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Abstract

The bipartite crossing number problem is studied, and a connection between this problem
and the linear arrangement problem is established. It is shown that when the arboricity is close
to the minimum degree and the graph is not too sparse, then the optimal number of crossings
has the same order of magnitude as the optimal arrangement value times the arboricity. The
application of the results to a tree provides for a closed formula which expresses exactly, the
optimal number of crossings in terms of the optimal value of the linear arrangement and the degree
sequence, resulting in an O(n1.6) time algorithm for computing the bipartite crossing number. Two
polynomial time approximation algorithms for computing the bipartite crossing number are derived,
with approximation factors, O(log2 n), and O(log n log logn), from the optimal, respectively, for
approximating the number of crossings, and at the same time, total edge lengths, for a large class
of graphs on n vertices. No approximation algorithm which could generate a provably good solution
was previously known.

The problem of computing a largest weighted biplanar subgraph of an acyclic graph is also
studied and a linear time algorithm for it is derived. This problem was known to be NP-hard when
the graph is planar and very sparse, and all weights are 1.

1 Introduction

The planar crossing number problem calls for placing the vertices of a graph in the plane and drawing
the edges with Jordan curves, so that the number of edge crossings is minimized. This problem has
been extensively studied in graph theory [32], combinatorial geometry [22], and theory of VLSI [16].
In this paper we study the bipartite crossing number problem which is an important variation of the
planar crossing number. Throughout this paper G = (V0, V1, E) denotes a connected bipartite graph,
where V0, V1 are the two classes of independent vertices, and E is the edge set. We will assume that
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|V0 ∪ V1| = n and |E| = m. A bipartite drawing [13], or 2-layer drawing of G consists of placing
the vertices of V0 and V1 into distinct points on two parallel lines and then drawing each edge using
a straight line segment connecting the points representing the endvertices of the edge. Let bcr(G)
denote the bipartite crossing number of G, that is, bcr(G) is the minimum number of edge crossings
over all bipartite drawings of G.

Computing bcr(G) is NP-hard [11]1 but can be solved in polynomial time for bipartite permutation
graphs [29]. The problem of obtaining nice multiple layer drawings of graphs (i.e. drawings with
small number of crossings), has been extensively studied by the graph drawing, VLSI, and CAD
communities [6, 7, 19, 30, 31]. In particular one of the most important aesthetic objectives in graph
drawing is reducing the number of crossings [23]. Very recently Jünger and Mutzel, [14] and Mutzel [20]
succeeded to employ integer programming methods in order to compute bcr(G) exactly, or to estimate
it, nevertheless, these methods do not guarantee polynomial time convergence. In fact, although a
O(log4 n) times optimal polynomial time algorithm for approximating the planar crossing number
of degree bounded graphs has been known [17], no polynomial time approximation algorithm whose
performance is guaranteed has been previously known for approximating bcr(G). A nice result in this
area is a fast polynomial time algorithm of Eades and Wormald [7] which approximates the bipartite
crossing number by a factor of 3, when the positions of vertices in V0 are fixed.

In this paper we explore an important relationship between the bipartite drawings and the linear
arrangement problem, which is another well-known problem in the theory of VLSI [4, 5, 15, 18, 28].
In particular, it is shown that for many graphs the order of magnitude for the optimal number of
crossings is bounded from below, and above, respectively, by minimum degree times the optimal
arrangement value, and by arboricity times the optimal arrangement value, where the arboricity of
G is the minimum number of acyclic graphs that G can be decomposed to. Hence for a large class
of graphs, it is possible to estimate bcr(G) in terms of the optimal arrangement value. Our general
method for constructing the upper bound is shown to provide for an optimal solution and an exact
formula, resulting to an O(n1.6) time algorithm for computing bcr(G) when G is a tree. The presence
of arboricity in our upper bound allows us to relate some important topological properties such as
genus and page number, to bcr(G). In particular, our results easily imply that when G is ”nearly
planar”, i.e. it either has bounded genus, or bounded page number, then, the asymptotic values of
bcr(G), and the optimal arrangement are the same, provided that G is not too sparse.

