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Random graph theory is used to examine the ‘‘small-world phe-
nomenon’’; any two strangers are connected through a short chain
of mutual acquaintances. We will show that for certain families of
random graphs with given expected degrees the average distance
is almost surely of order log n�log d̃, where d̃ is the weighted
average of the sum of squares of the expected degrees. Of
particular interest are power law random graphs in which the
number of vertices of degree k is proportional to 1�k� for some
fixed exponent �. For the case of � > 3, we prove that the average
distance of the power law graphs is almost surely of order log
n�log d̃. However, many Internet, social, and citation networks are
power law graphs with exponents in the range 2 < � < 3 for which
the power law random graphs have average distance almost surely
of order log log n, but have diameter of order log n (provided
having some mild constraints for the average distance and maxi-
mum degree). In particular, these graphs contain a dense subgraph,
which we call the core, having nc�log log n vertices. Almost all vertices
are within distance log log n of the core although there are vertices
at distance log n from the core.

In 1967, the psychologist Stanley Milgram (1) conducted a
series of experiments that indicated that any two strangers are

connected by a chain of intermediate acquaintances of length at
most six. In 1999, Barabási et al. (2) observed that in certain
portions of the Internet any two web pages are at most 19 clicks
away from one another. In this article, we will examine average
distances in random graph models of large complex graphs. In
turn, the study of realistic large graphs provides directions and
insights for random graph theory.

Most of the research papers in random graph theory concern
the Erdős–Rényi model Gp, in which each edge is independently
chosen with probability p for some given p � 0 (see ref. 3). In
such random graphs the degrees (the number of neighbors) of
vertices all have the same expected value. However, many large
random-like graphs that arise in various applications have
diverse degree distributions (2, 4–7). It is therefore natural to
consider classes of random graphs with general degree
sequences.

We consider a general model G(w) for random graphs with
given expected degree sequence w � (w1, w2, . . . , wn). The edge
between vi and vj is chosen independently with probability pij,
where pij is proportional to the product wiwj. The classical
random graph G(n, p) can be viewed as a special case of G(w)
by taking w to be (pn, pn, . . . , pn). Our random graph model
G(w) is different from the random graph models with an exact
degree sequence as considered by Molloy and Reed (8, 9), and
Newman, Strogatz, and Watts (10, 11). Deriving rigorous proofs
for random graphs with exact degree sequences is rather com-
plicated and usually requires additional ‘‘smoothing’’ conditions
because of the dependency among the edges (see ref. 8).

Although G(w) is well defined for arbitrary degree distribu-
tions, it is of particular interest to study power law graphs. Many
realistic networks such as the Internet, social, and citation
networks have degrees obeying a power law. Namely, the frac-
tion of vertices with degree k is proportional to 1�k� for some
constant � � 1. For example, the Internet graphs have powers
ranging from 2.1 to 2.45 (see refs. 2 and 12–14). The collabo-

ration graph of mathematical reviews has � � 2.97 (see www.
oakland.edu��grossman�trivia.html). The power law distribu-
tion has a long history that can be traced back to Zipf (15), Lotka
(16), and Pareto (17). Recently, the impetus for modeling and
analyzing large complex networks has led to renewed interest in
power law graphs.

In this article, we will show that for certain families of random
graphs with given expected degrees, the average distance is
almost surely (1 � o(1)) log n�log d̃. Here d̃ denotes the
second-order average degree defined by d� � � wi

2�� wi, where
wi denotes the expected degree of the ith vertex. Consequently,
the average distance for a power law random graph on n vertices
with exponent � � 3 is almost surely (1 � o(1)) log n�log d̃.
When the exponent � satisfies 2 � � � 3, the power law graphs
have a very different behavior. For example, for � � 3, d̃ is a
function of � and is independent of n but for 2 � � � 3, d̃ can
be as large as a fixed power of n. We will prove that for a power
law graph with exponent 2 � � � 3, the average distance is
almost surely O(log log n) (and not log n�log d̃) if the average
degree is strictly greater than 1 and the maximum degree is
sufficiently large. Also, there is a dense subgraph, that we call the
core, of diameter O(log log n) in such a power law random graph
such that almost all vertices are at distance at most O(log log n)
from the core, although there are vertices at distance at least c
log n from the core. At the phase transition point of � � 3, the
random power law graph almost surely has average distance of
order log n�log log n and diameter of order log n.

Definitions and Statements of the Main Theorems
In a random graph G � G(w) with a given expected degree
sequence w � (w1, w2, . . . , wn), the probability pij of having an
edge between vi and vj is wiwj� for � � (1��i wi). We assume that
maxi wi

2 � �i wi so that the probability pij � wiwj� is strictly
between 0 and 1. This assumption also ensures that the degree
sequence wi can be realized as the degree sequence of a graph
if wis are integers (18). Our goal is to have as few conditions as
possible on the wis while still being able to derive good estimates
for the average distance.

First, we need some definitions for several quantities associ-
ated with G and G(w). In a graph G, the volume of a subset S
of vertices in G is defined to be vol(S) � �v�S deg(v), the sum
of degrees of all vertices in S. For a graph G in G(w), the
expected degree of vi is exactly wi and the expected volume of S
is Vol(S) � �i�S wi. In particular, the expected volume of G is
Vol(G) � �i wi. By the Chernoff inequality for large deviations
(19), we have

Prob��vol�S� � Vol�S�� � �� � e	�2/�2Vol�S���/3� .

For k � 2, we define the kth moment of the expected volume by
Volk(S) � �vi�S wi

k and we write Volk(G) � �i wi
k. In a graph

G, the distance d(u, v) between two vertices u and v is just the
length of a shortest path joining u and v (if it exists). In a
connected graph G, the average distance of G is the average over
all distances d(u, v) for u and v in G. We consider very sparse
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graphs that are often not connected. If G is not connected, we
define the average distance to be the average among all distances
d(u, v) for pairs of u and v both belonging to the same connected
component. The diameter of G is the maximum distance d(u, v),
where u and v are in the same connected component. Clearly, the
diameter is at least as large as the average distance. All of our
graphs typically have a unique large connected component,
called the giant component, which contains a positive fraction of
edges.

The expected degree sequence w for a graph G on n vertices
in G(w) is said to be strongly sparse if we have the following:

(i) The second order average degree d̃ satisfies 0 � log d̃ ��
log n.

(ii) For some constant c � 0, all but o(n) vertices have expected
degree wi satisfying wi � c. The average expected degree
d � �i wi�n is strictly greater than 1, i.e., d � 1 � � for some
positive value � independent of n.

The expected degree sequence w for a graph G on n vertices
in G(w) is said to be admissible if the following condition holds,
in addition to the assumption that w is strongly sparse.

(iii) There is a subset U satisfying: Vol2(U) � (1 �
o(1))Vol2(G) �� (Vol3(U) log d̃ log log n�d̃ log n).

The expected degree sequence w for a graph G on n vertices
is said to be specially admissible if i is replaced by i
 and iii is
replaced by iii
:

(i
) log d̃ � O(log d).
(iii
) There is a subset U satisfying Vol3(U) � O(Vol2(G))(d̃�

log d̃), and Vol2(U) � dVol2(G)�d̃.

In this article, we will prove the following:

Theorem 1. For a random graph G with admissible expected degree
sequence (w1, . . . , wn), the average distance is almost surely (1 �
o(1))(log n�log d̃).

Corollary 1. If np � c � 1 for some constant c, then almost surely
the average distance of G(n, p) is (1 � o(1))(log n�log np),
provided (log n�log np) goes to infinity as n 3 �.

The proof of the above corollary follows by taking wi � np and
U to be the set of all vertices. It is easy to verify in this case that
w is admissible, so Theorem 1 applies.

Theorem 2. For a random graph G with a specially admissible degree
sequence (w1, . . . , wn), the diameter is almost surely �(log n�log d̃).

Corollary 2. If np � c � 1 for some constant c, then almost surely
the diameter of G(n, p) is �(log n).

Theorem 3. For a power law random graph with exponent � � 3 and
average degree d strictly greater than 1, almost surely the average
distance is (1 � o(1))(log n�log d̃) and the diameter is �(log n).

Theorem 4. Suppose a power law random graph with exponent � has
average degree d strictly greater than 1 and maximum degree m
satisfying log m �� log n�log log n. If 2 � � � 3, almost surely
the diameter is �(log n) and the average distance is at most (2 �
o(1))(log log n�log(1�(� 	 2))). For the case of � � 3, the power
law random graph has diameter almost surely �(log n) and has
average distance �(log n�log log n).

Neighborhood Expansion and Connected Components
Here we state several useful facts concerning the distances and
neighborhood expansions in G(w). These facts are not only
useful for the proofs of the main theorems but also are of interest
on their own right. The proofs can be found in ref. 20.

Lemma 1. In a random graph G in G(w) with a given expected
degree sequence w � (w1, . . . , wn), for any fixed pairs of vertices
(u, v), the distance d(u, v) between u and v is greater than
 (log Vol(G) 	 c)�log d̃ with probability at least 1 	 (wuwv�
d̃(d̃ 	 1))e	c.

Lemma 2. In a random graph G � G(w), for any two subsets S and
T of vertices, we have

Vol��S� � T� � �1 � 2��Vol�S�
Vol2�T�

Vol�G�

with probability at least 1 	 e	c where (S) � {v : v � u � S and
v � S}, provided Vol(S) satisfies

2cVol3�T�Vol�G�

�2Vol2
2�T�

	 Vol�S� 	
�Vol2�T�Vol�G�

Vol3�T�
. [1]

Lemma 3. For any two disjoint subsets S and T with Vol(S)
Vol(T) � cVol(G), we have

Pr�d�S, T� � 1� � e	c ,

where d(S, T) denotes the distance between S and T.

Lemma 4. Suppose that G is a random graph on n vertices so that
for a fixed value c, G has o(n) vertices of degree less than c and
has average degree d strictly greater than 1. Then for any fixed vertex
v in the giant component, if 
 � o(�n), then there is an index i0 	

c0
 so that with probability at least 1 	 (c1
3/2�ec2
), we have

Vol�i0�v�� � 
,

where cis are constants depending only on c and d, while i(S) �
(i	1(S)) for i � 1 and 1(S) � (S).

We remark that in the proofs of Theorem 1 and Theorem 2, we
will take 
 to be of order (log n�log d̃). The statement of the
above lemma is in fact stronger than what we will actually need.

Another useful tool is the following result on the expected
sizes of connected components in random graphs with given
expected degree sequences (21).

Lemma 5. Suppose that G is a random graph in G(w) with given
expected degree sequence w. If the expected average degree d is
strictly greater than 1, then the following holds:

(i) Almost surely G has a unique giant component. Furthermore,
the volume of the giant component is at least (1 	 (2��de) �
o(1))Vol(G) if d � (4�e) � 1.4715 . . . , and is at least (1 	
(1 � log d)�d � o(1))Vol(G) if d � 2.

(ii) The second largest component almost surely has size O(log n�
log d).

Proof of Theorem 1
Suppose G is a random graph with an admissible expected
degree sequence. From Lemma 5, we know that with high
probability the giant component has volume at least �(Vol(G)).
From Lemma 5, the sizes of all small components are O(log n).
Thus, the average distance is primarily determined by pairs of
vertices in the giant component.

From the admissibility condition i, d̃ 	 n� implies that only
o(n) vertices can have expected degrees greater than n�. Hence
we can apply Lemma 1 (by choosing c � 3� log n, for any fixed
� � 0) so that with probability 1 	 o(1), the distance d(u, v)
between u and v satisfies d(u, v) � (1 	 3� 	 o(1))log n�
log d̃. Here we use the fact that log Vol(G) � log d � log n �
(1 � o(1))log n. Because the choice of � is arbitrary, we
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conclude the average distance of G is almost surely at least (1 �
o(1))log n�log d̃.

Next, we want to establish the upper bound (1 � o(1))�
(log Vol(G)�log d̃) for the average distance between two ver-
tices u and v in the giant component.

For any vertex u in the giant component, we use Lemma 4 to
see that for i0 	 C�(log n�log d̃), the i0 boundary i0

(v) of v
satisfies

Vol�i0�v�� � �
log n

log d̃

with probability 1 	 o(1).
Next, we use Lemma 2 to deduce that Vol(i(u)) will grow

roughly by a factor of (1 	 2�)d̃ as long as Vol(i(u)) is no
more than �cVol(G) (by choosing c � 2 log log n). The
failure probability is at most e	c at each step. Hence, for i1 	
log(c Vol(G))�(2 log(1 	 2�)d̃) more steps, we have
Vol(i0�i1

(v)) � �cVol(G) with probability at least 1 	 i1e	c �
1 	 o(1). Here i0 � i1 � (1 � o(1))(log n�2 log d̃). Similarly,
for the vertex v, there are integers i
0 and i
1 satisfying i
0 � i
1 �
(1 � o(1))(log n�(2 log d̃)) so that Vol(i
0�i
1(v)) � �cVol(G)
holds with probability at least 1 	 o(1).

By Lemma 3, with probability 1 	 o(1) there is a path
connecting u and v with length i0 � i1 � 1 � i
0 � i
1 � (1 �
o(1))(log n�log d� ). Hence, almost surely the average distance of
a random graph with an admissible degree sequence is (1 �
o(1))(log n�log d� ).

The proof of Theorem 2 is similar to that of Theorem 1 except
that the special admissibility condition allows us to deduce the
desired bounds with probability 1 	 o(n	2). Thus, almost surely
every pair of vertices in the giant components have mutual
distance O(log n�log d̃). We remark that it would be desirable
to establish an upper bound (1 � o(1)) log n�log d̃ for the
diameter. However, we can only deduce the weaker upper bound
because of the traveoff for the required probability 1 	 o(n	2)
by using Lemma 4.

Random Power Law Graphs
For random graphs with given expected degree sequences
satisfying a power law distribution with exponent �, we may
assume that the expected degrees are wi � ci	1�(�	1) for i
satisfying i0 	 i � n � i0. Here c depends on the average degree
and i0 depends on the maximum degree m, namely, c � � 	
2�(� 	 1)dn(1��	1), i0 � n(d(� 	 2)�m(� 	 1))�	1.

The power law graphs with exponent � � 3 are quite different
from those with exponent � � 3 as evidenced by the value of d̃
(assuming m �� d).

d̃ � �
�1 � o�1��d

�� � 2�2

�� � 1��� � 3�
if � � 3.

�1 � o�1�� 1
2

d ln
2m
d

if � � 3.

�1 � o�1��d� � 2
�� � 2�� � 1m3 � �

�� � 1�� � 2�3 � ��
if 2 � � � 3.

For the range of � � 3, it can be shown that the power law
graphs are both admissible and especially admissible. [One of the
key ideas is to choose U in condition iii or iii
 to be a set Uy �
{v : deg(v) 	 y} for an appropriate y independent of the
maximum degree m. For example, choose y to be n1/4 for � � 4,
to be 4 for � � 4 and to be log n�(log d log log n) for 3 � � �
4.] Theorem 3 then follows from Theorems 1 and 2.

The Range 2 < � < 3
Power law graphs with exponent 2 � � � 3 have very interesting
structures that can be roughly described as an ‘‘octopus’’ with a
dense subgraph having small diameter as the core. We define Sk
to be the set of vertices with expected degree at least k. (We note
that the set Sk can be well approximated by the set of vertices
with degree at least k.)

We note that the power law distribution is not especially admis-
sible for 2 � � � 3. Thus Theorem 2 can not be directly used. Here
we outline the main ideas for the proof of Theorem 4.

Sketch of Proof for Theorem 4
We define the core of a power law graph with exponent � to be
the set St of vertices of degree at least t � n1/log log n.

Claim 1: The diameter of the core is almost surely O(log log n).
This follows from the fact that the core contains an Erdős–Renyi
graph G(n
, p) with n
 � cnt1	� and p � t2�Vol(G). From ref.
3, this subgraph is almost surely connected. Using a result in (22),
the diameter of this subgraph is at most (log n
�log pn
) � (1 �
o(1))(log n�((3 	 �) log t)) � O(log log n).

Claim 2: Almost all vertices with degree at least log n are almost
surely within distance O(log log n) from the core. To see this, we
start with a vertex u0 with degree k0 � logC n for some constant

Fig. 1. The power law degree distribution of the collaboration graph G1.

Fig. 2. An induced subgraph of the collaboration graph G1.
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C � (1.1�((� 	 2)(3 	 �))). By applying Lemma 3, with
probability at least 1 	 n	3, u0 is a neighbor of some u1 with
degree k1 � (k0�logC n)1/(�	2)s

. We then repeat this process to
find a path with vertices u0, u1, . . . , us, and the degree ks of us
satisfies ks 	 (k0�logC n)1/(�	2)s

with probability 1 	 n	2. By
choosing s to satisfy log ks � log n�log log n, we are done.

Claim 3: For each vertex v in the giant component, with
probability 1 	 o(1), v is within distance O(log log n) from a
vertex of degree at least logC n. This follows from Lemma 4
(choosing 
 � c log log log n and the neighborhood expansion
factor c
 log log log n).

Claim 4: For each vertex v in the giant component, with
probability 1 	 o(n	2), v is within distance O(log n) from a
vertex of degree at least O(log n). Thus with probability 1 	
o(1), the diameter is O(log n).

Combining Claims 1–3, we have derived an upper bound O(log
log n) for the average distance. [By a similar but more careful
analysis (20), this upper bound can be further improved to c log
log n for c � (2�log(1�(� 	 2))).] From Claim 4, we have an
upper bound O(log n) for the diameter.

Next, we will establish a lower bound of order log n. We note
that the minimal expected degree in a power law random graph
with exponent 2 � � � 3 is (1 � o(1))(d(�	2)�(�	1)). We
consider all vertices with expected degree less than the average
degree d. By a straight-forward computation, there are about
(�	2)�(�	1)�	1n such vertices. For a vertex u and a subset T
of vertices, the probability that u has only one neighbor that has
expected degree less than d and is not adjacent to any vertex in
T is at least

�
wv�d

wuwv��
j�v

�1 � wuwj�� � wuvol�Sd��e	wu

� �1 � �� � 2
� � 1�

� � 2�wue	wu .

Note that this probability is bounded away from 0, (say,
it is greater than c for some constant c). Then, with prob-
ability at least n	1/100, we have an induced path of length
at least log n�(100 log c) in G. Starting from any vertex u, we
search for a path as an induced subgraph of length at least
log n�(100 log c) in G. If we fail to find such a path, we simply
repeat the process by choosing another vertex as the starting
point. Since Sd has at least ((�	2)�(�	1))�	1n vertices, then

with high probability, we can find such a path. Hence the
diameter is almost surely �(log n).

For the case of � � 3, similar arguments show that the power
law random graph almost surely has diameter of order log n but
the average distance is �(log n�log d̃) � �(log n�log log n).

Summary
When random graphs are used to model large complex graphs,
the small-world phenomenon of having short characteristic paths
is well captured in the sense that with high probability, power law
random graphs with exponent � have average distance of order
log n if � � 3, and of order log log n if 2 � � � 3. Thus, a phase
transition occurs at � � 3 and, in fact, the average distance
of power law random graphs with exponent 3 is of order log
n�log log n. More specifically, for the range of 2 � � � 3, there
is a distinct core of diameter log log n so that almost all vertices
are within distance log log n from the core, while almost surely
there are vertices of distance log n away from the core.

Another aspect of the small-world phenomenon concerns the
so-called clustering effect, which asserts that two people who
share a common friend are more likely to know each other.
However, the clustering effect does not appear in random graphs
and some explanation is in order. A typical large network can be
regarded as a union of two major parts: a global network and a
local network. Power law random graphs are suitable for mod-
eling the global network while the clustering effect is part of the
distinct characteristics of the local network.

Based on the data graciously provided by Jerry Grossman
(Oakland University, Rochester, MI), we consider two types of
collaboration graphs with roughly 337,000 authors as vertices.
The first collaboration graph G1 has about 496,000 edges with
each edge joining two coauthors. It can be modeled by a random
power law graph with exponent �1 � 2.97 and d � 2.94 (see Fig.
1 and 2). The second collaboration graph G2 has about 226,000
edges, each representing a joint paper with exactly two authors.
The collaboration graph G2 corresponds to a power law graph
with exponent �2 � 3.26 and d � 1.34. Theorem 3 predicts that
the value for the average distance in this case should be 9.89
(with a lower order error term). In fact, the actual average
distance in this graph is 9.56 (www.oakland.edu��grossman�
trivia.html).
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