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We consider the diameter of a random graph G�n�p� for various ranges of p
close to the phase transition point for connectivity. For a disconnected graph G,
we use the convention that the diameter of G is the maximum diameter of its con-
nected components. We show that almost surely the diameter of random graph
G�n�p� is close to log n

log�np� if np → ∞. Moreover if np

log n = c > 8, then the diameter
of G�n�p� is concentrated on two values. In general, if np

log n = c > c0 , the diam-
eter is concentrated on at most 2�1/c0� + 4 values. We also proved that the diam-
eter of G�n�p� is almost surely equal to the diameter of its giant component if
np > 3�6. © 2001 Academic Press

1. INTRODUCTION

As the master of the art of counting, Erdös has had a far-reaching impact
in numerous areas of mathematics and computer science. A recent exam-
ple, perhaps least expected by Erdös, is the area of Internet computing. In
a natural way, massive graphs that arise in the studies of the Internet share
a number of similar aspects with random graphs, although there are signif-
icant differences (e.g., there can be vertices with large degrees in a sparse
massive graph). Nevertheless, many of the methods and ideas [1–3, 4, 6]
that are used in modeling and analyzing massive graphs have frequently
been traced to the seminal papers of Erdös and Rényi [12] in 1959.
One topic of considerable interest is determination of the diameter

of a sparse random graph. These techniques and methods can also be
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used to examine the connected components and the diameter of Internet
graphs [2, 15].
Let G�n�p� denote a random graph on n vertices in which a pair of

vertices appears as an edge of G�n�p� with probability p. (The reader is
referred to [8] for definitions and notation in random graphs.) In this paper,
we examine the diameter of G�n�p� for all ranges of p including the range
that G�n�p� is not connected. For a disconnected graph G, the diameter
of G is defined to be the diameter of its largest connected component.
We will first briefly survey previous results on the diameter of the random

graph G�n�p�.
In 1981, Klee and Larman [14] proved that for a fixed integer d, G�n�p�

has diameter d with probability approaching 1 as n goes to infinity if
�pn�d−1/n → 0 and �pn�d/n → ∞. This result was later strengthened by
Bollobás [7] and was proved earlier by Burtin [10, 11].
Bollobás [9] showed that the diameter of a random graph G�n�p� is

almost surely concentrated on at most four values if pn− log n → ∞. Fur-
thermore, it was pointed out that the diameter of a random graph is almost
surely concentrated on at most two values if np

log n → ∞ (see [8, Exercise 2,
Chap. 10]).
In the other direction, Łuczak [16] examined the diameter of the random

graph for the case of np < 1. Łuczak determined the limit distribution of
the diameter of the random graph if �1 − np�n1/3 → ∞. The diameter of
G�n�p� almost surely either is equal to the diameter of its tree components
or differs by 1.
In this paper, we focus on random graphsG�n�p� for the range of np > 1

and np ≤ c log n for some constant c. This range includes the emergence of
the unique giant component. Since there is a phase transition in connectivity
at p = log n/n, the problem of determining the diameter of G�n�p� and its
concentration seems to be difficult for certain ranges of p. Here we intend
to clarify the situation by identifying the ranges for which results can be
obtained as well as the ranges for which the problems remain open.
For np

log n = c > 8, we slightly improve Bollobás’ result [9] by showing that
the diameter of G�n�p� is almost surely concentrated on at most two values
around log n/ log np. For np

log n = c > 2, the diameter of G�n�p� is almost
surely concentrated on at most three values. For the range 2 ≥ np

log n = c > 1,
the diameter of G�n�p� is almost surely concentrated on at most four
values.
For the range np < log n, the random graph G�n�p� is almost surely

disconnected. We will prove that almost surely the diameter of G�n�p� is
�1+ o�1�� log n

log�np� if np → ∞. Moreover, if np
log n = c > c0 for any (small) con-

stant c and c0, then the diameter of G�n�p� is almost surely concentrated
on finitely many values, namely, no more than 2�1/c0� + 4 values.
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TABLE 1
The Diameter of Random Graphs G�n�p�

Range diam(G�n�p�) Reference

np

log n → ∞ Concentrated on at most 2 values [8]

np

log n = c > 8 Concentrated on at most 2 values Here

8 ≥ np

log n = c > 2 Concentrated on at most 3 values Here

2 ≥ np

log n = c > 1 Concentrated on at most 4 values [9]

1 ≥ np

log n = c > c0 Concentrated on at most 2�1/c0� + 4 Here
values

log n > np → ∞ diam�G�n�p�� = �1+ o�1�� log n
log�np� Here

np ≥ c > 1 The ratio diam�G�n�p��
log n/ log�np� is finite Here

(between 1 and f �c�)
np < 1 diam�G�p� equals the diameter of a tree [16]

component if �1− np�n1/3 → ∞

In the range of 1
n
< p < log n

n
, the random graph G�n�p� almost surely

has a unique giant component. We obtain a tight upper bound of the sizes
of its small components if p satisfies np ≥ c > 1. We then prove that the
diameter of G�n�p� almost surely equals the diameter of its giant compo-
nent for the range np > 3�513. This problem was previously considered by
Łuczak [16].
Here we summarize various results in Table 1. The values of concentra-

tion for the diameter of G�n�p�, when it occurs, is near log n
log np . From the

table, we can see that numerous questions remain, several of which will
be discussed in the last section.

