
DOI: 10.1007/s00453-006-0160-2

Algorithmica (2007) 47: 379–397 Algorithmica
© 2007 Springer Science+Business Media, Inc.

Drawing Power Law Graphs Using
a Local/Global Decomposition1

Reid Andersen,2 Fan Chung,2 and Linyuan Lu3

Abstract. It has been noted that many realistic graphs have a power law degree distribution and exhibit the
small-world phenomenon. We present drawing methods influenced by recent developments in the modeling
of such graphs. Our main approach is to partition the edge set of a graph into “local” edges and “global” edges
and to use a standard drawing method that allows us to give added importance to local edges. We show that our
drawing method works well for graphs that contain underlying geometric graphs augmented with random edges,
and we demonstrate the method on a few examples. We define edges to be local or global depending on the size
of the maximum short flow between the edge’s endpoints. Here, a short flow, or alternatively an �-short flow,
is one composed of paths whose length is at most some constant �. We present fast approximation algorithms
for the maximum short flow problem and for testing whether a short flow of a certain size exists between given
vertices. Using these algorithms, we give an algorithm for computing approximate local subgraphs of a given
graph. The drawing algorithm we present can be applied to general graphs, but it is particularly well suited for
small-world networks with power law degree distribution.

Key Words. Power law graphs, Small-world phenomenon, Network flow, Graph drawing, Hybrid graphs.

1. Introduction. Although graph theory has a history of more than 250 years, it was
only recently observed that realistic graphs from many different areas satisfy the so-
called “power law,” where the fraction of nodes with degree k is proportional to k−β for
some positive exponent β. Graphs with power law degree distribution are prevalent in the
Internet, communication networks, social networks, and biological networks [1]–[13].
Many real examples of networks also exhibit a so-called “small-world phenomenon”
consisting of two distinct properties—small average distance between nodes and a clus-
tering effect where two nodes sharing a common neighbor are more likely to be adjacent.
It was shown in [14] that a random power law graph has small average distance and small
diameter. However, random power law graphs do not adequately capture the clustering
effect.

In [15] the authors introduced a hybrid graph model where a random power law graph
called the global graph is added to an underlying local graph. A local graph is a graph
where the endpoints of each edge are highly locally connected. In particular, a graph is
said to be (f, �)-local if for every edge in the graph we can route a fractional flow of
size f between the endpoints through paths of length at most �. Examples of graphs that

1 A conference version appeared in Proceedings of the Twelfth Annual Symposium on Graph Drawing, 2004.
Fan Chung’s research was supported in part by NSF Grants DMS 0100472 and ITR 0205061.
2 Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, USA.
{randerse,fan}@ucsd.edu.
3 Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA. lu@maths.sc.edu.

Received December 6, 2004; revised November 5, 2006. Communicated by J. Pach and F. Shahrokhi.
Online publication February 13, 2007.

380 R. Andersen, F. Chung, and L. Lu

are (f, �)-local for various parameters include d-dimensional grid graphs, hypercubes,
and certain subgraphs of random geometric graphs. Given an arbitrary graph G and a
choice of parameters f and �, we define the local graph of G to be its largest (f, �)-local
subgraph, providing a way to partition G into local and global edges. The main result
of [15] is that the local graph of a hybrid graph is equal to the original local graph
up to a small error, indicating that local graphs are robust to the addition of random
edges.

In this paper we demonstrate that partitioning a graph into local and global edges
based on local connectivity can be done quickly and can be useful in graph drawing. To
obtain local/global partitions for large graphs, we present an approximation algorithm
for computing the local graph. We also give an algorithm for the problem of computing
the maximum short flow between given vertices. The number of iterations required in
our maximum short flow algorithm depends on the value fopt of the maximum short flow.
We also give an algorithm for the problem of local connectivity testing, where we wish to
determine whether there exists a short flow of a certain size ftest between given vertices.
The number of iterations required by our testing algorithm is determined by ftest and not
fopt, so testing local connectivity can often be done more quickly than computing the
maximum short flow. Our algorithms are based on the maximum multicommodity flow
algorithm of Garg and Könemann [16], which is based on the technique of multiplicative
updates.

After obtaining a local/global partition, we use it by modifying a standard graph lay-
out algorithm to emphasize local edges. This technique can be applied with many graph
layout algorithms, including force-directed algorithms and spectral drawing methods.
We demonstrate that this method produces improved drawings for graphs that contain
underlying geometric graphs augmented with random edges. This is theoretically sup-
ported, since the robustness of the local graph implies that most of the edges in the
underlying geometric graph will be classified as local, while most of the edges from the
random graph will be classified as global.

We also present a drawing method based on a more sophisticated partition that reflects
other aspects of the structure of power law graphs. For example, it was shown in [14]
that a random power law graph has roughly an “octopus” shape, with a dense “core”
and a myriad of attached “tentacles.” While the core itself may be a dense graph that
is not amenable to most drawing methods, our algorithm takes advantage of the local
subgraph and the sparse tree-like structures in the tentacles, yielding improved drawings.
This partition extends the class of graphs for which the local/global partition is useful
to many realistic networks where some notion of distance between vertices is reflected
in the edge set.

2. Preliminaries. In [15] the authors introduced local graphs, which are graphs where
the endpoints of each edge are highly locally connected by short flows. In this section
we introduce short flows and define local graphs. We will also state a theorem showing
that local graphs are robust to the addition of random edges.

Throughout the paper the graphs we consider are undirected and unweighted. Given
a graph G, we let dG(u, v) denote the graph distance between vertices u and v in G. We

Drawing Power Law Graphs Using a Local/Global Decomposition 381

will use the following notation for the neighborhoods of a vertex:

Nk(u) = {v ∈ G | dG(u, v) ≤ k}.

2.1. Short Flows. There are a number of ways to define local connectivity between
two given vertices u and v. A natural approach is to consider the connectivity through
paths whose length is at most some fixed constant �, which we call �-short paths or
simply short paths when � is understood. The path connectivity a�(u, v) is the maximum
size of a collection of �-short edge-disjoint u–v paths. The cut connectivity c�(u, v) is
the minimum size of an �-short u–v cut, a set of edges whose removal leaves no �-short
u–v paths. The analogous version of Menger’s theorem does not hold when we restrict
to short paths—namely, a�(u, v) and c�(u, v) are not necessarily equal. However, it is
easy to see that the trivial relations a�(u, v) ≤ c�(u, v) ≤ � · a�(u, v) still hold.

Both a�(u, v) and c�(u, v) are difficult to compute. In particular, computing the max-
imum number of short disjoint paths is NP-hard if � ≥ 4 [17]. In light of this result
we will define local connectivity based on a fractional relaxation of the maximum short
disjoint path problem, which we call the maximum �-short flow.

An �-short flow is a linear combination of �-short paths where each edge has conges-
tion at most 1, and we denote the maximum �-short flow between u and v by f�(u, v).
Finding f�(u, v) can be viewed as the linear programming relaxation of finding a�(u, v).
If we let A be the incidence matrix where each column represents a short path from u to
v and each row represents an edge in the graph, then

f�(u, v) = max
x
{
1T x | Ax ≤
1, x ≥
0 }.(1)

The linear programming dual of the maximum short flow problem is a fractional cut
problem. A short fractional cut is a weight functionw: E → R+ such that

∑
e∈P w(e) ≥

1 for every short u–v path P . The dual of the short maximum flow problem is the problem
of finding a short fractional cut that minimizes

∑
e∈G w(e). We let w�(u, v) denote the

size of the minimum short fractional cut, and we note that LP duality implies

a�(u, v) ≤ f�(u, v) = w�(u, v) ≤ c�(u, v).(2)

Since all the coefficients in the incidence matrix, cost vector, and constraint vector in
the problem formulation (1) are nonnegative, the maximum short flow problem belongs
to a special subset of linear programs called fractional packing problems, for which
there exist general techniques that often lead to polynomial-time algorithms [18]. In
Section 3 we present an algorithm for computing the maximum �-short flow based on
the multiplicative update technique.

2.2. Local Graphs. We are now ready to define local connectivity and then local graphs,
based on the notion of short flow.

DEFINITION 1. Two vertices u and v are (f, �)-connected if f�(u, v) ≥ f .

DEFINITION 2. A graph L is (f, �)-local if for each edge (u, v) in L , the endpoints u
and v are (f, �)-connected in L .

382 R. Andersen, F. Chung, and L. Lu

u

v

u

v

u

v

u

v

Fig. 1. A 5-short flow of size 4 between endpoints of a grid edge.

For example, the toroidal grid graph Cn × Cn is (3, 3)-local. This graph is also (4, 5)-
local, which is slightly less obvious and highlights the difference between a�(u, v) and
f�(u, v). A 5-short flow of size 4 between the endpoints of a grid edge is depicted in
Figure 1. The flow consists of 1 unit routed on the path of length 1 in the leftmost grid
and 1

2 unit routed on each of the six paths shown in the remaining three grids.
The union of two (f, �)-local graphs is (f, �)-local, and so there is a unique largest

(f, �)-local subgraph of G, which we denote L f,�(G). In Section 4 we present algo-
rithms for approximately computing L f,�(G). It is important to note that L f,�(G) is not
necessarily connected.

2.3. Mengerian Theorems for Short Paths. It was mentioned previously that a�(u, v)
and c�(u, v) are not necessarily equal. It is an open problem to determine how much
these quantities can differ as a function of �. It was shown by Lovász et al. [19] that
c�(u, v) ≤ �/2 · a�(u, v). Boyles and Exoo [20] have given a family of graphs where
c�(u, v) ≥ �/4 · a�(u, v). Their results were stated for the case of vertex-disjoint paths,
but the results convert easily to the edge-disjoint case that we are considering. We now
present a simple construction showing that c�(u, v) ≥ �/3 · a�(u, v) for infinitely many
�, improving the best-known lower bound. An equivalent construction appeared in the
thesis of Baier [21]. We conjecture that c�(u, v) ≤ (�/3+ o(1)) · a�(u, v) for all graphs.

THEOREM 1. For every � there exists a graph such that a�(u, v) = 1 and c�(u, v) ≥ �/3.

PROOF. Consider a path P = x1 · · · x2n of length 2n − 1 and let u = x1 and v = xn .
We add 2n disjoint paths of length 2 between each pair of adjacent vertices xi and xi+1.
Call this graph G2n , and let u = x1 and v = xn .