A direct consequence of our results is that for many graphs, the bipratite drawings with small
sum of edge lenghts also have small bipartite crossings, and vis versa, and therefore, a suboptimal
solution to the bipartite crossing number problem can be extracted from a suboptimal solution to the
linear arrangement problem. Hence, we have derived here, the first polynomial time approximation
algorithms for bcr(G), which perform within a multiplicative factor of O(log n log logn) from the
optimal, for a large class of graphs. Moreover, we show here that the traditional divide and conquer
paradigm in which the divide phase approximately bisects the graph, also obtains a provably good
approximation, in polynomial time, for bcr(G) within a multiplicative factor of O(log2 n) from the
optimal, for a variety of graphs. Crucial to verifying the performance guarantee of the divide and
conquer algorithm, is a lower bound of Ω(δGnbβ(G)), derived here, for bcr(G), where bβ(G), β < 1/2,
and δG are the size of the β-bisection and minimum degree of G, respectively. This significantly
improves Leighton’s well-known lower bound of Ω(b21
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(G)) [16] which was derived for the planar crossing
number of degree bounded graphs. The class of graphs for which the performance of our approximation
algorithms is guaranteed is very large, and in particular contains those regular graphs, degree bounded
graphs, and genus bounded graphs, which are not too sparse. Another notable aspect of relating bcr(G)
to the linear arrangement problem is that, both algorithms produce drawings with near optimal number
of crossings in which the coordinates of all vertices are integers, so that the total edge length is also

1Technically speaking, the NP-hardness of the problem was proved for multigraphs, but it is widely assumed that it
is also NP-hard for simple graphs.
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near optimal, with the same performance guarantee as for the number of crossings.
We also study biplanar graphs. A bipartite graph G = (V0, V1, E) is called a biplanar, if it has a

bipartite drawing in which no two edges cross each other. Eades and Whitesides [8] have shown that
the problem of determining largest biplanar subgraph is NP-hard even when G is planar, and the
vertices in V0 and V1 have degrees at most 3 and 2, respectively. This raised the question of whether
or not computing a largest biplanar subgraph can be done in polynomial time when G is acyclic [20].
In this paper we present a linear time dynamic programming algorithm for the weighted version of
this problem in an acyclic graph. (The weighted version was first introduced by Mutzel [20].)

Section 2 contains our general results regarding the relation between bcr(G) and the linear arrange-
ment problem. Section 3 contains the applications, and includes several important observations, the
bisection based lower bound for bcr(G), and the approximation algorithms. Finally, Section 4 contains
our linear time algorithm for computing a largest biplanar subgraph of a tree.

2 Linear arrangement and bipartite crossings

Let G = (V0, V1, E), V = V0 ∪ V1, |V | = n, and v ∈ V . We denote by dv the degree of v, and by d∗v
denote the number vertices adjacent to v of degree 1. We denote by δG the minimum degree of G.

A bipartite drawing of G is obtained by: (i) placing the vertices of V0 and V1 into distinct points on
two horizontal lines y0, y1, respectively, (ii) drawing each edge with one straight line segment which
connects the points of y0 and y1 where the endvertices of the edge were placed. Hence, the order in
which the vertices are placed on y0 and y1 will determine the drawing.

Let DG be a bipartite drawing of G; when the context is clear, we omit the subscript G and write
D. For any e ∈ E, let bcrD(e) denote the number of crossings of the edge e with other edges. Edges
sharing an endvertex do not count as crossing edges. Let bcr(D) denote the total number of crossings
in D, i.e. bcr(D) = 1

2

∑
e bcrD(e).

The bipartite crossing number of G, denoted by bcr(G) is the minimum number of crossings of edges
over all bipartite drawings of G. Clearly, bcr(G) = minD bcr(D).