2. THE NEIGHBORHOODS IN A RANDOM GRAPH

In a graph G, we denote by 
k�x� the set of vertices in G at distance k
from a vertex x:


k�x� = �y ∈ G � d�x� y� = k��

We define Nk�x� to be the set of vertices within distance k of x:

Nk�x� =
k⋃

i=0

i�x��
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A main method for estimating the diameter of a graph is to examine
the sizes of neighborhoods Nk�x� and 
k�x�. To bound �Nk�x�� in a ran-
dom graph G�n�p�, the difficulty varies for different ranges of p. Roughly
speaking, the sparser the graph is, the harder the problem is. We will first
establish several useful lemmas concerning the neighborhoods for different
ranges of p.

Lemma 1. Suppose np > 1. With probability at least 1− o�n−1�, we have
�
i�x�� ≤ 2i2 log n�np�i for all 1 ≤ i ≤ n

�Ni�x�� ≤ 2i3 log n�np�i for all 1 ≤ i ≤ n�

Lemma 2. Suppose p > c log n
n

for a constant c ≤ 2. Then with probability
at least 1− o�n−1�, we have

�
i�x�� ≤
9
c
�np�i for all 1 ≤ i ≤ n

�Ni�x�� ≤
10
c
�np�i for all 1 ≤ i ≤ n�

Lemma 3. Suppose p ≥ log n
n

. For any ε > 0, with probability at least
1− 1/�log2 n�, we have

�
i�x�� ≤ �1+ ε��np�i for all 1 ≤ i ≤ log n

�Ni�x�� ≤ �1+ 2ε��np�i for all 1 ≤ i ≤ log n�

Let X1�X2 denote two random variables. If Pr�X1 > a� ≤ Pr�X2 > a� for
all a, we say X1 dominates X2, or X2 is dominated by X1. We will need the
following fact.

Lemma 4. Let B�n�p� denote the binomial distribution with probability p
in a space of size n.

1. Suppose X dominates B�n�p�. For a > 0, we have

Pr�X < np− a� ≤ e−a2/2np� (1)

2. Suppose X is dominated by B�n�p�. For a > 0, we have

Pr�X > np+ a� ≤ e−a2/2np+a3/�np�3 � (2)

We will repeatedly use Lemma 4 in the following way. For a vertex x of
G�n�p�, we consider 
i�x� for i = 1� 2� � � �. At step i, let X be the random
variable of �
i�x�� given �
i−1�x��. We note that X is not exactly a binomial
distribution. However, it is close to one if �
i−1�x�� is small. To be precise,
X is dominated by a random variable with the binomial distribution B�t� p�
where t = n�
i−1�x��. On the other hand, if �Ni�x�� < m, then X dominates
a random variable B�t ′� p� where t ′ = �n − m��
i−1�x��. Thus an upper
bound and lower bound of �
i�x�� can be obtained. For different ranges
of p, we will derive different estimates in Lemmas 1–3.
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Proof of Lemma 1. We consider p satisfying np > 1. We want to show
that with probability at least 1− o�n−1�, we have

�
i�x�� ≤ 2i2 log n�np�i for all 1 ≤ i ≤ n

�Ni�x�� ≤ 2i3 log n�np�i for all 1 ≤ i ≤ n�

First we will establish the following:

Claim 1. With probability at least 1− ie−λ2/2+λ3/�log n�1�5 , we have

�
i�x�� ≤ ai log n�np�i for all 1 ≤ i ≤ n�

where ai (1 ≤ i ≤ k) satisfies the recurrence formula,

ai = ai−1 +
λ√
log n

√
ai−1

�np�i/2 for all 1 ≤ i ≤ n

with initial condition a0 = 1.
We prove this claim by induction on i. Clearly, for i = 0, �
0�x�� = 1 <

log n, it is true. Suppose that it holds for i. For i+ 1� �
i+1�x�� is dominated
by the binomial distribution B�t� p� where t = �
i�x���n − �Ni�x���. With
probability at least 1− ie−λ2/2+λ3/�log n�1�5 , we have

�
i�x���n− �Ni�x��� ≤ ai log n�np�in�

By Lemma 4, inequality (2), with probability at least 1 − �i + 1�
e−λ2/2+λ3/�log n�1�5 (since ai log n�np�i+1 > log n), we have

�
i+1�x�� ≤ ai log n�np�inp+ λ

√
ai log n�np�i+1

≤ log n�np�i+1
(
ai +

λ√
log n

√
ai

�np��i+1�/2
)

= ai+1 log n�np�i+1�

By choosing λ = √
5 log n, we have

1− ne−λ2/2+λ3/�log n�1�5 = 1− ne−2�5 log n+5
1�5 = 1− o�n−1��
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Now we show by induction that ai ≤ 2i2 for all 1 ≤ i ≤ n. Suppose that
aj ≤ 2j2, for all 1 ≤ j ≤ i. Then

ai+1 = 1+ λ√
log n

i∑
j=0

√
aj

�np��j+1�/2

< 1+
√
5
(
1+

i∑
j=1

√
aj

)

≤ 1+
√
5
(
1+

i∑
j=1

√
2j
)

≤ 1+
√
5�1+

√
2�i2 + i�/2�

< 2�i+ 1�2

We have completed the proof of Lemma 1.

For p > c log n
n
, where c ≤ 2 is a constant, the upper bound for �
i�x��

can be improved.

Proof of Lemma 2. Here we focus on the range p > c log n
n

for a constant
c ≤ 2. We want to show that with probability at least 1− o�n−1�, we have

�
i�x�� ≤
9
c
�np�i for all 1 ≤ i ≤ n

�Ni�x�� ≤
10
c
�np�i for all 1 ≤ i ≤ n�

We will first prove the following claim.

Claim 2. With probability at least 1− ie−λ2/2+λ3/�np�1�5 , we have

�
i�x�� ≤ ai�np�i for all 1 ≤ i ≤ n�

where ai (1 ≤ i ≤ n) satisfies the recurrence formula

ai = ai−1 + λ

√
ai−1

�np�i/2 for all 1 ≤ i ≤ n

with initial condition a0 = 1.
Obviously, for i = 0� �
0�x�� = 1 = a0, it holds. Suppose that it holds

for i. For i+ 1� �
i+1�x�� is dominated by the binomial distribution B�t� p�
where t = �
i�x���n− �Ni�x���. With probability at least 1− ie−λ2/2+λ3/�np�1�5 ,
we have

�
i�x���n− �Ni�x��� ≤ ai�np�in�
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By Lemma 4, inequality (2), with probability at least 1 ≥ 1 − �i + 1�×
e−λ2/2+λ3/�np�1�5 (since ai�np�i+1 > np), we have

�
i+1�x�� ≤ ai�np�inp+ λ

√
ai�np�i+1

≤ �np�i+1
(
ai +

λ
√
ai

�np��i+1�/2
)

= ai+1�np�i+1�
We choose λ = √

5 log n, and we have

1− ne−λ2/2+λ3/�pn�1�5 = 1− ne−2�5 log n+�5/c�1�5 = 1− o�n−1��
Now we show by induction that ai ≤ 9

c
. Suppose that aj ≤ 9

c
, for all 1 ≤

j ≤ i. Then

ai+1 = 1+ λ
i∑

j=0

√
aj

�np��j+1�/2

≤ 1+
√
5 log n

∞∑
j=0

√
9√

c�np��j+1�/2

= 1+
√
45

√
log n√

c�√np− 1�

≤ 1+
√
45

√
log n√

c
(√

c log n− 1
)

≤ 1+ 7
c

≤ 9
c

for c ≤ 2.Thus,

�Ni�x�� =
i∑

j=0
�
i�x�� ≤

i∑
j=0

9
c
�np�j ≤ 10

c
�np�i

by the fact that np ≥ c log n. Lemma 2 is proved.

If we only require having probability 1 − o�1� instead, the preceding
upper bound can be strengthened as follows.

Proof of Lemma 3. Suppose p ≥ log n
n
. We want to show that for any

k < log n and any ε > 0, with probability at least 1− 1/�log2 n�, we have
�
i�x�� ≤ �1+ ε��np�i for all 1 ≤ i ≤ k

�Ni�x�� ≤ �1+ 2ε��np�i for all 1 ≤ i ≤ k�

provided n is large enough.
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We will first show the following:

Claim 3. With probability at least 1− ie−λ2/2+λ3/�np�1�5 , we have
�
i�x�� ≤ ai�np�i for all 1 ≤ i ≤ n�

where ai (1 ≤ i ≤ n) satisfies the recurrence formula

ai = ai−1 + λ

√
ai−1

�np�i/2 for all 1 ≤ i ≤ n

with initial condition a0 = 1.
By choosing λ = 3

√
log log n, we have

1− ke−λ2/2+λ3/2�pn�1�5 = 1− ko

(
1

log4 n

)
= 1− o

(
1

log3 n

)
�

since np ≥ log n.
By induction, we will prove

ai < �1+ ε� for all 0 ≤ i ≤ k�

Certainly it holds for i = 0, since a0 = 1 < 1+ ε.
Suppose that aj < 1+ ε, for all 1 ≤ j ≤ i. Then

ai+1 = 1+ λ
i∑

j=0

√
aj

�np��j+1�/2

< 1+ λ
i∑

j=0

√
1+ ε

�np��j+1�/2

≤ 1+ λ
√
1+ ε

1√
np− 1

≤ 1+ ε�

by the assumption λ = 3
√
log log n = o�√np�.

Therefore, with probability at least 1− o�1/�log3 n��, we have
�
i�x�� ≤ �1+ ε��np�i for all 1 ≤ i ≤ k

and

�Ni�x�� = 1+
i∑

j=1
�
j�x��

≤ 1+ �1+ ε�
i∑

j=1
�np�j

= 1+ �1+ ε��np�
i+1 − np

np− 1

≤ �1+ 2ε��np�i
for n large enough.
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3. THE DIAMETER OF THE GIANT COMPONENT

Łuczak asked the interesting question, is the diameter of the giant com-
ponent the diameter of a random graph G�n�p�? We will answer this ques-
tion for certain ranges of p. This result is needed later in the proof of the
main theorems.

Lemma 5. Suppose 1 < c ≤ np < log n, for some constant c. Then almost
surely the sizes of all small components are at most

�1+ o�1�� log n
np− 1− log�np� �

Proof. When p > 1+ 2�2 log n�1/2n−1/3, Bollobás [8] shows that a com-
ponent of size at least n2/3 in Gn�p is almost always unique (so that it is the
giant component) in the sense that all other components are at most of size
n2/3/2. Suppose that x is not in the giant component. We compute the prob-
ability that x lies in a component of size k + 1 < n2/3. Such a connected
component must contain a spanning tree. There are

(
n−1
k

)
ways to select

other k vertices. For these k+ 1 vertices, there are exactly �k+ 1�k−1 span-
ning trees rooted at x. Hence, the probability that a spanning tree exists is
at most(

n− 1
k

)
�k+ 1�k−1pk�1− p�k�n−n2/3� <

√
2πkek�np�ke−knp�1−n−1/3��

The above probability is o�n−2� if k > 3 log n
np−1−log�np� . It is o�n−1e−

√
log n� if

k >
log n+2

√
log n

np−1−log�np� . Hence, the probability that x lies in a component of size

k+ 1 ≥ log n+2
√
log n

np−1−log�np� is at most

n× o�n−2� + 3 log n
np− 1− log�np� × o�n−1e−

√
log n� = o�n−1��

This implies that almost surely all small components are of a size that is at
most

log n+ 2
√
log n

np− 1− log�np� = �1+ o�1�� log n
np− 1− log�np� �

Theorem 1. Suppose that np > 3�513; then almost surely the diameter of
G�n�p� equals the diameter of its giant component.

Proof. From Lemma 5, the diameter of small components is at most
�1 + o�1�� log n

np−1−log�np� . On the other hand, by Lemma 1, for any vertex x,
with probability at least 1− o�n−2�,

�Ni�x�� =
i∑

j=0
�
j�x�� ≤ 2i3 log n�np�i�
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This implies the diameter of G�n�p� is at least

�1+ o�1�� log n
log np

�

When np > 3�513, we have np− 1− log�np� > log�np�. Hence, the diam-
eter of G�n�p� is strictly greater than the sizes of all small components.
This completes the proof of the theorem.

We can now prove a lower bound for �
i�x��.
Lemma 6. Suppose np ≥ c > 1 with some constant c. For each vertex x

in the giant component (if G�n�p� is not connected), with probability at least
1− o�n−1�, we have

�
i�x�� ≥
1

�√np− 1�2 �np�
i−i0 log n

for i satisfying i0 ≤ i ≤ 3
5

log n
log�np� where

i0 =
�10np/�√np− 1�2 + 1� log n

np− log�2np� �

Proof. First we prove that with probability at least 1 − o�n−1�, there
exists a i0 satisfying

�
i0
�x�� ≥ 9 log n

�√np− 1�2 = d�

If i ≤ 3
5

log n
log�np� , then by Lemma 1, with probability at least 1 − o�n−1�,

we have �
i�x�� ≤ n2/3. Now we compute the probability that �Ni�x�� =
k+ 1 < n2/3. We want to show for some k0 the probability that �
i�x�� < d
and �Ni�x�� > k0 is o�n−1�.
We focus on the neighborhood tree formed by breadth-first-search start-

ing at x. There are
(
n−1
k

)
ways to select other k vertices. For these k + 1

vertices, there are exactly �k+ 1�k−1 trees rooted at x. Suppose �
i�x�� < d.
The probability that such a tree exists is at most(

n− 1
k

)
�k+ 1�k−1pk�1− p��k−d��n−n2/3� < ek�np�ke−�k−d�np�1−n−1/3��

Let k0 = dnp+log n+2
√
log n

np−1−log�np� . The above probability is o�n−2� if k > dnp+3 log n
np−1−log�np� .

It is o�n−1e−
√
log n� if k > k0. Hence, the probability that �
i��x�� < d and

�Ni�x�� = k+ 1 > k0 + 1 is at most

n× o�n−2� + dnp+ 3 log n
np− 1− log�np� × o�n−1e−

√
log n� = o�n−1��
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Let i0 denote the least integer i satisfying �
i�x�� ≥ d. The above arguments
give a crude upper bound for i0,

i0 ≤ k0 =
dnp+ log n+ 2

√
log n

np− 1− log�np� ≤ �10np/�√np− 1�2 + 1� log n
np− 1− log�np� �

Now, we want to prove that �
i�x�� grows quickly after i = i0. Namely,
with probability at least 1− o�n−1�, we have

�
i�x�� ≥
1

�√np− 1�2 �np�
i−i0 log n

for all i satisfying 3
5

log n
log�np� ≥ i > i0.

Claim 4. With probability at least 1− o�n−1� − �i− i0�e−λ2/2, we have

�
i�x�� ≥ ai�np�1− n−1/3��i−i0 log n

for all i0 ≤ i ≤ 3
5

log n
log�np� . Here ai satisfies the recurrence formula

ai = ai−1 −
λ√
log n

√
ai−1

�np�1− n−1/3���i−i0�/2

for all i0 ≤ i ≤ 3
5

log n
log�np� , with initial condition

ai0 =
λ2

log n
1�7(√

np�1− n−1/3� − 1
)2 �

We choose λ = √
5 log n. Clearly, for i = i0� �
i0

�x�� ≥ d ≥ ai0 , the state-
ment of the claim is true. Suppose that it holds for i. For i + 1� �
i+1�x��
dominates a random variable with the binomial distribution B�t� p� where
t = �
i�x���n − n−2/3� with probability at least 1 − o�n−1� − ie−λ2/2. By
Lemma 4, part 1, with probability at least 1 ≥ 1− �i+ 1�e−λ2/2, we have

�
i−i0+1�x�� ≥ ai�np�1− n−2/3��i−i0�log n�np�1− n−2/3�

−λ

√
ai�np�1− n−2/3��i−i0+1 log n

≥ �np�1− n−2/3��i−i0+1

× log n
(
ai −

λ
√
ai√

log n�np�1− n−2/3���i−i0+1�/2

)

= ai+1�np�1− n−2/3��i+1�
Here,

1− o�n−1� − ie−λ2/2 = 1− o�n−1� − ne−2�5 log n = 1− o�n−1��
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Since ai < ai0 for i > i0, we have

ai = ai0 −
λ√
log n

i−1∑
j=i0

√
aj

�np�1− n−2/3���j−i0+1�/2

≥ ai0 −
√
5

i−1∑
j=i0

√
ai0�np�1− n−2/3���j+1�/2

≥ ai0 −
√
5ai0

1√
np�1− n−2/3� − 1

≥ 2(√
np�1− n−2/3� − 1

)2 �
Hence, for i ≥ i0,

�
i�x�� ≥ ai�np�1− n−1/3��i−i0 log n

≥ 2(√
np�1− n−2/3� − 1

)2 �np�1− n−1/3��i−i0 log n

≥ 1
�√np− 1�2 �np�

i−i0 log n�

If np > c log n, the statement in Lemma 6 can be further strengthened.

Lemma 7. Suppose p ≥ c log n
n

for some constant c ≤ 2. Then, for each
vertex x in the giant component (if G�n�p� is not connected), for each i
satisfying i0 ≤ i ≤ 2

3
n

log�np� , with probability at least 1− o�n−1�, we have

�
i�x�� ≥
5
c
�np�i−i0�

where i0 satisfies i0 ≤ � 1
c
� + 1.

Proof. We first prove the following statement, which is similar to the
claim in the proof of the previous lemma. However, we use a different
proof here to obtain an improvement.
With the probability at least 1 − o�n−1�, there exists a i0 ≤ � 1

c
� + 1

satisfying

�
i0
�x�� ≥ d�

where d = 20
c
.

Let k = � 1
c
�. Since x is in the giant component, �
k�x�� ≥ 1. There exists

a path x0� x1� � � � � xk satisfying xj ∈ 
j�x� for 1 ≤ j ≤ k. We write x0 = x.
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Let f �xj� denote the number of vertices y, where xjy forms an edge but y
is not one of those vertices x0� x1� � � � � xk. We compute the probability that
f �xj� ≤ d as

Pr�f �xj� ≤ d� =
d∑

l=0

(
n− k− 1

l

)
pl�1− p�n−l

≤
d∑

l=0

�np�l
l!

e−�n−l−k−1�p

≤ �np�de−�n−d−k−1�p
d∑

l=0

1
l!

≤ �c log n�de−c�1−�d+k+1�/n� log ne

= o�n−c+ε�
for any small ε > 0.
Here, f �xj�’s are independent random variables. The probability that

f �xj� ≤ d for all 0 ≤ j ≤ k is at most

o��n−c+ε�k+1� = o�n−1�
if ε is small enough.
With probability at least 1 − o�n−1�, there is an index 1 ≤ i0 ≤ k + 1

satisfying f �xi0−1� ≥ d. Hence, 
i0
�x� ≥ d.

By Lemma 1, with probability at least 1− o�n−1�, we have �Ni�x�� ≤ n3/4

for all 1 ≤ i ≤ 2
3

log n
log�np� .

For i = i0 + 1, we have

Pr
(

i0+1�x� ≤ 1

2 �
i0
�x���n− �Ni0

�x���p
)
≤ e−�
i0

�x���n−�Ni0
�x���p/8

≤ e−dc�1−n−1/4� log n/8

= o�n−dc/9�
= o�n−1�

since d ≥ 10
c
.

Hence with probability at least 1− o�n−1�,
�
i0+1�x�� ≥ 1

2 �
i0
�x���n− �Ni0

�x���p ≥ 1
3dnp�

For i = i0 + 2� �
i0+2�x�� dominates a random variable with the binomial
distribution B�t� p� where t = �
i0+1�x��n− �Ni0+1�x���. Hence

Pr
(
�
i0+2�x�� < 
i0+1�x��n− �Ni0+1�x���p

−λ
√

i0+1�x��n− �Ni0+1�x���p

)
< e−λ2/2�
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Hence, with probability at least 1− o�n−1� − e−λ2/2,

�
i0+2�x�� ≥ 
i0+1�x��n− �Ni0+1�x���p− λ
√

i0+1�x��n− �Ni0+1�x���p

≥ 
i0+1�x��n− n3/4�p− λ
√

i0+1�x�np

≥ 1
3
d�np�2

(
1− n−1/4 − 3λ√

�np�2

)
�

By induction on i ≥ i0 + 2, we can show that with probability at least 1 −
o�n−1� − ie−

λ2
2 ,

�
i�x�� ≥
d

3
�np�i−i0

i−i0∏
j=2

(
1− n−1/3 − 3λ√

�np�j

)

We choose λ = √
3 log n. Since i < log n, we have

1− o�n−1� − �i− i0�e−λ2/2 = 1− o�n−1� − in−1�5 = 1− o�n−1��
Therefore, with probability at least 1− o�n−1�,

�
i�x�� ≥
d

3
�np�i−i0

(
1− in−1/4 −

i−i0∑
j=2

3λ√
�np�j

)

≥ d

3
�np�i−i0

(
1− in−1/4 − 3λ

�np�
1

1− �np�−1/2
)

≥ d

3
�np�i−i0

(
1−O

(
1√
log�n�

))

≥ d

4
�np�i−i0

= 5
c
�np�i−i0

for n large enough.

Lemma 8. Suppose p ≥ c log n
n

for some constant c > 2. For each vertex x
belonging to the giant component (if G�n�p� is not connected), and each i
satisfying 1 ≤ i ≤ 2

3
n

log�np� , with probability at least 1− o� 1
n
�, we have

�
i�x�� ≥ c1�np�i�

where c1 = 1−
√

2
c
− ε.
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Proof. Let δ be a small positive number. For i = 1, we have

Pr�
1�x� ≤ �c1 + δ�np� = Pr�
1�x� ≤ np− �1− c1 − δ�np�
≤ e−�1−c1−δ�2np/2

≤ e−�1−c1−δ�2c log n/2

= n−�1−c1−δ�2c/2

= o�n−1��
where δ is a small value satisfying �1− c1− δ�2c/2 > 1. (It is always possible
to choose such a δ > 0, by the assumption on c1.) Hence with probability
at least 1− o�n−2�, we have

�
1�x�� ≥ �c1 + δ�np�
To obtain a better concentration result in the range of c > 8, more work
is needed here. However, the arguments are similar to those in Lemmas 6
and 7. For i = 2, �
2�x�� dominates a random variable with the binomial
distribution B�t� p� where t = �
1�x���n− n1/4�. We have

Pr
(
�
2�x�� < 
1�x��n− n1/4�p− λ

√

1�x��n− n1/4�p

)
< e−λ2/2

Hence, with probability at least 1− o�n−1� − e−λ2/2, we have

�
2�x�� ≥ �c1 + δ��np�2
(
1− n−1/4 − λ√

c1�np�2

)
�

By induction on i ≥ 2, it can be shown that with probability at least 1 −
o�n−2� − ie−λ2/2,

�
i�x�� ≥ �c1 + δ��np�i
i∏

j=2

(
1− n−1/4 − λ√

c1�np�j

)
�

By choosing λ = √
5 log n, we have

1− o�n−1� − ieλ
2/2 = 1− o�n−1� − in−2�5 = 1− o�n−1�

since i < log n.
Therefore, with probability at least 1− o�n−1�, we have

�
i�x�� ≥ �c1 + δ��np�i
(
1− in−1/4 −

i∑
j=2

λ√
c1�np�j

)

≥ �c1 + δ��np�i
(
1− in−1/4 − λ√

c1�np�
1

1− �np�−1/2
)

≥ �c1 + δ��np�i
(
1−O

(
1√
log�n�

))
≥ c1�np�i

for n large enough.
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4. THE MAIN THEOREMS

We first state the main theorems that we will prove in this section:

Theorem 2. If p ≥ c log n
n

for some constant c > 8, the diameter of ran-
dom graph G�n�p� is almost surely concentrated on at most two values at
log n
log np .

Theorem 3. If p ≥ c log n
n

for some constant c > 2, then the diameter of
random graphs G�n�p� is almost surely concentrated on at most three values
at log n

log np .

Theorem 4. If p ≥ c log n
n

for some constant c, then we have⌈
log�cn/11�
log�np�

⌉
≤ diam�G�n�p��

≤
⌈
log�33c2/400�n log n�

log�np�
⌉
+ 2

⌊1
c

⌋
+ 2�

The diameter of random graph G�n�p� is almost surely concentrated on at
most 2� 1

c
� + 4 values.

Theorem 5. If log n > np → ∞, then almost surely we have

diam�G�n�p�� = �1+ o�1�� log n
log np

�

Theorem 6. Suppose np ≥ c > 1 for some constant c. Almost surely we
have

�1+ o�1�� log n
log np

≤ diam�G�n�p��

≤ log n
log np

+ 2
�10c/�√c − 1�2 + 1�

c − log�2c�
log n
np

+ 1�

Before proving Theorems 2–6, we first state two easy observations that
are useful for establishing upper and lower bounds for the diameter.

Observation 1. Suppose there is an integer k, satisfying one of the fol-
lowing two conditions.

1. When G�n�p� is connected, there exists a vertex x satisfying,
almost surely,

�Nk�x�� < �1− ε�n�
2. When G�n�p� is not connected, almost surely for all vertices x,

�Nk�x�� < n1−ε�
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(Here n1−ε can be replaced by any lower bound of the giant component.)
Then we have

diam�G�n� P�� > k�

Observation 2. Suppose there are integers k1 and k2, satisfying

�
k1
�x���
k2

�x��p > �2 + ε� log n
for all pairs of vertices �x� y� in the giant component. If 
k1

�x� ∩ 
k2
�x� �=

�, then d�x� y� ≤ k1 + k2. If 
k1
�x� ∩ 
k2

�x� = �, the probability that
there is edge between them is at least

1− �1− p��
k1
�x���
k2

�x�� ≥ 1− e−�
k1
�x���
k2

�x��p = 1− o�n−2��
Since there are at most n2 pairs, almost surely

d�x� y� ≤ k1 + k2 + 1�

Thus the diameter of the giant component is at most k1 + k2 + 1.

Proof of Theorem 2. G�n�p� is almost surely connected at this range.
By Lemma 3, almost surely there is a vertex x satisfying

�Ni�x�� ≤ �1+ 2ε��np�i for all 1 ≤ i ≤ log n�

Here, we choose

k =
⌊
log�n�1− ε�/�1+ 2ε��

log�np�
⌋
�

Hence, almost surely, we have

diam�G�n�p�� ≥
⌈
log�n�1− ε�/�1+ 2ε��

log�np�
⌉

for any ε

by using Observation 1.
On the other hand, by Lemma 8, almost surely for all vertices x,

�
i�x�� ≥ c1�np�i�

where c1 = 1−
√

2
c
− ε.

Now we choose

k1 =
⌈
log�√2�1+ ε�n log n/c1�

log�np�
⌉

and

k2 =
⌈
log��2�1+ ε�n log n�/c21�

log�np� − k1 − 1
⌉
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as in Observation 2. We note that

k1 ≈ k2 ≈
1
2
log��2n log n�/c21�

log�np� <
2
3

log n
log�np�

both satisfy the condition of Lemma 8. Almost surely we have

�
k1
�x���
k2

�y��p ≥ c1�np�k1c1�np�k2p ≥ 2�1+ ε� log n�
Hence, we have

diam�G�n�p�� ≤ k1 + k2 + 1 =
⌈
log��2�1+ ε�n log n�/c21�

log�np�
⌉
�

Therefore, we have proved that almost surely⌈
log�n�1− ε�/�1+ 2ε��

log�np�
⌉
≤ diam�G�n�p��

=
⌈
log��2�1+ ε�/c21�n log n�

log�np�
⌉

for any ε�

The difference between the upper bound and the lower bound is at most⌈
log��2�1+ ε�/c21�n log n�

log�np�
⌉
−
⌈
log�n�1− ε�/�1+ 2ε��

log�np�
⌉

≤
⌈
log��2�1+ ε��1+ 2ε� log n�/c21�1− ε��

log�np�
⌉

≤
⌈
log��2�1+ ε��1+ 2ε� log n�/c21�1− ε��

log�c log n�
⌉

≤ 1

when ε → 0.
Therefore, the diameter of G�n�p� is concentrated on at most two values

in this range.

Proof of Theorem 3. The proof is quite similar to that of Theorem 2 and
will be omitted. It can be shown that⌈

log�n�1− ε�/�1+ 2ε��
log�np�

⌉
≤ diam�G�n�p��

=
⌈
log��2�1+ ε�/c21�n log n�

log�np�
⌉

for any ε�

It is not difficult to check that in this range the difference between the
upper bound and the lower bound is 2 instead of 1, for c > 2. Therefore,
the diameter of G�n�p� is concentrated on at most three values at this
range.
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Proof of Theorem 4. In this range, G�n�p� may be disconnected. How-
ever, the diameter of G�n�p� is determined by the diameter of its giant
component by using Theorem 1. By Lemma 2, almost surely for all vertices
x, we have

�Ni�x�� ≤
10
c
�np�i�

We choose k =
⌊
log cn/11
log�np�

⌋
. Note that in this range, the size of the giant

component is �1− o�1��n. �Nk�x�� ≤ 10
11n is less than the giant component.

Hence, we have

diam�G�n�p�� ≥
⌊
log�cn/11�
log�np�

⌋
+ 1�

On the other direction, by Lemma 7, almost surely for a vertex x in the
giant component, there exists an i0 ≤ � 1

c
� + 1 that satisfies

�
i�x�� ≥
5
c
�np�i−i0 �

We choose

k1 =
⌈ log(√�33c2/400�n log n

)
log�np� + i0

⌉
and

k2 =
⌈
log��33c2/400�n log n�

log�np� − k1 − 1+ i0

⌉

and

k1 ≈ k2 ≈
1
2
log��33c2n log n�/400�

log�np� + i0 <
2
3

log n
log�np� �

The condition of Lemma 7 is satisfied. Almost surely

�
k1
�x���
k2

�y�� ≥ 5
c
�np�k1−i0

5
c
�np�k2−i0p ≥ 2�0625 log n�

Hence, almost surely we have

diam�G�n�p�� ≤ k1 + k2 + 1 =
⌈
log��33c/400�n log n�

log�np� + 2i0

⌉
�

Therefore, almost surely⌈
log cn/11
log�np�

⌉
≤ diam�G�n�p�� ≤

⌈
log��33c2/400�n log n�

log�np�
⌉
+ 2

⌊1
c

⌋
+ 2�
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The difference between the upper bound and the lower bound is at most⌈
log��33c2/400�n log n�

log�np�
⌉
+ 2

⌊1
c

⌋
+ 2 −

⌈
log cn/11
log�np�

⌉

≤
⌈
log��363c/400� log n�

log�np�
⌉
+ 2

⌊1
c

⌋
+ 2

≤
⌈
log�363c/400� log n�

log�c log n�
⌉
+ 2

⌊1
c

⌋
+ 2

≤ 2
⌊1
c

⌋
+ 3�

Therefore, if n ≥ c log n
n
, the diameter of G�n�p� is concentrated on at most

2� 1
c
� + 4 values.

Proof of Theorem 5. By Lemma 1, for almost all x and i, we have

�Ni�x�� ≤ 2i3 log n�np�3�
We now choose k = � log n−4 log log nlog�np� �. Hence, we have

diam�G�n�p�� > k+ 1 = �1+ o�1�� log n
log�np� �

On the other hand, by Lemma 6, there exists an i0 satisfying

i0 ≤
�10np/�√np− 1�2 + 1� log n

np− 1− log�np� = o

(
log n
log�np�

)
�

For almost all vertices x, we have

�
i�x�� ≥
1

�√np− 1�2 �np�
i−i0 log n�

We can then choose

k1 ≈ k2 ≈
1
2

log n
log�np� + i0

Therefore, �
k1
�x�� ≈ �
k1

�x�� < n2/3. The condition of Lemma 6 is satis-
fied. Hence we have

diam�G�n�p�� ≤ k1 + k2 + 1 ≈ log n
log�np� + 2i0 + 1 = �1+ o�1�� log n

log�np� �

We obtain

diam�G�n�p�� = �1+ o�1�� log n
log�np� �
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Proof of Theorem 6. The proof is very similar to that of Theorem 5, so
we will only sketch the proof here. It can be shown that

diam�G�n�p�� ≥ �1+ o�1�� log n
log�np� �

In the other direction, we choose

k1 ≈ k2 ≈
1
2

log n
log�np� + i0�

But now

i0 ≤
�10c/�√c − 1�2 + 1� log c

c − log�2c�
log n
log np

�

Hence

diam�G�n�p�� ≤ log n
log np

+ 2
�10c/�√c − 1�2 + 1�

c − 1− log�c�
log n
np

+ 1�

5. PROBLEMS AND REMARKS

We have proved that the diameter of G�n�p� is almost surely equal to
its giant component if np > 3�5128. Several questions here remain unan-
swered:

Problem 1. Is the diameter of G�n�p� equal to the diameter of its giant
component?

Of course, this question only concerns the range 1 < p ≤ 3�5128. There
are numerous questions concerning the diameter in the evolution of the
random graph. The classical paper of Erdös and Rényi [12] stated that all
connected components are trees or are unicyclic in this range. What is the
the distribution of the diameters of all connected components? Is there any
“jump” or “double jump” as the connectivity [12] in the evolution of the
random graphs during this range for p?
In this paper we proved that almost surely the diameter of G�n�p� is

�1+ o�1�� log n
log np if np → ∞. When np = c for some constant c > 1, we can

only show that the diameter is within a constant factor of log n
log np . Can this

be further improved?

Problem 2. Prove or disprove

diam
(
G
(
n�

c

n

))
= �1+ o�1�� log n

log c

for constant c > 1.
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Our method for bounding the diameter by estimating �Ni�x�� does not
seem to work for this range. This difficulty can perhaps be explained by
the following observation. The probability that �
1�x�� = 1 is approximately
c/ec , a constant. Hence, the probability that

�
1�x�� = �
2�x�� = · · · = �
l�x�� = 1

is about �c/ec�l. For some l up to �1− ε� log n
c−log c , this probability is at least

n1−ε. So it is quite likely that this may happen for vertex x. In other words,
there is a nontrivial probability that the random graph around x is just a
path starting at x of length c log n. The ith neighborhood Ni�x� of x, for
i = c log n, does not grow at all!
In Theorems 2 and 3 we consider the case of p > c log n

n
. Do the state-

ments still hold for p = c log n
n
?

Problem 3. Is it true that the diameter of G�n�p� is concentrated on
2k+ 3 values if p = log n

kn
?

It is worth mentioning that the case k = 1 is of special interest.
For the range np = 1+ n−c , Lemma 1 implies diam�G�n�p�� ≥ � 1

1−3c +
o�1�� log n

log�np� . Can one establish a similar upper bound?

Problem 4. Is it true that

diam�G�n�p�� = #

(
log n
log�np�

)

for np = 1+ n−c and c < 1
3?

Łuczak [16] proved that the diameter of G�n�p� is equal to the diameter
of a tree component in the subcritical phase �1− np�n1/3 → ∞. What can
we say about the diameter of G�n�p� when �1 − np�n1/3 → c, for some
constant c? The diameter problem seems to be hard in this case.
A related problem is to examine the average distance of graphs instead of

the diameter which is the maximum distance. The problem on the average
distance of a random graph with a given degree sequence has applications
in so-called small world graphs [13, 17]. Research in this direction can be
found in [13].
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