We refer to the edges of P as base edges. It is easy to see that a u–v path using at most
k base edges has length at least (4n−2)−k. If we set � = 3n−2, then every �-short path
must use at least n base edges so that its length is at most (4n − 2)− n = 3n − 2 = �.
Since there are only 2n − 1 base edges, any two �-short paths must intersect in a base
edge, so a�(u, v) = 1. We now consider the size of a minimum �-short cut C . Without
loss of generality we can assume that C cuts only base edges. If C cuts n − 1 or fewer
base edges, then n base edges remain and the path that proceeds from xi to xi+1 by taking
a base edge whenever possible has length at most (4n − 2)− (n) = 3n − 2 = �. Thus,
c�(u, v) ≥ n, and so

c�(u, v) = n

3n − 2
· � ≥ �

3
.

Drawing Power Law Graphs Using a Local/Global Decomposition 383

It is not hard to modify the above construction to obtain examples for � = 3n− 1 and
� = 3n with c�(u, v) ≥ �/3. We can increase � by 1 or 2 without changing a�(u, v) or
c�(u, v) if we add a vertex x0, let u = x0, and connect x0 to x1 with 2n paths of length
1, or 2n paths of length 2.

2.4. Random Graphs with Specified Expected Degree Sequence. A random graph G(w)
with specified expected degree sequence w = (w1, w2, . . . , wn) is formed by including
each edge vivj independently with probability pi j = wiwjρ, where ρ = (

∑
wi)
−1.

This includes self-loops of the form vivi , which occur with probabilityw2
i ρ as would be

expected. We use the convention that a self-loop contributes only one to the degree of
vi . It is then easy to check that vertex vi has expected degree wi .

We assume that maxi w
2
i <

∑
k wk so that pi j ≤ 1 for all i and j . This condition

also implies that the sequence w would be graphical if eachwi were an integer [22]. The
standard random graph G(n, p) on n vertices with edge probability p is a special case
of the G(w) model where w = (pn, pn, . . . , pn). For a subset S of vertices, we define

Vol(S) =
∑
vi∈S

wi and Volk(S) =
∑
vi∈S

wk
i .

We let d denote the average expected degree Vol(G)/n, and let d̃ denote the second-order
average expected degree Vol2(G)/Vol(G). We also let m denote the maximum weight
among the wi .

2.5. Robustness of Local Graphs. We now consider the robustness of a local graph L
to the addition of random edges. In particular we consider a graph formed by taking the
union of the edge sets of two graphs: a local graph L that is (f, �)-local for some choice
of parameters and a random graph R with specified expected degree sequence G(w). We
call such a graph a hybrid graph H and use the notation H = L ∪ R.

The following theorem, proved by the authors in [15], describes when the largest local
graph in the hybrid graph, L f,�(H), is a good approximation of the original local graph.
The result depends mainly on the local graph parameters f and � and the parameter d̃
in the random graph G(w).

THEOREM 2 (Recovery Theorem). Let H = L ∪ R be a hybrid graph where L is an
(f, �)-local graph with bounded maximum degree and where R = G(w) is a random
graph with average expected degree d, second-order average expected degree d̃, and
maximum weight m. Let L ′ = L f,�(H). Let α > 0 be some constant such that d̂ = nα is
an upper bound for d̃ . If d̂ satisfies

d̂ ≤
(

nd

m2

)1/�

n−3/ f �,

then with probability 1− O(n−1):

1. The expected number of edges in L ′\L is O(d̃).
2. dL ′(x, y) ≥ (1/�)dL(x, y) for every pair of vertices x, y ∈ L .

384 R. Andersen, F. Chung, and L. Lu

The proof of this theorem is contained in [15]. In Section 3 we consider the problem
of algorithmically recovering the local graph by computing L f,�(H).

3. Algorithms for Short Flow Problems. Garg and Könemann [16] gave simple
combinatorial algorithms for maximum multicommodity flow, maximum concurrent
flow, and general fractional packing problems based on the technique of multiplicative
updates.

We present a simple multiplicative update algorithm for the maximum short flow
problem based on their techniques. The number of iterations required by our algorithm
is smaller than the number required by the algorithms for maximum multicommodity
flow or general fractional packing problems. This is because the number of iterations in
our algorithm can be bounded in terms of f�(u, v) instead of by the number of edges in
the graph.

Since we are computing �-short flows between vertices u and v, our algorithms need to
consider only those vertices and edges that are involved in some �-short u–v path, and so
it suffices to examine only the vertices in the induced subgraph on N��/2�(u)∪ N��/2�(v).
Whenever possible, we will state running times in terms of the number of edges in this
graph instead of the number of edges in the entire graph.

For the applications in this paper we will be repeatedly testing whether two given
vertices are (f, �)-connected for some constants f and �. We refer to this as the local
connectivity testing problem. We combine our maximum short flow algorithm with a
simple greedy algorithm to obtain an algorithm for local connectivity testing where the
number of iterations required depends on the constant f rather than f�(u, v). Thus,
in many cases we can test local connectivity more quickly than we can compute the
maximum short flow.

3.1. Computing the Maximum Short Flow. Maximum Short Flow. We are given
as input a graph with two distinguised vertices u and v, a length �, and parameter ε. The
algorithm maintains a weight functionw assigning nonnegative real weights to the edges
of the input graph and a flow function f assigning integer amounts of flow to �-short
u–v paths. The weight function and flow function are updated at each iteration of the
algorithm, and we let wi and fi refer to the weight and flow functions after i iterations.
Initiallyw0 assigns weight δ to every edge, where δ is a constant depending on ε that we
will determine later. Initially f0 is the empty flow assigning zero units of flow to every
short path. The following steps constitute the i th iteration of the algorithm:

1. Compute the minimum-weight �-short u–v path with respect to the current weight
function wi−1. Call this path pi .

2. Obtain fi from fi−1 by routing one additional unit of flow on pi .
3. Obtain wi from wi−1 by multiplying wi−1(e) by (1+ ε) for each edge e in pi .

The algorithm performs iterations until the first time step t is reached where α(t) ≥ 1.
At that time, let κ be the maximum congestion on any edge in ft . Multiply ft by a factor
of 1/κ to obtain a feasible �-short flow F̂�(u, v) of size f̂ = t/κ .

Finding a minimum-weight �-short u–v path given a weight function w can be done
easily by dynamic programming, as we will sketch here. Let W (x, k) be the minimum

Drawing Power Law Graphs Using a Local/Global Decomposition 385

weight of a path of length less than of equal to k from vertex u to vertex x , and let P(x, k)
be the predecessor of x on some path achieving this minimum. Initially set W (x, 0) = ∞
if x �= u, and set W (u, 0) = 0. The values W (x, k+1) and P(x, k+1) can be computed
from the values of W (y, k) for all vertices y by the rule

W (x, k + 1) = min

{
W (x, k) , min

y∈N (x)
W (y, k)+ w(x, y)

}
.

When W (x, k) and P(x, k) are known for all k ∈ [0, �], a minimum-weight path
x1, . . . , x� can be obtained by setting x� = v, then letting xi−1 = P(xi , i) until x1 = u
is reached. This can be carried out in time Tmwp = O(m�).

THEOREM 3. The algorithmMaximum Short Flowproduces a feasible flow F̂�(u, v)
of value f̂�(u, v) with the approximation guarantee

f�(u, v)

f̂�(u, v)
≤ (1− ε)−2.

The algorithm runs in time (f�(u, v)(1/ε2)� log �)Tmwp, where Tmwp = O(m�) is the
time required to find a minimum-weight �-short path, and m is the number of edges in
the induced subgraph on N��/2�(u) ∪ N��/2�(v).

The analysis of the approximation guarantee for the maximum short flow algorithm
is nearly identical to the analysis for the maximum multicommodity flow algorithm in
Garg and Könemann [16], but the analysis of the number of iterations required to obtain
the guarantee contains a significant difference. For completeness, we include the full
analysis here.

PROOF OF THE APPROXIMATION GUARANTEE. Let D(w)=∑
e w(e) be the total amount

of weight assigned by the weight function w and let α(w) = minp
∑

e∈p w(e) be the
minimum weight on any �-short path from the weight function w. Let D(i) = D(wi)

and α(i) = α(wi). After each iteration i ≥ 1,

D(i) =
∑

e

wi (e)

=
∑

e

wi−1(e)+ ε
∑

e∈p(i)

w(e)

= D(i − 1)+ ε · α(i − 1),

and thus

D(i) = D(0)+ ε
i∑

k=1

α(k − 1).(3)

Notice that for any weight function w where α(w) �= 0, the scaled weight function
w · 1/α(w) is an �-short fractional cut, since every �-short path will have at least one
unit of weight. Therefore,

f�(u, v) = w�(u, v) ≤ D(w)

α(w)
.(4)

386 R. Andersen, F. Chung, and L. Lu

Now consider the weight function wi − w0 where the initial weights δ are subtracted
from each edge. We have D(wi − w0) = D(i) − D(0) and α(wi − w0) ≥ α(i) − δ�.
Applying (4) yields the inequality

f�(u, v) ≤ D(wi − w0)

α(wi − w0)
≤ Di − D0

α(i)− δ� ,

and so D(i)− D(0) ≥ f�(u, v)(α(i)− δ�). We substitute this in (3) to obtain

α(i) ≤ δ�+ ε

f�(u, v)

i∑
k=1

α(k − 1).

Rewriting the right side of this expression in terms of α(i − 1) yields the recursive
formula

α(i) ≤ α(i − 1)

(
1+ ε

f�(u, v)

)
.

Since α(0) ≤ δ� this implies

α(i) ≤ α(0)
(

1+ ε

f�(u, v)

)i

≤ δ�
(

1+ ε

f�(u, v)

)i

≤ δ�eεi/ f�(u,v).

On the other hand, we have the lower bound α(t) ≥ 1 by the stopping condition,
which yields

1 ≤ α(t) ≤ δ�eεt/ f�(u,v),

and by taking the logarithm of both sides we obtain

f�(u, v)

t
≤ ε

ln(1/δ�)
.(5)

Every edge e haswt (e) < 1+ε, since the last time e was increased it was on a path of
length strictly less than 1, and its weight was increased by a factor of 1+ε. Sincew0(e) =
δ, it follows that the weight of e can be increased at most log1+ε((1+ ε)/δ) times, and
thus the total flow through e is at most log1+ε((1+ ε)/δ). Scaling the flow ft by the
maximum congestion yields a feasible flow f̂�(u, v) of value at least t/log1+ε((1+ ε)/δ).
Using this value to bound the approximation ratio, we obtain

f�(u, v)

f̂�(u, v)
≤ f�(u, v)

t
log1+ε

(
1+ ε
δ

)
.

Substitute the bound on f�(u, v)/t from (5) to obtain

f�(u, v)

f̂�(u, v)
≤ ε

ln(1/δ�)
log1+ε

(
1+ ε
δ

)
= ε

ln(1+ ε)
ln((1+ ε)/δ)

ln(1/δ�)
.

The ratio ln((1+ ε)/δ)/ln(1/δ�)) is (1− ε)−1 if we set δ = (1+ ε)((1+ ε)�)−1/ε. With
this δ we have

f�(u, v)

f̂�(u, v)
≤ ε

(1− ε) ln(1+ ε) ≤
ε

(1− ε)(ε − ε2/2)
≤ (1− ε)−2.

Drawing Power Law Graphs Using a Local/Global Decomposition 387

Analysis of the running time. Each edge can have its weight multiplied by (1 + ε) at
most log1+ε((1+ ε)/δ) times until its weight reaches 1 and it cannot be further increased.
If C(u, v) is an �-short cut, then at every time step some edge in C(u, v) has its weight
multiplied by (1+ ε). Thus, the algorithm performs at most c�(u, v) log1+ε((1+ ε)/δ)
iterations before terminating. To obtain the stated approximation ratio, the initial weight
δ is set to (1+ ε)((1+ ε)�)−1/ε. Thus the number of iterations required is at most

c�(u, v) log1+ε
1+ ε
δ
≤ c�(u, v)

1

ε
log1+ε(1+ ε)� ≤ c�(u, v)

2

ε2
log2 �.(6)

The number of iterations can also be bounded in terms of the flow by applying the bound
c�(u, v) ≤ �/2 · f�(u, v), which was mentioned in Section 2.1. The number of iterations
required is then (f�(u, v)(1/ε2)� log2 �). The result follows.

It should be noted that this bound on the number of iterations depends crucially on the
assumption that all edge capacities are equal to 1. It is not hard to modify the algorithm
to work in the case of arbitrary edge capacities (see [16]), but the running time may then
depend on m instead of f�(u, v).

3.2. Testing Local Connectivity

Approximate Local Connectivity Test. We are given as input a graph with
distinguised vertices u and v. We wish to accept if u and v are (f, �)-connected and
reject otherwise. The algorithm greedily chooses a collection A of short disjoint paths
until either A has size f or A is maximal. If A reaches size f , then the algorithm
accepts. Otherwise, the algorithm computes f̂�(u, v) using Maximum Short Flow,
and it accepts if and only if f̂�(u, v) ≥ (1− ε)2 f .

THEOREM 4. The algorithmApproximate Local Connectivity Testaccepts
all vertex pairs that are (f, �)-connected, and it rejects all vertex pairs that are not
((1−ε)2 f, �)-connected. The algorithm runs in time (f�(u, v)(1/ε2)� log �)Tmwp, where
Tmwp = O(m�) is the time required to find a minimum-weight �-short path and m is the
number of edges in the induced subgraph on N��/2�(u) ∪ N��/2�(v).

PROOF. If A reaches size f then we correctly accept, since f�(u, v) ≥ f . If A is
maximal then the edges used in A form an �-short u–v cut, since every short path must
intersect some path in A. This cut has fewer than f � edges, since A contains fewer than f
paths, which are all �-short. This cut implies that c�(u, v) ≤ f �, and combining this with
(6) implies that the algorithm Max Short Flow computes a (1 − ε)2-approximation
f̂�(u, v) in ((2/ε2) f � log �) iterations. At this point, if f�(u, v) ≥ f , then f̂ ≥ (1 −
ε)2 f by the approximation guarantee, and so we accept. If f�(u, v) < (1 − ε)2 f , then
f̂�(u, v) < f�(u, v) < (1 − ε)2 f , and so we reject. The running time is dominated by
the time to run Max Short Flow, and the result follows.

4. Separating Local and Global Edges. In this section we present approximation
algorithms for computing and appraximating L f,�(G), the largest (f, �)-local subgraph

388 R. Andersen, F. Chung, and L. Lu

in G. These algorithms for computing L f,�(G) will be used to create our graph decom-
positions in Section 5.

4.1. The Extract Algorithm. We first present a simple greedy algorithm Extract for
computing L f,�(G). This basic version of the Extract algorithm appeared previously
in [15].

Extract(f, �). We are given an input graph G and parameters f and �. Initially,
set H = G. For each edge e = (u, v) in H , check if u and v are (f, �)-connected in
H . If not, remove edge e from H . Repeat until no further edges can be removed, then
output H .

THEOREM 5. For any graph G and any (f, �), the algorithm Extract(f, �) returns
L f,�(G), the unique maximal (f, �)-connected subgraph of G.

PROOF. Let ei be the i th edge removed during the running of the Extract algorithm,
and let L = G\{e1, . . . ek} be the graph output by the algorithm. The first edge e1 removed
by the algorithm is not (f, �)-connected in G, and therefore it is not contained in any
(f, l)-local subgraph of G. Assume for the sake of induction that each of the edges
e1 · · · ei in not contained in any (f, l)-local subgraph of G. The next edge removed,
ei+1, is not contained in any (f, l)-local subgraph of G\{e1 · · · ei } and is therefore not
contained in any (f, l)-local subgraph of G. By induction, each edge not in L is not
contained in any (f, �)-connected subgraph of G. Since the algorithm cannot remove
any additional edges from L , each edge in L is (f, �)-connected in L , and so L is
(f, l)-local. Therefore, L is the unique maximal (f, l)-local subgraph of G.

The immediate corollary below describes what happens if we replace the exact lo-
cal connectivity testing in Extract with an ε-approximate local connectivity testing
algorithm.

COROLLARY 1. If the algorithm Extract uses an ε-approximate local connectivity
testing algorithm which accepts all vertex pairs that are (f, �)-connected and rejects all
vertex pairs that are not ((1− ε) f, �)-connected, then Extract returns a graph L̂ such
that L f,�(G) ⊆ L̂ ⊆ L f (1−ε),�(G).

4.2. An Approximate Extract Algorithm. The algorithm Extract performs O(m2)

local connectivity tests, where m is the number of edges in G. The number of local
connectivity tests used can be reduced by using a standard random sampling approach
if we are willing to accept local graphs that are approximations in an additional sense.
We say L̂ is an α-approximate local subgraph of G with respect to some determin-
istic connectivity test T if L̂ contains every edge of G that passes the test T and if
at most an α-fraction of the edges in L fail the test T . The following algorithm re-

Drawing Power Law Graphs Using a Local/Global Decomposition 389

turns an α-approximate local graph for a given local connectivity test with probability
1− δ:

Approximate Extract

We are given as input a graph G, a local connectivity test T , and parameters α
and δ.

Pick an edge e = (u, v) from G uniformly at random.
If u and v fail the test T , remove (u, v) from G.

Repeat until no edge is removed for (1/α) log(m/δ) consecutive attempts,
then output the current graph.

Since at most m edges are removed from G and there are at most (1/α) log(m/δ)
attempted removals for every edge removed, Approximate Extract performs at
most (m/α) log(m/δ) local connectivity tests.

THEOREM 6. With probability at least 1− δ, the algorithm Approximate Extract
returns an α-approximate local subgraph of G with respect to the local connectivity
test T .

PROOF. We say the algorithm is in phase i if i − 1 edges e1 · · · ei−1 have been removed
so far. Say that the algorithm has reached phase i . If the algorithm halts before phase
i + 1 and outputs a graph that is not α-approximate for T , then (1/α) log(m/δ) edges
were tested and passed the local connectivity test in phase i , but at least an α-fraction of
the edges remaining in phase i do not pass the local connectivity test. The probability
that this occurs is bounded by

(1− α)(1/α) log(m/δ) ≤ e− log(m/δ) ≤ δ

m
.

Since there are at most m phases of the algorithm, the probability that this occurs in any
phase is at most δ. Note that we never remove an edge that passes the local connectivity
test. The result follows.

COROLLARY 2. If we run the algorithm Approximate Extract with an ε-approx-
imate connectivity test, then with probability 1− δ we obtain a graph L̂ which contains
L f,� and where at most an α-fraction of edges are not (f (1− ε), �)-connected in L̂ .

4.3. Heuristic Versions of the Extract Algorithm. In some applications it may be suffi-
cient to create a local/global partition by defining L be the edges that are (f, �)-connected
in G. In this case L will not necessarily be an (f, �) local graph, but the subgraph L
still has the robustness properties described in Section 2.5. This approach eliminates the
recursive part of Extract and requires only m local connectivity tests. It should be
considered for large graphs.

An alternative to computing the maximum short flow between u and v is to compute
the max flow between u and v within the incuded subgraph on N�/2(u) ∪ N�/2(v). The

390 R. Andersen, F. Chung, and L. Lu

size of this flow can be significantly larger than the maximum �-short flow between u
and v, and we do not currently have any theoretical guarantees for local graphs based
on this notion of flow. However, the time savings could be significant due to the high
quality max flow implementations that are available.

For a few limited choices of parameters, testing local connectivity can be solved more
easily. With the parameters (f = 2, �), testing local connectivity can be accomplished
by determining the distance between u and v in G\(uv). For the parameters (f, � =
3), testing local connectivity can be accomplished by computing a maximum bipartite
matching.

To choose parameters in practice we generally pick a small fixed value of � between
3 and 6. We then start with f = 3 and try increasing f until a large number of edges are
classified as global, but the components in the local graph are not too small.

5. Applying Local/Global Partitions in Graph Drawing. We combine a local/global
partition with a standard graph layout method to produce improved drawings for a variety
of graphs. The method we use is the neato software package from AT&T [23], which
implements a version of the Kamada–Kawai algorithm [24]. Our basic approach is to
partition the edge set of the graph into local and global edges and assign shorter target
lengths to local edges. This partitioning method can conceivably be combined with any
layout method that allows the user to specify either the target lengths or spring constants
of edges.

To provide motivation, we first demonstrate this approach on a few examples from
the hybrid model. We then present a more complicated partition and length assignment
rule to be used on real-world examples, and we show the results for certain biological
networks and collaboration graphs.

5.1. A Simple Partition and Motivating Examples from the Hybrid Model. Here we
demonstrate the application of a straightforward local/global partition to a few exam-
ples from the hybrid model. To obtain the results depicted in the figures, we apply the
Extract algorithm with appropriate parameters f and � to an input graph H to obtain
the local subgraph L , and let G = H\L be the global subgraph. We assign target length 1
to edges in L , and target length 100 to edges in G. In the figures the local edges are
darker.

All the examples described in this section consist of an underlying local graph aug-
mented with random edges, as in the hybrid model. In all the examples, the underlying
graph is highly locally connected, and the Kamada–Kawai algorithm on its own will
produce good drawings of the local graph. However, the Kamada–Kawai algorithm will
not necessarily produce good drawings of the augmented graphs, even though the local
graph may still be easily recoverable from the augmented graph with the Extract algo-
rithm. Combined with our partitioning scheme, the Kamada–Kawai algorithm produces
drawings of the augmented graph similar to those of the local graph. This is arguably
the best that can be hoped for with a graph from the hybrid model.

The first example is a modified random geometric graph G(n, d, p). A random geo-
metric graph is created by choosing n points x1 · · · xn uniformly from the unit square and
creating an edge between each pair xi xj if and only if d(xi , xj) ≤ d. We then augment

Drawing Power Law Graphs Using a Local/Global Decomposition 391

Fig. 2. A modified geometric graph G(n,d,p) with all target lengths equal.

this graph with the edge set of a random graph G(n, p). We also consider the hypercube
Qn and the grid graph Pn × Pn augmented with a random graph G(n, p). Note that Qn

is an (n, 3)-local graph. The grid graph Pn × Pn is a (1, 3)-local graph, and all edges not
on the border are (3, 3)-connected. The infinite grid graph and the toroidal grid graph
Cn × Cn are (3, 3)-connected. The random geometric graph is displayed in Figures 2
and 3 with the local edges darker than the global edges. The other examples are included
in Section 6.

Fig. 3. The same graph with target lengths set by the local/global partition, using (f = 3, � = 3).

392 R. Andersen, F. Chung, and L. Lu

5.2. A More Sophisticated Partition for Real-World Examples. The simple local/global
partition H = [L ,G] and length assignment scheme presented in the previous section
will not produce desirable results for real examples. We present a different partition
which attempts to address the main problems that arise. Some of the modifications are
motivated solely by practical concerns in order to produce reasonable drawings while
still incorporating the local/global partition, but many of the obstacles to adapting the
local/global partition to real examples are predicted by models of random power law
graphs.

We expect a random power law graph to have an “octopus” structure. In particular, a
random power law graph with exponent β, where 2 < β < 3, contains a dense subgraph,
called the “core,” with nc/ log log n vertices. Almost all vertices are within distance log log n
of the core although there are vertices at distance log n from the core [14]. This octopus
structure is also found in real examples, for example the Yahoo Instant Messenger Graph
[25]. We also expect a random power law graph to have sparse tree-like components.
In the simple local/global partition, edges in these sparse components are likely to be
classified as global edges. We wish to treat these edges differently from global edges in
the denser parts of the graph, so the first step in forming our modified partition will be
to separate the graph into two pieces using the k-core decomposition. The k-core of a
graph is the unique maximal induced subgraph where every vertex has degree at least k.
It has been studied in the context of random graphs [26] and has also been used in graph
drawing applications [27]. We separate the edges of G into two sets, tentacle edges T
and core edges K , by letting K be the k-core of G for some small value of k and letting
T = G\K .

We then divide the core into local and global edges with the Extract algorithm to
obtain a partition of K into L and G. In real examples, unlike in the examples from
the hybrid model, the local graph L is likely to be disconnected with a large number of
connected components. We further divide the global edges into two sets, depending on
whether the endpoints lie in a single local component or have endpoints in different local
components. Edges whose endpoints lie in the same local component of L are placed
into the set S of shortcut edges. We set the target lengths of shortcut edges very high,
since they are the analogues of the global edges in the examples from the hybrid model.
Those global edges whose endpoints lie in different connected components of the local
graph L are placed into the set C of connector edges. It is crucial to set the target lengths
of the connector edges to ensure that the local components are separated in the resulting
drawing but are not placed extremely far apart. We set the target lengths of the connector
edges to moderate values that depend on the sizes of the components being bridged.

The result is a partition of the edges of G into four sets: tentacle, local, shortcut, and
connector edges. We use the following length assignment: The edges in T are given
target length 1. The edges in L are given target length c, some small constant which
determines the relative size of the tentacles. The shortcut edges in S are given target
length 100 · c. A connector edge in C bridging components of size a and b is assigned
target length (ab)(1/4) · c.

6. Examples. We have implemented the Extract algorithm and produced several
examples using both the simple [L ,G] partition and the [T, L ,C, S] partition (Figures 4

Drawing Power Law Graphs Using a Local/Global Decomposition 393

G

Tentacles Core

Local Global

Connector Shortcut

Fig. 4. The [T, L ,C, S] partition.

and 5). Figures 6–9 are the grid and hypercube examples described in Section 5.1. In
these figures the edges in L are drawn in darker blue (or black), and the edges of G in
red (or gray).

Grossman [28] has graciously provided data from a collaboration graph of the second
kind, where each vertex represents an author and each edge represents a joint paper
with two authors. The graph in Figures 12 and 13 is a random induced subgraph on
the vertices in the collaboration graph with degree at least 18. The graph in Figures 10
and 11 is a subgraph of a biological network that encodes protein–DNA interactions. In
these figures the local edges are drawn darker than the other edges.

Fig. 5. Two local components in the collaboration graph with shortcut edges in red and connector edges in
orange.

394 R. Andersen, F. Chung, and L. Lu

Fig. 6. The grid graph P20×P20 plus a random graph,
with all target lengths equal.

Fig. 7. The same graph with target lengths set by the
local/global partition, using (f = 1, � = 3).

Fig. 8. The hypercube Q6 plus a random graph, with
all target lengths equal.

Fig. 9. The same graph with target lengths set by the
local/global partition, using (f = 6, � = 3).

Drawing Power Law Graphs Using a Local/Global Decomposition 395

Fig. 10. Subgraph of a biological network, with all
target lengths equal.

Fig. 11. Subgraph of a biological network, using
[T, L , S,C] partition.

Fig. 12. A subgraph of the collaboration graph, with
all target lengths equal.

Fig. 13. A subgraph of the collaboration graph, using
[T, L , S,C] partition.

396 R. Andersen, F. Chung, and L. Lu

References

[1] L. A. Adamic and B. A. Huberman, Growth dynamics of the World Wide Web, Nature 401, September 9,
1999, p. 131.

[2] W. Aiello, F. Chung and L. Lu, A random graph model for massive graphs, Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing, 2000, pp. 171–180.

[3] R. B. R. Azevedo and A. M. Leroi, A power law for cells, Proc. Natl. Acad. Sci. USA 98(10) (2001),
5699–5704.

[4] A. Barabási and R. Albert, Emergence of scaling in random networks, Science 286 (1999), 509–512.
[5] A. Barabási, R. Albert and H. Jeong, Scale-free characteristics of random networks: the topology of the

world wide web, Physica A 272 (1999), 173–187.
[6] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tompkins and J. Wiener,

Graph structure in the Web, Proceedings of the WWW9 Conference, May, 2000, Amsterdam. Paper
version appeared in Computer Networks 33(1–6) (2000), 309–321.

[7] K. Calvert, M. Doar and E. Zegura, Modeling Internet topology. IEEE Communications Magazine 35(6)
(1997), 160–163.

[8] C. Cooper and A. Frieze, On a general model of web graphs, Random Structures and Algorithms 22
(2003), 311–335.

[9] M. Faloutsos, P. Faloutsos and C. Faloutsos, On power-law relationships of the Internet topology,
Proceedings of the ACM SIGCOM Conference, Cambridge, MA, 1999.

[10] S. Jain and S. Krishna, A model for the emergence of cooperation, interdependence, and structure in
evolving networks, Proc. Natl. Acad. Sci. USA 98(2) (2001), 543–547.

[11] J. Kleinberg, S. R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins, The web as a graph: measure-
ments, models and methods, Proceedings of the International Conference on Combinatorics and Com-
puting, 1999.

[12] S. R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins, Extracting large-scale knowledge bases
from the web, Proceedings of the 25th VLDB Conference, Edinburgh, 1999.

[13] M. E. J. Newman, The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA 98(2)
(2001), 404–409.

[14] F. Chung and L. Lu, Average distances in random graphs with given expected degree sequences, Pro-
ceedings of National Academy of Science, 99 (2002).

[15] R. Andersen, F. Chung and L. Lu, Analyzing the small world phenomenon using a hybrid model with
local network flow, Proceedings of the Third Workshop on Algorithms and Models for the Web-Graph,
2004.

[16] N. Garg and J. Könemann, Faster and simpler algorithms for multicommodity flow and other frac-
tional packing problems, Technical Report, Max-Planck-Institut fur Informatik, Saarbrucken, Germany
(1997).

[17] A. Itai, Y. Perl and Y. Shiloach, The complexity of finding maximum disjoint paths with length con-
straints, Networks 12 (1982).

[18] S. Plotkin, D. B. Shmoys and E. Tardos, Fast approximation algorithms for fractional packing and
covering problems, FOCS, 1991, pp. 495–504.

[19] L. Lovász, V. Neumann-Lara and M. Plummer, Mengerian theorems for paths of bounded length,
Periodica Mathematica Hungaria 9 (1978).

[20] S. Boyles and G. Exoo, On line disjoint paths of bounded length, Discrete Mathematics 44 (1983).
[21] G. Baier, Flows with Path Restrictions, Ph.D. thesis, Technische Universität Berlin, 2003.
[22] P. Erdős and T. Gallai, Gráfok előírt fokú pontokkal (Graphs with points of prescribed degrees, in

Hungarian), Matematikai Lapok 11 (1961), 264–274.
[23] S. C. North, Drawing graphs with NEATO, NEATO User Manual, April 26, 2004.
[24] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs, Information Processing

Letters 31(1) (1989), 7–15.
[25] K. J. Lang, Fixing Two Weaknesses of the Spectral Method, Advances in Neural Information Processing

Systems 18, MIT Press, Cambridge, MA, 2006.

Drawing Power Law Graphs Using a Local/Global Decomposition 397

[26] B. Bollobás, The evolution of sparse random graphs, in Graph Theory and Combinatorics, Proceedings
of the Cambridge Combinatorial Conference in Honour of Paul Erdős, Academic Press, New York,
1984, pp. 35–57.

[27] M. Baur, U. Brandes, M. Gaertler and D. Wagner, Drawing the AS graph in 2.5 dimensions, Presented
at the 12th International Symposium on Graph Drawing, 2004.

[28] J. Grossman, P. Ion and R. De Castro, Facts about Erdős numbers and the collaboration graph,
http://www.oakland.edu/∼grossman/trivia.html.