We assume throughout this paper that the vertices of V0 are placed on the line y0 which is taken
to be the x-axis, and vertices of V1 are placed on the line y1 which is taken to be the line y = 1.
For a vertex v ∈ V0 ∪ V1 let xD(v) denote v’s x-coordinate in the drawing D. We call the function
xD : V → IR the coordinate function of D. Throughout this paper, we often omit the y coordinates.
Note that xD is not necessarily an injection, since for a ∈ V0, and b ∈ V1, we may have xD(a) = xD(b).

Given an arbitrary graph G = (V,E), and a real function f : V → IR, define the length of f , as

Lf =
∑
uv∈E

|f(u)− f(v)|.

The linear arrangement problem is to find a bijection f : V → {1, 2, 3, ..., |V |}, of minimum length.
This minimum value is denoted by L̂(G).

Let G = (V0, V1, E) and D be a bipartite drawing of G. Define the length of D to be

LxD =
∑
uv∈E

|xD(u)− xD(v)|.

In this section we derive a relation between the bipartite crossing number and the linear arrangement
problem.

Let D be a bipartite drawing of G = (V0, V1, E) such that the vertices of V0 are placed into the
points

(1, 0), (2, 0), ..., (|V0 |, 0).

For v ∈ V1, let u1, u2, ..., udv be its neighbors satisfying xD(u1) < xD(u2) < ... < xD(udv ). Define the
median vertex of v, med(v) = ubdv

2
c, if dv ≥ 2, and med(v) = u1, if dv = 1 [7]. We say that D has the
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median property if the vertices of G have distinct x-coordinates and the x-coordinate of any vertex v
in V1 is larger than, but arbitrarily close to, xD(med(v)), with the restriction that if a vertex of odd
degree and a vertex of even degree have the same median vertex, then the odd degree vertex has a
smaller x-coordinate. Note that if D has the median property, then xD is an injection.

When the bipartite drawing D does not have the median property, one can always convert it to a
drawing which has the property, by first placing the vertices of V0 in the same order in which they
appear in D into the locations (1, 0), (2, 0), ...., (|V0 |, 0), and then placing each v ∈ V1 on a proper
position so that the median property holds. Such a construction is called the median construction and
was utilized by Eades and Wormald [7] to obtain the following remarkable result.

Theorem 2.1 [7] Let G = (V0, V1, E), and D be a bipartite drawing of G. If D′ is obtained using the
median construction from D, then

bcr(D′) ≤ 3bcr(D).

2

2.1 Lower bounds

Let G = (V0, V1, E) and D be a bipartite drawing of G. Consider an edge e = ab ∈ E, and let u be a
vertex in V0 ∪ V1 so that u /∈ {a, b}. We say e covers u in D, if the line parallel to the y axis passing
through u has a point in common with the edge e. Thus for e = ab, a ∈ V0, b ∈ V1, neither a nor b
are covered by e. However, a vertex c ∈ V1 with xD(c) = xD(a) is covered by e. Let ND(e) denote
the number of those vertices in V1 which are covered by e in D. We will use the following two lemmas
later.

Lemma 2.1 For G = (V0, V1, E), let D be a bipartite drawing of G. Recall that xD is the coordinate
function of D. Then, the following hold.

(i) Assume that xD(v) is an integer for all x ∈ V0. Then, there is a bijection f∗ : V0∪V1 → {1, 2, ..., n}
so that for any e = ab ∈ E, it holds

|f∗(a)− f∗(b)| ≤ ND(e) + |xD(a)− xD(b)|+ 1.

(ii) Assume that D has the median property. Then for the bijection f∗ in (i), it holds

Lf∗ ≤
8bcr(D)
δG

+ LxD +
∑
a∈V0

dad
∗
a +m.

Proof. To prove (i), we construct f∗ by moving all vertices in V to integer locations. Formally, let
w1, w2, ..., wn be the order of vertices of V0 ∪ V1 such that xD(w1) ≤ xD(w2) ≤ ... ≤ xD(wn). (Note
that we may have xD(wi) = xD(wi+1), for some i, wi ∈ V0, wi+1 ∈ V1, since xD may not be an
injection.) Define f∗(wi) = i, 1 ≤ i ≤ n, then the proof of (i) easily follows. (In particular note that
the factor +1 appears in the upper bound, since the end point of e which belongs to V1 may not have
an integer coordinate.) For (ii), let e = ab ∈ E, a ∈ V0, b ∈ V1. Assume x(a) > x(b), and let v be any
vertex in V1 covered by e in D. Since D has the median property, at least bdv/2c of vertices adjacent
to v are separated from v in D by the straight line segment e. This means, in this case, that vertex
v generates at least bδG/2c ≥ (δG − 1)/2 crossings on e. Moreover, vertex v, even if it has degree
1, generates one crossing on e, since v and med(v) are separated by the line segment e in D. Thus
bcr(e) ≥ 1

2ND(e)(1 + δG−1
2 ) = ND(e) δG+1

4 . Now assume xD(a) < xD(b), and let v be a vertex covered
by e. Then, v generates at least dv − bdv2 c ≥ dv/2 crossings on e provided that v is not a vertex
of degree 1 which is adjacent only to a. Consequently, in this case, bcrD(e) ≥ (ND(e) − d∗a)δG/2.
We conclude that in either case, bcrD(e) ≥ 1

4(ND(e) − d∗a)δG, and hence ND(e) ≤ 4bcr(e)
δG

+ d∗a, and
consequently, using (i),

|f∗(a)− f∗(b)| ≤ 4bcr(e)
δG

+ d∗a + |xD(a)− xD(b)|+ 1.
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To finish the proof of (ii) take the sum over all e = ab ∈ E. 2

Lemma 2.2 Let G = (V0, V1, E), and let D be a bipartite drawing of G which has the median
property, then

LxD ≤ ε+
∑

uv∈E,u∈V0,v∈V1
dv≥2

|xD(u)− xD(v)|.

with an arbitrary small ε > 0.

Proof. To prove the claim, let uv ∈ E with v ∈ V1 so that dv = 1. Since D has the median property,
med(v) = u, and thus v is placed arbitrary close to u. So we may assume that |xD(v)− xD(u)| ≤ ε

V1
.

This way the total sum of the contributions of all edges which are incident to a vertex of degree one
in V1 to LxD is at most |V1| ε|V1| = ε and the claim follows. 2

We now prove the main result of this section.

Theorem 2.2 Let G = (V0, V1, E), then

bcr(G) +
1
12

∑
v∈V

d2
v ≥

1
36
δGL̂(G).

Proof. Let D be a bipartite drawing of G. We will construct an appropriate bijection f∗ : V0 ∪ V1 →
{1, 2, ..., n}. Let D′ be a drawing which is obtained by applying the median construction to D. Let
v ∈ V1 with dv ≥ 2, and let u1, u2, ..., udv be its neighbors with xD′(u1) < xD′(u2) < ... < xD′(udv ). Let
i be an integer, 1 ≤ i ≤ bdv/2c, and let u be a vertex in V0 so that xD′(ui) < xD′(u) < xD′(udv−i+1).
Observe that u generates du crossings on the edges uiv and udv−i+1v, if it is not adjacent to v.
Similarly, u generates du − 1 crossings on the edges uiv and udv−i+1v, if it is adjacent to v. Thus

bcrD′(uiv) + bcrD′(udv−i+1v) ≥ (xD′(udv−i+1)− xD′(ui)− 1)δG − dv

= (xD′(udv−i+1)− xD′(v) + xD′(v)− xD′(ui)− 1)δG − dv. (1)

Note that D′ has the median property, thus for i = 1, 2, ..., bdv/2c,

xD′(ui) < xD′(v) < xD′(udv−i+1)

and hence (1) implies

bcrD′(uiv) + bcrD′(udv−i+1v) ