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Abstract

Random graph theory is used to examine the “small-
world phenomenon” – any two strangers are connected
through a short chain of mutual acquaintances. We will
show that for certain families of random graphs with
given expected degrees, the average distance is almost
surely of order log n/ log d̃ where d̃ is the weighted av-
erage of the sum of squares of the expected degrees.
Of particular interest are power law random graphs in
which the number of vertices of degree k is proportional
to 1/kβ for some fixed exponent β. For the case of β > 3,
we prove that the average distance of the power law
graphs is almost surely of order log n/ log d̃. However,
many Internet, social and citation networks are power
law graphs with exponents in the range 2 < β < 3 for
which the power law random graphs have average dis-
tance almost surely of order log log n, but have diameter
of order log n (provided having some mild constraints for
the average distance and maximum degree). In particu-
lar, these graphs contain a dense subgraph, that we call
the core, having nc/ log log n vertices. Almost all vertices
are within distance log log n of the core although there
are vertices at distance log n from the core.
Introduction

In 1967, the psychologist Stanley Milgram [18] con-
ducted a series of experiments which indicated that any
two strangers are connected by a chain of intermediate
acquaintances of length at most six. In 1999, Barabási
et al. [4] observed that in certain portions of the Inter-
net any two webpages are at most 19 clicks away from
one another. In this paper, we will examine average dis-
tances in random graph models of large complex graphs.
In turn, the study of realistic large graphs provides new
directions and insights for random graph theory.

Most of the research papers in random graph theory
concern the Erdős-Rényi model Gp, in which each edge is
independently chosen with probability p for some given
p > 0 (see [10]). In such random graphs the degrees (the
number of neighbors) of vertices all have the same ex-
pected value. However, many large random-like graphs
that arise in various applications have diverse degree dis-
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tributions [2, 5, 4, 13, 14, 16]. It is therefore natural to
consider classes of random graphs with general degree
sequences.

We consider a general model G(w) for random
graphs with given expected degree sequence w =
(w1, w2, . . . , wn). The edge between vi and vj is chosen
independently with probability pij where pij is propor-
tional to the product wiwj . The classical random graph
G(n, p) can be viewed as a special case of G(w) by tak-
ing w to be (pn, pn, . . . , pn). Our random graph model
G(w) is different from the random graph models with
an exact degree sequence as considered by Molloy and
Reed [19, 20], and Newman, Strogatz and Watts [21].
Deriving rigorous proofs for random graphs with exact
degree sequences is rather complicated and usually re-
quires additional “smoothing” conditions because of the
dependency among the edges (see [19]).

Although G(w) is well defined for arbitrary degree dis-
tributions, it is of particular interest to study power law
graphs. Many realistic networks such as the Internet, so-
cial, and citation networks have degrees obeying a power
law. Namely, the fraction of vertices with degree k is pro-
portional to 1/kβ for some constant β > 1. For example,
the Internet graphs have powers ranging from 2.1 to 2.45
(see [4, 11, 6, 14]). The collaboration graph of Mathe-
matical Reviews has β = 2.97 (see [12]). The power law
distribution has a long history that can be traced back to
Zipf [23], Lotka [15] and Pareto [22]. Recently, the impe-
tus for modeling and analyzing large complex networks
has led to renewed interest in power law graphs.

In this paper, we will show that for certain families of
random graphs with given expected degrees, the average
distance is almost surely (1 + o(1)) log n/ log d̃. Here d̃

denotes the second-order average degree defined by d̃ =∑
w2

i /
∑

wi, where wi denotes the expected degree of
the i-th vertex. Consequently, the average distance for
a power law random graph on n vertices with exponent
β > 3 is almost surely (1 + o(1)) log n/ log d̃. When the
exponent β satisfies 2 < β < 3, the power law graphs
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have a very different behavior. For example, for β > 3, d̃

is a function of β and is independent of n but for 2 < β <

3, d̃ can be as large as a fixed power of n. We will prove
that for a power law graph with exponent 2 < β < 3, the
average distance is almost surely O(log log n) (and not
log n/ log d̃) if the average degree is strictly greater than 1
and the maximum degree is sufficiently large. Also, there
is a dense subgraph, that we call the ‘core’, of diameter
O(log log n) in such a power law random graph such that
almost all vertices are at distance at most O(log log n)
from the core, although there are vertices at distance at
least c log n from the core. At the phase transition point
of β = 3, the random power law graph almost surely has
average distance of order log n/ log log n and diameter of
order log n.

