edges placed between
each node u, v with probability proportional to [dG(u, v)]−r for some constant r. In Kleinberg’s model and the
model of Watts and Strogatz, the subgraphs formed by the random edges have the same expected degree at
every node and do not have a power law degree distribution. Fabrikant, Koutsoupias and Paradimitriou [22]
proposed a model where vertices are coordinates in the Euclidean plane and edges are added by optimizing
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the trade-off between Euclidean distances and “centrality” in the network. Such grid-based models are quite
restrictive and far from satisfactory for modeling webgraphs or biological networks.

In [17] Chung and Lu proposed a general hybrid graph model which consists of a global graph (a random
power law graph) and a highly connected local graph. The local graph has the property that the endpoints
of every edge are joined by at least l edge-disjoint paths each of length at most k, for some fixed parameters
k and l. It was shown that these hybrid graphs have average distance and diameter of order O(log n) where
n is the number of vertices.

In this paper, we consider a new notion of local connectivity that is based on network flow. Unlike the
problem of finding short disjoint paths, the local flow connectivity can be easily computed using techniques
for the general class of fractional packing problems. The goal is to partition a given real-world network into
a global subgraph consisting of “long edges” providing small distances and a local graph consisting of “short
edges” providing local connections. In this paper, we give an efficient algorithm which extracts a highly
connected local graph from any given real world network. We demonstrate that such recovery is robust if the
real world graph can be approximated by a random hybrid graph. Namely, we prove that if G is generated
by the hybrid graph model, our partition algorithm will recover the original local graph with a small error
bound.

2 Preliminaries

2.1 Random graphs with given expected degrees

We consider a class of random graphs with given expected degree sequence w = (w1, w2, . . . , wn). The
probability that there is an edge between any two vertices vi and vj is pij = wiwjρ, where ρ = (

∑
wi)−1.

We assume that maxiw
2
i <

∑
k wk so that pij ≤ 1 for all i and j. It is easy to check that vertex vi has

expected degree wi. We remark that the assumption maxiw
2
i <

∑
k wk implies that the sequence wi is

graphical [20], except that we do not require the {wi} to be integers. We note that this model allows a non-
zero probability for self-loops. The expected number of loops is quite small (of lower order) in comparison
with the total number of edges.

We denote a random graph with a given expected degree sequence w by G(w). For example, the typical
random graph G(n, p) (see [21]) on n vertices with edge probability p is just a random graph with expected
degree sequence w = (pn, pn, . . . , pn).

For a subset S of vertices, we define Vol(S) =
∑

vi∈S wi and Vol(G) =
∑
wi. Also for k ≥ 1, we define

Volk(S) =
∑

vi∈S w
k
i . We let d denote the average degree V ol(G)/n, and let d̃ denote the second order

average degree Vol2(G)/Vol(G).

2.2 Random power law graphs

A random power law graph M(n, β, d,m) is a random graph G(w) whose expected degree sequence w is
determined by the following four parameters.

• n is the number of vertices.

• β > 2 is the power law exponent.

• d is the expected average degree.
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• m is the maximum expected degree and m2 = o(nd).

We remark that most realistic graphs have degree sequence satisfying the power law for a certain range of
degrees (not too small or too large). An alternative definition for m is the maximum within the range of
degrees that the power law holds.

We let the i-th vertex vi have expected degree

wi = ci−
1

β−1

for i ≥ i0, some c and i0 (to be chosen later). It is easy to compute that the number of vertices of expected
degree between k and k + 1 is of order c′k−β where c′ = cβ−1(β − 1), as required by the power law. To
determine c, we consider

Vol(G) =
∑

i

wi =
n∑

i=i0

ci
1

β−1

≈ c
β − 1
β − 2

n1− 1
β−1

Here we assume β > 2. Since nd ≈ Vol(G), we choose

c =
β − 2
β − 1

dn
1

β−1 (1)

i0 = n(
d(β − 2)
m(β − 1)

)β−1 (2)

Let f(x) = cx−
1

β−1 . The expected degrees (or weights) are just f(i), i0 ≤ i ≤ n.

Figure 1: Weight distribution f(x). Figure 2: Log-scale of figure 1.

2.3 A concentration inequality

Let X1, . . . , Xn be independent random variables with

Pr(Xi = 1) = pi, P r(Xi = 0) = 1 − pi

For X =
∑n

i=1 aiXi, we have E(X) =
∑n

i=1 aipi and we define ν =
∑n

i=1 a
2
i pi. Then we have (see [15]).

Pr(X < E(X) − λ) ≤ e−λ2/2ν (3)

Pr(X > E(X) + λ) ≤ e−
λ2

2(ν+aλ/3) (4)

where a = max{a1, a2, . . . , an}.
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2.4 A bound for sums

We will use the following trivial but convenient bound.

Lemma 1 Let X be some finite set with nonnegative weights w(x), and let A ⊆ Xk be a set of ordered
k-tuples from X. If each element x ∈ X appears in at most M elements of A, then∑

(xi1 ...xik
)∈A

w(xi1 ) · · ·w(xik
) ≤M

∑
x∈X

w(x)k

Proof: Order the elements of X as x1 . . . xn such that w(x1) ≥ · · · ≥ w(xn). Let Aj be the collection of
tuples v ∈ A where j is the smallest index of any element in v. We have |Aj | ≤M , and ∪j∈[1,n]Aj = A, so

∑
(xi1 ...xik

)∈A

w(xi1 ) · · ·w(xik
) ≤

∑
j∈[1,n]

∑
(xi1 ...xik

)∈Aj

w(xi1 ) · · ·w(xik
)

≤
∑

j∈[1,n]

Mw(xj)k

≤ M
∑
x∈X

w(x)k

3 Local graphs and hybrid graphs

3.1 Local graphs

There are a number of ways to define local connectivity between two given vertices u and v. A natural
approach is to consider the maximum number a(u, v) of short edge-disjoint paths between the vertices,
where short means having length at most `. Another approach is to consider the minimum size c(u, v) of a
set of edges whose removal leaves no short path between the vertices. When we restrict to short paths, the
analogous version of the max-flow min-cut theorem does not hold, and in fact a and c can be different by a
factor of O(`) ([44],[45]). However we still have the trivial relations a ≤ c ≤ ` · a.

Both of the above notions of local connectivity are difficult to compute, and in fact computing the
maximum number of short disjoint paths is NP-hard if ` ≥ 4 [43]. Instead we will consider the maximum
short flow between u and v. The maximum short flow can be computed in polynomial time using nontrivial
but relatively efficient algorithms for fractional packing (see Section 5). The most compelling reason for
using short flow as a measure of local connectivity is that it captures the spirit of a(u, v) and c(u, v), but is
efficiently computable.

Formally, a short flow is a positive linear combination of short paths where no edge carries more than 1
unit of flow. Finding the maximum short flow can be viewed as a linear program. Let P` be the collection
of short u-v paths, and let Pe be the collection of short u-v paths which intersect the edge e.

Definition 1 (Flow connectivity) A short flow is a feasible solution to the following linear program. The
flow connectivity f(u, v) between two vertices is the maximum value of any short flow, which is the optimum
value of the following LP problem:
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maximize
∑
p∈P`

fp (5)

subject to
∑
p∈Pe

fp ≤ 1 for each e ∈ L

fp ≥ 0 for each p ∈ P`

The linear programming dual of the flow connectivity problem is a fractional cut problem: to find the
minimum weight cutset so that every short path has at least l unit of cut weight. This gives us the following
relation between a, c, and f .

a ≤ f ≤ c ≤ a · `

We say two vertices u and v are (f, `)-connected if there exists an short flow between them of size at
least f .

Definition 2 (Local Graphs) A graph L is an (f, `)-local graph if for each edge e = (u, v) in L, the
vertices u and v are (f, `)-connected in L \ {e}.

3.2 Hybrid power law graphs

A hybrid graph H is the union of the edge sets of an (f, `)-local graph L and a global graph G on the same
vertex set. We here consider the case where the global graph G(w) is a power law graph M(n, β, d,m). The
following theorems were proved in [17].

Theorem 1 For a hybrid graph H with G = M(n, β, d,m,L) and β > 3, almost surely, the average distance
is (1 + o(1)) log n

log d̃
and the diameter is O(log n).

Theorem 2 For a hybrid graph H with G = M(n, β, d,m,L) and 2 < β < 3, almost surely, the average
distance is O(log logn) and the diameter is O(log n). For a hybrid graph H with G = M(n, β, d,m,L) and
β = 3, almost surely, the average distance is O(log n/ log logn) and the diameter is O(log n).

For the range of 2 < β < 3, the power law graphs include many real networks. We can further reduce
the diameter if additional conditions are satisfied. A local graph L is said to have isoperimetric dimension δ
if for every vertex v in L and every integer k < (log logn)1/δ, there are at least kδ vertices in L of distance
k from v. For example, the grid graph in the plane has isoperimetric dimension 2. The d-dimensional grid
graph has isoperimetric dimension d.

Theorem 3 In a hybrid graph H with G = M(n, β, d,m,L) and 2 < β < 3, suppose that the local graph
has isoperimetric dimension δ, where δ ≥ log logn/(log log logn). Then almost surely, the diameter is
O(log logn).

Theorem 4 In a hybrid graph H with G = M(n, β, d,m,L) and 2 < β < 3, suppose that the local graph has
isoperimetric dimension δ. Then almost surely, the diameter is O((log n)1/δ).

Theorem 5 In a hybrid graph H with G = M(n, β, d,m,L) and 2 < β < 3, suppose that every vertex is
within distance log logn of some vertex of degree log n. Then almost surely, the diameter is O(log logn).
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4 Extracting the local graph

For a given graph, the problem of interest is to extract the largest (f, `)-local subgraph. We define Lf,`(G)
to be the union of all (f, `)-local subgraphs in H . By definition, the union of two (f, `)-local graphs is an
(f, `)-local graph, and so Lf,`(G) is in fact the unique largest (f, `)-local subgraph in G. We remark that
Lf,`(G) is not necessarily connected. There is a simple greedy algorithm to compute Lf,`(G) in any graph
G.

4.1 An algorithm for extracting the local graph

Extract(f, `): We are given as input a graph G and parameters (f, `). Let H = G. If there is some edge
e = (u, v) in H where u and v are not (f, `)-connected in H \ {e}, then let H = H \ {e}. Repeat until no
further edges can be removed, then output H .

Theorem 6 For any graph G and any (f, `), Extract(f, `) returns Lf,`(G).

Proof: Given a graph G, let L′ be the graph output by the greedy algorithm. A simple induction
argument shows that each edge removed by the algorithm is not part of any (f, l)-local subgraph of G, and
thus Lf,`(G) ⊆ L′. Since no further edges can be removed from L′, L′ is (f, l)-local and so L′ ⊆ Lf,`(G).
Thus L′ = Lf,`(G).

Time analysis: The algorithm requires O(|E|2) maximum short flow computations. In section 5 we will
describe an algorithm to compute the maximum short flow.

4.2 Recovering the local graph

When applied to a hybrid graph H = G ∪ L with an (f, `)-local graph L, the algorithm Extract(f, `) will
output Lf,`, which is almost exactly L if G is sufficiently sparse. Note that L ⊆ Lf,` by definition of the
local graph.

Theorem 7 Let H = G ∪ L be a hybrid graph where L is (f, `)-local with maximum degree M , and where
G = G(w) with average weight d, second order average weight d̃, and maximum weight m. Let L′ = Lf,`(H).
If d̃ satisfies

d̃ ≤ nα ≤
(
nd

m2

)1/`

n−3/f` for some constant α > 0,

Then with probability 1 −O(n−1):

1. L′ \ L contains O(d̃) edges.

2. dL′(x, y) ≥ 1
`dL(x, y) for every pair x, y ∈ L.

In the special case where all the weights are equal andG(w) ∼ G(n, p), Theorem 7 has a cleaner statement,
and is tight in the sense that if d is larger than n

1
` we cannot hope to recover a good approximation to the

original local graph.
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Theorem 8 Let H be a hybrid graph as in Theorem 7 and let G = G(n, p) with p = dn−1. If

d ≤ nα ≤ n1/`n−3/f` for some constant α > 0,

Then with probability 1 −O(n−1), results (1)-(2) from Theorem 7 hold.

Theorem 9 Let G be chosen from G(n, p) where p = dn−1, and let

d ≥ 6fn
1
` (log n)

1
` .

With probability 1 −O(n−2), Lf,`(H) = H.

We also point out that the term
(

nd
m2

)1/`
in Theorem 7 is nearly optimal, although we will not make this

precise. In the G(w) model, d̃ replaces d since it is roughly the factor we expect a small neighborhood to
expand at each step, and having some dependence on m is unavoidable.

5 Computing the maximum short flow

The problem of finding the maximum short flow between u and v can be viewed as a fractional packing
problem, as introduced by Plotkin, Shmoys, and Tardos [41]. A fractional packing problem has the form

max{ cTx | Ax ≤ b,x � ~0 }.

To view the maximum short flow as a fractional packing problem, first letG(u, v) be a subgraph containing
all short paths from u to v. For example, we may take G(u, v) = N`/2(u) ∪N`/2(v). Let A be the incidence
matrix where each row represents an edge in G(u, v) and each column represents a short path from u to v.
Let b = c = ~1.

The algorithm Max Short Flow below is an implementation of the fractional packing algorithm by
Garg and Könemann [42] which has been specialized for our problem. See their paper for more details and
a proof of correctness.

Algorithm MAX SHORT FLOW:
Compute E(u, v) = N`/2(u) ∪N`/2(v) using breadth-first search.
Set w(e) = 1 for each e ∈ G(u, v). %w(e) is an edge-weight
Repeat until

∑
ew(e) ≥ (1 + ε)−1 ((1 + ε)m)1/ε:

Let p be the short path minimizing
∑

e∈p w(e). %Compute using MINWEIGHT.
Set α(p) = α(p) + 1 % Route 1 additional unit on p. Initially α(p) = 0 implicitly.
Set f = f + 1 % Record that we have augmented the flow by 1.
For each e ∈ p:

Set w(e) = w(e)(1 + ε). %Increase weights on edges in p
Set c(e) = c(e) + 1. %Record increased congestion on edges in p

Then to conclude:
Let C = maxe c(e) %C is the the maximum congestion.
Set α(p) = (1/C)α(p) for all p % Scale to obtain a feasible flow.
Output {α(p)} and f/C %(Output the flow and its value)
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Algorithm MINWEIGHT:
Let S0 = {u} and let φ0(u) = 0.
Repeat for k ∈ [1, `]:

Let Sk = Sk−1 ∪ Γ(Sk−1) in G(u, v)
For each x ∈ Sk:

Let φk(x) = miny∈Γ(x)(w(xy) + φk−1(y)).
Let ψk(v) be some vertex which minimizes this quantity for v at step k.

% We will now reconstruct the minimum-weight path
Find the index k of the minimum value among φ0(v) . . . φ`(v).
Let v = vk.
For j = k . . . 1

Let vj−1 = ψj(vj)
Output v0 . . . vk

Minweight runs in time TMin = O(m`) where m is the number of edges in G(u, v).

Theorem 10 MAX SHORT FLOW produces a (1 − ε)−2-approximation to the maximum short flow in
time O(md 1

ε log1+εme)TMin = O(m2`d 1
ε log1+εme), where m is the number of edges in G(u, v).

This follows from the work of Garg and Könemann in [42].

Experiment: We have implemented the Extract algorithm and tested it on various graphs. Smaller
values of ε give a more accurate output, but with a longer running time. For some hybrid graphs, the local
graphs are almost perfectly recovered (see figure 4).

Figure 3: A hybrid graph, containing the hexagonal
grid graph as a local graph.

Figure 4: After applying Extract (with parameters
k = 2.5, l = 4 and ε = 0.5), the local graph is almost
perfectly recovered.

6 Communities and examples

In this paper, we have used the hybrid graph model to understand the “landscape” of many real world graphs.
We showed that the Extract algorithm is able to extract the local structures, which are rarely found in
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the random graphs. The local graph L found by the Extract(f, l) algorithm may not be connected. Each
connected component L can be viewed as a local community. In another words, we define a “community” of
a vertex v to be the maximum subgraph containing v, which is connected and locally (f, l) connected. By
using different parameters f and l, we have a hierarchy of communities.

There is a large literature on clustering data into communities [19, 25]. For example, Flake et al. [26]
define communities using minimum cut trees. Communities in our definition are monotone properties. I.e.,
adding an edge to the graph G increases the sizes of communities. The communities found by our Extract
algorithm often have rich structures other than cliques or complete bipartite subgraphs.

Figure 5: A community of size 25 in a routing graph,
which is (3, 3) local connected.

Figure 6: A sub-community, which is (4, 3) locally
connected, sits inside the community of size 35.

An example: We used the Extract algorithm on a routing graph G using data collected by “cham-
pagne.sdsc.org”, having 9175 vertices and 15519 edges. The maximum 3-connected subgraph of G consists
of 7 K4’s and a large connected component L with 2364 vertices and 5947 edges. Our Extract(3, 3) algo-
rithm breaks L into 79 non-trivial communities of various sizes. The largest community has 881 vertices.
The second largest community (of size 59) is illustrated in Figure 5 and two communities of size 25 and 35
are illustrated in Figure 7 and 8.
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7 Appendix

7.1 Proof of Theorem 7

We say an edge in H is global if it is in G \ L. A global edge is long if dL(u, v) > ` and short otherwise. We
will show that under the hypotheses of Theorem 7 no long edges are likely to survive. If (u, v) is a short
edge in G, it is possible that there is a short flow of size f from u to v entirely through edges in L. This
means we can not say a short edge is unlikely to survive without placing additional assumptions on the local
graph. However, an easy computation shows there are not likely to be many short edges in G.

Lemma 2 The expected number of short edges in Lf,`(G) \ L is O(d̃).

The expected number of short edges in Lf,`(G) \ L is∑
short (x,y)

Pr [(x, y) ∈ Lf,`(G)] ≤
∑

short (x,y)

Pr[(x, y) ∈ G]

≤
∑
(x,y)

x∈G,y∈NL
` (x)

wxwyρ

≤ 2M `
∑
x∈G

w2
xρ (∗)

= 2M `d̃

= O(d̃)

The line marked (*) is obtained by applying Lemma 1 to the sum in the previous line, noting that each
vertex x appears in at most 2M ` terms.

Proposition 1 The probability that a given long edge survives is O(n−3).

This is the more difficult part of the proof and will take some work.

Definition 3 Nk(u) and Γk(u)

For k ∈ [0, `], let Nk(u) be the set of vertices y such that there exists a path p = v0 . . . vk from u to y in
H obeying the following condition:

dL(vi, v) > `− i for all i ∈ [0, k].

We define Γk(u) to be the corresponding strict neighborhood,

Γk(u) = { y | y ∈ Nk(u), y 6∈ N0(u) . . .Nk−1(u) } .
The following recursive definition of Γk(u) will be useful, and is easily seen to be equivalent to the original.

Γ0(u) = {u}

Γk(u) =


 y |

y 6∈ N`−k(v),
y 6∈ Γ0(u) . . .Γk−1(u),
(x, y) ∈ H for some x ∈ Γk−1(u)




12



Definition 4 C(u, v)

Define C(u, v) to be the set of edges in ⋃
k∈[1,`]

(
Γk−1(u) ×NL

`−k(v)
)
.

Remark 1 All the edges in C(u,v) are global edges.

If (x, y) ∈ (Γk−1(u) ×NL
`−k(v)

)
, then dL(x, v) > ` − (k − 1) and dL(y, v) ≤ ` − k. Thus dL(x, y) ≥ 2, so

(x, y) cannot be a local edge and must be global.

Lemma 3 Let (u, v) be a surviving long edge in H. Then f ≤ |C(u, v)|.

Proof of Lemma 3: We first show that every short path between u and v in H contains an edge from
C(u, v). Let p = v0 . . . vk be a path of length k ≤ ` between u and v in H . The last vertex on the path is
vk = v, so we have dL(vk, v) = 0 ≤ `− k, and thus vk 6∈ Nk(u). The first vertex on the path is v0 = u, and
thus v0 ∈ N0(u). Let j ≥ 1 be the smallest integer such that vj 6∈ Nj(u). By definition, vj−1 ∈ Nj−1(u),
while vj 6∈ Nj(u). This implies dL(vj , v) ≤ ` − j, so vj ∈ NL

`−j(v). We now have that vj−1vj is an edge in
Nj−1(u) ×NL

`−j(v). We conclude that vj−1vj is an edge in C(u, v) by noticing

Nj−1(u) ×NL
`−j(v) ⊆

⋃
k∈[1,j]

(
Γk−1(u) ×NL

`−k(v)
)
.

We can now complete the proof. If the set C(u, v) is removed, then no short paths remain between u and
v. Thus, if a is the maximum number of short disjoint paths, c is the size of the minimum cut to remove all
short paths, and f is the maximum `-flow, we have

a ≤ f ≤ c ≤ |C(u, v)|.
Thus f ≤ |C(u, v)|, and in fact the lemma would also hold if we were considering disjoint paths or cuts.

Lemma 4 If we condition on the values of the sets Γ0(u) . . .Γ`−1(u), then the edges in⋃
k∈[1,`]

(
Γk−1(u) ×NL

`−k(v)
)
.

are mutually independent and occur with the same probabilities as in G.

Proof of Lemma 4: We will reveal Γ0(u) . . .Γ`−1(u) sequentially by a breadth-first search. From the
recursive definition of Γk(u), it is clear that we can determine Γk(u) given Γk−1(u) by examining only the
edges in

Γk−1 ×
(
V \ (NL

`−k ∪ Γ0(u) ∪ · · · ∪ Γk−1(u))
)
.

In particular, in determining Γk(u) from Γk−1(u) we do not examine any edges with an endpoint in
Γ0(u) . . .Γk−2(u), and we do not examine any edges in Γk−1(u) × NL

`−k(v). Thus, we do not examine any
edges in ⋃

j∈[1,k]

(
Γk−1(u) ×NL

`−k(v)
)
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when revealing Γk(u), and we may reveal Γ0(u) . . .Γ`−1(u) without examining any edges in⋃
k∈[1,`]

(
Γk−1(u) ×NL

`−k(v)
)
.

Lemma 5 With probability 1 − e−Ω(nα),∑
k∈[1,`]

V ol(Γk−1(u))V ol(NL
`−k(v)) ≤ 4m2(4Md̂)`−1

Let Gj denote the set of global edges between Γj−1(u) and Γj(u). Let Γk,j(u) be the set of vertices
x ∈ Γk(u) where there exists a path p = v0 . . . vk from u to x where vi ∈ Γi(u) and j is the minimum number
such that vj . . . vk consists entirely of local edges. Thus, if j 6= 0 the edge vj−1vj is in Gj , and if j = 0
then we have x ∈ Γk,0(u) = ΓL

k (u). We think of Γk,j(u) as the collection of vertices in Γk(u) which were
guaranteed to be in Γk(u) by an edge in Gj , or in the case j = 0 were guaranteed to be in Γk(u) by being
in NL

k (u). We will be considering the volumes of these sets, so we define

Vk = V ol(Γk(u))
Vk,j = V ol(Γk,j(u)),

and make note of the following simple facts:

Γk(u) =
⋃

j∈[0,k]

Γj,k(u)

Vk ≤
∑

j∈[0,k]

Vk,j .

We will now give an upper bound on Vk,j conditional on Vj−1.

Proposition 2 Let V̂j = max{Vj ,m}, and d̂ = nα ≥ d̃. With probability 1 − exp(−Ω(nα)),

Vk,j ≤
(
4Mk−jd̂

)
V̂j−1 for all j ≤ k ≤ `− 1

Proof of Proposition 2:

Vk,j = V ol


 ⋃

(x,y)∈Gj

ΓL
k−j(y)




≤
∑

(x,y)∈Gj

V ol(ΓL
k−j(y))

We wish to bound this quantity, so we define

Yk,j =
∑

(x,y)∈Gj

V ol
(
ΓL

k−j(y)
)
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We will use the concentration inequality (4) to bound Yk,j , so we first compute a, µ, and ν.

a(Yk,j) = max
x

{
V ol

(
ΓL

k−j(x)
)} ≤Mk−jm

µ(Yk,j) =
∑
(x,y)

Pr [(x, y) ∈ Gj ]V ol
(
ΓL

k−j(y)
)

≤
∑
y∈G

E [#Global edges between Γj−1(u) and y] · V ol (ΓL
k−j(y)

)

=
∑
y∈G


 ∑

x∈Γj−1(u)

wxwyρ


V ol

(
ΓL

k−j(y)
)

= ρ
∑
y∈G

wy


 ∑

x∈Γj−1(u)

wx


V ol

(
ΓL

k−j(y)
)

= ρVj−1

∑
y∈G

wyV ol
(
ΓL

k−j(y)
)

= ρVj−1

∑
(x,y)

y∈G,x∈ΓL
k−j(y))

wxwy

≤ ρVj−12Mk−j
∑
y∈G

w2
y (∗)

=
(
2Mk−j d̃

)
Vj−1

The line marked (*) is obtained by applying Lemma 1 to the sum in the previous line, noting that each
vertex appears in at most 2Mk−j terms.
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ν(Yk,j) =
∑
(x,y)

V ol
(
ΓL

k−j(y)
)2

Pr [(x, y) ∈ Gj ]

≤
∑
y∈G

V ol
(
ΓL

k−j(y)
)2
E [#Global edges between Γj−1(u) and y]

≤
∑
y∈G


 ∑

(x,z)∈ΓL
k−j(y)

wxwz




 ∑

v∈Γj−1(u)

wvwyρ




≤ ρVj−1

∑
y∈G


 ∑

(x,z)∈ΓL
k−j(y)

wxwz


wy

= ρVj−1




∑
(x,y,z):

x∈G,(y,z)∈ΓL
k−j(x)

wxwywz




≤ ρVj−1

(
3(Mk−j)2

)∑
y∈G

w3
y (∗)

≤ Vj−1

(
3(Mk−j)2

)
m
∑
y∈G

w2
yρ

=
(
3(Mk−j)2md̃

)
Vj−1

In the line marked (*), we are asserting


∑
(x,y,z):

x∈G,(y,z)∈ΓL
k−j(x)

wxwywz


 ≤ (3(Mk−j)2

)∑
y∈G

w3
y ,

again using Lemma 1 and noting that each vertex appears in at most 3(Mk−j)2 terms in the sum.

We will now combine these results and use the concentration inequality. We define

µk,j =
(
2Mk−jd̂

)
V̂j−1 ≥

(
2Mk−jd̃

)
Vj−1 ≥ µ(Yk,j)

and note that
Pr [Yk,j > 2µk,j ] ≤ Pr [Yk,j > µ(Yk,j) + λ] ,

where µk,j ≤ λ ≤ 2µk,j .
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Pr [Yk,j > 2µk,j ] ≤ exp

(
− µ2

k,j

2(ν + a(2µk,j)
3 )

)

≤ exp


−

(
2Mk−j d̂

)2

(V̂j−1)2

2
((

3(Mk−j)2md̃
)
Vj−1 +

2(2Mk−j d̂)V̂j−1(Mk−jm)

3

)



≤ exp


− 4V̂j−1

2
(
3m+ 4m)

3

) d̂



≤ exp

(
− 6

13
V̂j−1

m
d̂

)

= exp(−Ω(nα))

Thus, Pr [Yk,j > 2µk,j ] ≤ exp(−Ω(nα)). By the union bound, Yk,j ≤ 2µk,j for all j ≤ k ≤ ` − 1 with
probability 1 − `2e−Ω(nα) = 1 − e−Ω(nα).

Proposition 3 With probability 1 − exp(−Ω(nα)),

Vk ≤ (4Md̂)km for all k ∈ [0, `− 1]

Proof of Proposition 3: We prove by induction that

Vk ≤ (4Md̂)km, (6)

given that
Vk,j ≤

(
4Mk−j d̂

)
V̂j−1 for all j ≤ k ≤ `− 1.

The result of Proposition 3 will follow immediately, since that event occurs with probability 1−exp(−Ω(nα))
by Proposition 2.

Equation (6) holds for k = 0 since we have V0 = V ol({u}) ≤ m. Assume now that (6) holds for [0, k] and
consider Vk+1.

Vk+1 ≤
∑

j∈[0,k+1]

Yk+1,j

≤ Yk+1,0 +
∑

j∈[1,k+1]

(
4Mk+1−jd̂

)
V̂j−1

≤ ΓL
k+1(u) +

∑
j∈[0,k+1]

(
4Mk+1−jd̂

)
(4Md̂)j−1m

≤ Mk+1 +Mkm
∑

j∈[0,k+1]

(
4d̂
)j

≤ Mk+1m(4d̂)(k+1)

= (4Md̂)k+1m
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To obtain the second-to-last line we have assumed that M ≥ 2.

Proof of Lemma 5:

With probability 1 − e−Ω(nα),

∑
k∈[1,`]

V ol(Γk−1(u))V ol(NL
`−k(v)) ≤

∑
k∈[1,`]

(
(4Md̂)k−1m

)
(2mM `−k)

= 2m2M `−1
∑

k∈[1,`]

(4d̂)k−1

≤ 4m2M `−1(4d̂)`−1

= 4m2(4Md̂)`−1

Proof of Theorem 7

Let
E =

⋃
k∈[1,`]

(
Γk−1(u) ×NL

`−k(v)
)
.

|C(u, v)| is the number of global edges in E. If (u, v) is a surviving long edge, then |C(u, v)| ≥ f by
Lemma 3. Let Ef denote the set of ordered f -tuples from E with distinct entries. Let B be the event that∑

k∈[1,`]

V ol(Γk−1(u))V ol(NL
`−k(v)) ≤ 4m2(4Md̂)`−1,

which occurs with probability 1 − e−Ω(nα) by Lemma 5.

Pr [|C(u, v)| ≥ f ] ≤ Pr [|C(u, v)| ≥ f | B ] + Pr
[|C(u, v)| ≥ f | B̄ ]

≤ Pr [|C(u, v)| ≥ f | B ] + e−Ω(nα)

We will now bound Pr [|C(u, v)| ≥ f | B ]. We will first determineE by revealing the sets Γ0(u) . . .Γ`−1(u).
Critically, Lemma 4 tells us that the potential edges in E are mutually independent and occur with the same
probabilities as in G. Thus,
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Pr [|C(u, v)| ≥ f | B ] ≤
∑

((x1,y1)...(xf ,yf ))∈Ef

Pr


 ∧

i∈[1,f ]

(xi, yi) ∈ G




=
∑

((x1,y1)...(xf ,yf ))∈Ef

∏
i∈[1,f ]

wxiwyiρ

≤ ρf


 ∑

((x1,y1)...(xf ,yf))∈Ef

∏
i∈[1,f ]

wxiwyi




= ρf


 ∑

k∈[1,`]

V ol(Γk−1(u))V ol(NL
`−k(v))




f

≤ ρf
(
4m2(4Md̂)`−1

)f

=
(
4m2(4Md̂)`−1ρ

)f

Since d̂ = nα ≤ ( nd
m2 )1/`n−3/f`,

Pr[|C(u, v)| ≥ f | B] ≤ (
4m2(4Mnα)`−1ρ

)f
≤

(
4m2(4M)`−1(nα)` 1

nd

)f

≤
(
(4M)`n−3/f

)f

= O(n−3)

Thus the probability that a given long edge survives is at most

O(n−3) + e−Ω(nα) = O(n−3).

Since there are at most n2 edges in G, with probability 1−O(n−1) no long edges survive. In that case, L′ \L
contains only short edges, and there are O(d̃) of these by Lemma 2, so part (1) follows. To prove (2), note
that if no long edges survive, then all edges in L′ must be short. If (u, v) is an edge in L′, dL(u, v) ≤ `. If
p′ is a path between two vertices x, y in L′ with length k, then by replacing each edge with a short path we
obtain a path p in L between x and y with length at most `k. The result follows.

7.2 Proof of Theorem 8

The G(n, p) model with p = dn−1 is a special case of G(w) with d = d̃ = m. Our bound from from Lemma 5
becomes

∑
k∈[1,`]

V ol(Γk−1(u))V ol(NL
`−k(v)) ≤ 4(4M)`−1d`+1.

We then obtain

Pr [|C(u, v)| ≥ f | B ] ≤ ρf (4(4M)`−1d`+1)f

= (4(4M)`−1d`n)f

and the result follows.
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7.3 Proof of Theorem 9

We will use the following lower bound on neighborhood size (see [9] p. 260).

Lemma 6 (Neighborhood lower bound)

Let ` be a fixed constant, If d ≥ n1/`(log(n2))1/`, then

Pr
[
|NG

`−1(x)| <
5
6
(n log(n2))1−1/`

]
< n−4,

provided that n is sufficiently large.

Let d ≥ 6fn
1
` (logn)

1
` , as in the statement of the theorem. Let u, v be any pair of vertices in H . We will

show that G contains f short disjoint paths from u to v, which will imply that every edge in G \L survives.
Partition the vertices V \ {u, v} into f disjoint sets V1 . . . Vf , each of size n/f and let Gi be the induced
subgraph of G on Vi ∪ {u, v}. We will ignore the fact that we may not be able to partition into sets of size
exactly n/f , since it will not be significant. We can view Gi as a G(n, p) random graph with

d′ = 6n
1
` (logn)

1
` ≥ 6n

1
` (logn)

1
` ≥ 6|Gi| 1` (log |Gi|) 1

` .

By applying Lemma 6 to any particular Gi,

|NGi

`−1(x)| ≥
5
6
(|Gi| log(|Gi|2)1−1/`

with probability at least 1−|Gi|−4 = 1− (n/f)4. With probability at least 1− f(n/f)4 ≥ 1−n−4 this holds
for all G1 . . . Gf , and we let A denote this event. If A holds, there is likely to be an edge in G from NGi

`−1(x)
to v.

Pr
[
No edge from NGi

`−1(x) to v | A
]

≤ (1 − p)|N
Gi
`−1(x)|

≤ exp(−p|NGi

`−1(x)|)
≤ exp(−p5

6
(|Gi| log(|Gi|2)1−1/`)

≤ exp(−6fn−1n
1
` (logn)

1
`
5
6
(|Gi| log(|Gi|2)1−1/`)

≤ exp(−5 log(n/f))
≤ O(n−5)

Thus, conditional on A, there is an edge from NGi

`−1(x) to v for each i ∈ [1, f ] with probability 1 −
fO(n−5) = 1−O(n−5). The event A occurs with probability 1−O(n−4). Thus, with probability 1−O(n4)
there exist f short disjoint paths from u to v, and hence the `-flow from u to v is at least f . Since there are
at most n2 edges in G, by the union bound every edge in G \ L survives with probability 1 −O(n2).
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