Definitions and statements of the main theorems
In a random graph G ∈ G(w) with a given expected

degree sequence w = (w1, w2, . . . , wn), the probability
pij of having an edge between vi and vj is wiwjρ for
ρ = 1P

i wi
. We assume that maxi w2

i <
∑

i wi so that
the probability pij = wiwjρ is strictly between 0 and 1.
This assumption also ensures that the degree sequence wi

can be realized as the degree sequence of a graph if wi’s
are integers [9]. Our goal is to have as few conditions as
possible on the wi’s while still being able to derive good
estimates for the average distance.

First we need some definitions for several quantities
associated with G and G(w). In a graph G, the volume
of a subset S of vertices in G is defined to be vol(S) =∑

v∈S deg(v), the sum of degrees of all vertices in S. For
a graph G in G(w), the expected degree of vi is exactly
wi and the expected volume of S is Vol(S) =

∑
i∈S wi. In

particular, the expected volume of G is Vol(G) =
∑

i wi.
By the Chernoff inequality for large deviations [3], we
have

Prob(|vol(S) − Vol(S)| > λ) < e−λ2/(2Vol(S)+λ/3).

For k ≥ 2, we define the k-th moment of the ex-
pected volume by Volk(S) =

∑
vi∈S wk

i and we write
Volk(G) =

∑
i wk

i . In a graph G, the distance d(u, v)
between two vertices u and v is just the length of a short-
est path joining u and v (if it exists). In a connected
graph G, the average distance of G is the average over
all distances d(u, v) for u and v in G. We consider very
sparse graphs that are often not connected. If G is not
connected, we define the average distance to be the av-
erage among all distances d(u, v) for pairs of u and v

both belonging to the same connected component. The
diameter of G is the maximum distance d(u, v), where
u and v are in the same connected component. Clearly,
the diameter is at least as large as the average distance.
All our graphs typically have a unique large connected
component, called the giant component, which contains
a positive fraction of edges.

The expected degree sequence w for a graph G on n

vertices in G(w) is said to be strongly sparse if we have
the following :
(i) The second order average degree d̃ satisfies 0 <

log d̃ � log n.

(ii) For some constant c > 0, all but o(n) vertices
have expected degree wi satisfying wi ≥ c. The average
expected degree d =

∑
i wi/n is strictly greater than 1,

i.e., d > 1+ ε for some positive value ε independent of n.
The expected degree sequence w for a graph G on n

vertices in G(w) is said to be admissible if the following
condition holds, in addition to the assumption that w is
strongly sparse.
(iii) There is a subset U satisfying: Vol2(U) = (1 +
o(1))Vol2(G) � Vol3(U) log d̃ log log n

d̃ log n

The expected degree sequence w for a graph G on n

vertices is said to be specially admissible if (i) is replaced
by (i’) and (iii) is replaced by (iii’):
(i’) log d̃ = O(log d).
(iii’) There is a subset U satisfying Vol3(U) =
O(Vol2(G)) d̃

log d̃
, and Vol2(U) > dVol2(G)/d̃.

In this paper, we will prove the following:

Theorem 1 For a random graph G with admissible ex-
pected degree sequence (w1, . . . , wn), the average distance
is almost surely (1 + o(1)) log n

log d̃
.

Corollary 1 If np ≥ c > 1 for some constant c,
then almost surely the average distance of G(n, p) is
(1+o(1)) log n

log np , provided log n
log np goes to infinity as n → ∞.

The proof of the above corollary follows by taking wi =
np and U to be the set of all vertices. It is easy to verify
in this case that w is admissible, so Theorem 1 applies.

Theorem 2 For a random graph G with a specially ad-
missible degree sequence (w1, . . . , wn), the diameter is al-
most surely Θ(log n/ log d̃).

Corollary 2 If np = c > 1 for some constant c, then
almost surely the diameter of G(n, p) is Θ(log n).
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Theorem 3 For a power law random graph with expo-
nent β > 3 and average degree d strictly greater than 1,
almost surely the average distance is (1 + o(1)) log n

log d̃
and

the diameter is Θ(log n).

Theorem 4 Suppose a power law random graph with ex-
ponent β has average degree d strictly greater than 1 and
maximum degree m satisfying log m � log n/ log log n.
If 2 < β < 3, almost surely the diameter is Θ(log n) and
the average distance is at most (2 + o(1)) log log n

log(1/(β−2)) .
For the case of β = 3, the power law random graph has

diameter almost surely Θ(log n) and has average distance
Θ(log n/ log log n).

Neighborhood expansion and connected compo-
nents

Here we state several useful facts concerning the dis-
tances and neighborhood expansions in G(w). These
facts are not only useful for the proofs of the main the-
orems but also are of interest on their own right. The
proofs can be found in [8, 17]

Lemma 1 In a random graph G in G(w) with a given
expected degree sequence w = (w1, . . . , wn), for any fixed
pairs of vertices (u, v), the distance d(u, v) between u and
v is greater than

⌊
log Vol(G)−c

log d̃

⌋
with probability at least

1 − wuwv

d̃(d̃−1)
e−c.

Lemma 2 In a random graph G ∈ G(w), for any two
subsets S and T of vertices, we have

Vol(Γ(S) ∩ T ) ≥ (1 − 2ε)Vol(S)
Vol2(T )
Vol(G)

with probability at least 1 − e−c where Γ(S) = {v : v ∼
u ∈ S and v 6∈ S}, provided Vol(S) satisfies

2cVol3(T )Vol(G)
ε2Vol22(T )

≤ Vol(S) ≤ εVol2(T )Vol(G)
Vol3(T )

(1)

Lemma 3 For any two disjoint subsets S and T with
Vol(S)Vol(T ) > cVol(G), we have

Pr(d(S, T ) > 1) < e−c

where d(S, T ) denotes the distance between S and T .

Lemma 4 Suppose that G is a random graph on n ver-
tices so that for a fixed value c, G has o(n) vertices of de-
gree less than c, and has average degree d strictly greater

than 1. Then for any fixed vertex v in the giant compo-
nent, if τ = o(

√
n), then there is an index i0 ≤ c0τ so

that with probability at least 1 − c1τ3/2

ec2τ , we have

Vol(Γi0(v)) ≥ τ

where ci’s are constants depending only on c and d, while
Γi(S) = Γ(Γi−1(S)) for i > 1 and Γ1(S) = Γ(S).

We remark that in the proofs of Theorem 1 and Theo-
rem 2, we will take τ to be of order log n

log d̃
. The statement

of the above lemma is in fact stronger than what we will
actually need.

Another useful tool is the following result in [8] on
the expected sizes of connected components in random
graphs with given expected degree sequences.

Lemma 5 Suppose that G is a random graph in G(w)
with given expected degree sequence w. If the expected
average degree d is strictly greater than 1, then the fol-
lowing holds:
(1) Almost surely G has a unique giant component.
Furthermore, the volume of the giant component is at
least (1 − 2√

de
+ o(1))Vol(G) if d ≥ 4

e = 1.4715 . . ., and

is at least (1 − 1+log d
d + o(1))Vol(G) if d < 2.

(2) The second largest component almost surely has size
O( log n

log d ).

Proof of Theorem 1:
Suppose G is a random graph with an admissible ex-

pected degree sequence. From Lemma 5, we know that
with high probability the giant component has volume
at least Θ(Vol(G)). From Lemma 5, the sizes of all small
components are O(log n). Thus, the average distance is
primarily determined by pairs of vertices in the giant
component.

From the admissibility condition (i), d̃ ≤ nε implies
that only o(n) vertices can have expected degrees greater
than nε. Hence we can apply Lemma 1 (by choosing
c = 3ε logn, for any fixed ε > 0) so that with probability
1 − o(1), the distance d(u, v) between u and v satisfies
d(u, v) ≥ (1− 3ε− o(1))log n/log d̃. Here we use the fact
that log Vol(G) = log d+logn = (1+o(1)) log n. Because
the choice of ε is arbitrary, we conclude the average dis-
tance of G is almost surely at least (1 + o(1))log n/log d̃.

Next, we wish to establish the upper bound (1 +
o(1)) log Vol(G)

log d̃
for the average distance between two ver-

tices u and v in the giant component.
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For any vertex u in the giant component, we use
Lemma 4 to see that for i0 ≤ Cε log n

log d̃
, the i0-boundary

Γi0(v)of v satisfies

Vol(Γi0 (v)) ≥ ε
log n

log d̃

with probability 1 − o(1).
Next we use Lemma 2 to deduce that Vol(Γi(u))

will grow roughly by a factor of (1 − 2ε)d̃ as long
as Vol(Γi(u)) is no more than

√
cVol(G) (by choosing

c = 2 log log n). The failure probability is at most e−c

at each step. Hence, for i1 ≤ log(c Vol(G))

2 log(1−2ε)d̃
more steps,

we have Vol(Γi0+i1(v)) ≥ √
cVol(G) with probability at

least 1− i1e
−c = 1−o(1). Here i0 + i1 = (1+o(1)) log n

2 log d̃
.

Similarly, for the vertex v, there are integers i′0 and i′1 sat-
isfying i′0 + i′1 = (1+ o(1)) log n

2 log d̃
so that Vol(Γi′0+i′1(v)) ≥√

cVol(G) holds with probability at least 1 − o(1).
By Lemma 3, with probability 1− o(1) there is a path

connecting u and v with length i0 + i1 + 1 + i′0 + i′1 =
(1+o(1)) log n

log d̃
. Hence, almost surely the average distance

of a random graph with an admissible degree sequence
is (1 + o(1)) log n

log d̃
. �

The proof of Theorem 2 is similar to that of Theorem 1
except that the special admissibility condition allows us
to deduce the desired bounds with probability 1−o(n−2).
Thus, almost surely every pair of vertices in the giant
components have mutual distance O(log n/ log d̃). We
remark that it would be desirable to establish an upper
bound (1 + o(1)) log n/ log d̃ for the diameter. However,
we can only deduce the weaker upper bound because of
the traveoff for the required probability 1 − o(n−2) by
using Lemma 4.
Random power law graphs

For random graphs with given expected degree se-
quences satisfying a power law distribution with expo-
nent β, we may assume that the expected degrees are
wi = ci−

1
β−1 for i satisfying i0 ≤ i < n + i0. Here

c depends on the average degree and i0 depends on
the maximum degree m, namely, c = β−2

β−1dn
1

β−1 , i0 =

n( d(β−2)
m(β−1))

β−1.
The power law graphs with exponent β > 3 are quite

different from those with exponent β < 3 as evidenced
by the value of d̃ (assuming m � d).

d̃ =




(1 + o(1))d (β−2)2

(β−1)(β−3) if β > 3.

(1 + o(1))1
2d ln 2m

d if β = 3.

(1 + o(1))dβ−2 (β−2)β−1m3−β

(β−1)β−2(3−β)
if 2 < β < 3.

For the range of β > 3, it can be shown that the power
law graphs are both admissible and specially admissible.
(One of the key ideas is to choose ‘U ’ in condition (iii) or
(iii’) to be a set Uy = {v : deg(v) ≤ y} for an appropriate
y independent of the maximum degree m. For example,
choose y to be n1/4 for β > 4, to be 4 for β = 4 and to
be log n/(log d log log n) for 3 < β < 4). Theorem 3 then
follows from Theorems 1 and 2.
The range 2 < β < 3

Power law graphs with exponent 2 < β < 3 have very
interesting structures that can be roughly described as an
“octopus” with a dense subgraph having small diameter
as the core. We define Sk to be the set of vertices with
expected degree at least k. (We note that the set Sk can
be well approximated by the set of vertices with degree
at least k.)

We note that the power law distribution is not spe-
cially admissible for 2 < β < 3. Thus Theorem 2 can
not be directly used. Here we outline the main ideas for
the proof of Theorem 4.
Sketch of proof for Theorem 4: We define the core
of a power law graph with exponent β to be the set St

of vertices of degree at least t = n1/ log log n.
Claim 1: The diameter of the core is almost surely
O(log log n). This follows from the fact that the core
contains an Erdős-Renyi graph G(n′, p) with n′ = cnt1−β

and p = t2/Vol(G). From [10], this subgraph is almost
surely connected. Using a result in [7], the diameter of
this subgraph is at most log n′

log pn′ = (1 + o(1)) log n
(3−β) log t =

O(log log n).
Claim 2: Almost all vertices with degree at least log n are
almost surely within distance O(log log n) from the core.
To see this, we start with a vertex u0 with degree k0 ≥
logC n for some constant C = 1.1

(β−2)(3−β) . By applying
Lemma 3, with probability at least 1−n−3, u0 is a neigh-
bor of some u1 with degree k1 ≥ (k0/ logC n)1/(β−2)s

.
We then repeat this process to find a path with ver-
tices u0, u1, . . . , us, and the degree ks of us satisfies
ks ≥ (k0/ logC n)1/(β−2)s

with probability 1 − n−2. By
choosing s to satisfy log ks ≥ log n/ log log n, we are
done.
Claim 3: For each vertex v in the giant component, with
probability 1−o(1), v is within distance O(log log n) from
a vertex of degree at least logC n. This follows from
Lemma 4 ( choosing τ = c log log log n and the neighbor-
hood expansion factor c′ log log log n).
Claim 4: For each vertex v in the giant component, with
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probability 1−o(n−2), v is within distance O(log n) from
a vertex of degree at least O(log n). Thus with probabil-
ity 1 − o(1), the diameter is O(log n).

Combining Claims 1-3, we have derived an upper
bound O(log log n) for the average distance. (By a simi-
lar but more careful analysis [17], this upper bound can
be further improved to c log log n for c = 2

log(1/(β−2)) .)
From Claim 4, we have an upper bound O(log n) for the
diameter.

Next, we will establish a lower bound of order log n.
We note that the minimal expected degree in a power
law random graph with exponent 2 < β < 3 is (1 +
o(1))d(β−2)

β−1 . We consider all vertices with expected de-
gree less than the average degree d. By a straightforward
computation, there are about (β−2

β−1)β−1n such vertices.
For a vertex u and a subset T of vertices, the probability
that u has only one neighbor which has expected degree
less than d and is not adjacent to any vertex in T is at
least

∑
wv<d

wuwvρ
∏
j 6=v

(1 − wuwjρ)

≈ wuvol(Sd)ρe−wu

≈ (1 − (
β − 2
β − 1

)β−2)wue−wu

Note that this probability is bounded away from 0,
(say, it is greater than c for some constant c). Then,
with probability at least n−1/100, we have an induced
path of length at least log n

100 log c in G. Starting from any
vertex u, we search for a path as an induced subgraph of
length at least log n

100 log c in G. If we fail to find such a path,
we simply repeat the process by choosing another vertex
as the starting point. Since Sd has at least (β−2

β−1)β−1n

vertices, then with high probability, we can find such a
path. Hence the diameter is almost surely Θ(log n).

For the case of β = 3, similar arguments show that the
power law random graph almost surely has diameter of
order log n but the average distance is Θ(log n/ log d̃) =
Θ(log n/ log log n). �
Summary

When random graphs are used to model large com-
plex graphs, the small world phenomenon of having short
characteristic paths is well captured in the sense that
with high probability, power law random graphs with
exponent β have average distance of order log n if β > 3,
and of order log log n if 2 < β < 3. Thus, a phase tran-
sition occurs at β = 3 and, in fact, the average distance

of power law random graphs with exponent 3 is of or-
der log n/ log log n. More specifically, for the range of
2 < β < 3, there is a distinct core of diameter log log n

so that almost all vertices are within distance log log n

from the core, while almost surely there are vertices of
distance log n away from the core.

Another aspect of the small world phenomenon con-
cerns the so-called clustering effect, which asserts that
two people who share a common friend are more likely
to know each other. However, the clustering effect does
not appear in random graphs and some explanation is
in order. A typical large network can be regarded as a
union of two major parts: a global network and a lo-
cal network. Power law random graphs are suitable for
modeling the global network while the clustering effect is
part of the distinct characteristics of the local network.

Based on the data graciously provided by Jerry Gross-
man [12], we consider two types of collaboration graphs
with roughly 337,000 authors as vertices. The first col-
laboration graph G1 has about 496,000 edges with each
edge joining two coauthors. It can be modeled by a
random power law graph with exponent β1 = 2.97 and
d = 2.94 (see Figure 1). The second collaboration graph
G2 has about 226,000 edges, each representing a joint pa-
per with exactly two authors. The collaboration graph
G2 corresponds to a power law graph with exponent
β2 = 3.26 and d = 1.34. Theorem 3 predicts that the
value for the average distance in this case should be 9.89
(with a lower order error term). In fact, the actual aver-
age distance in this graph is 9.56 (see [12]).
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(Graphs with points of prescribed degrees, in Hungarian),
Mat. Lapok 11 (1961), 264-274.
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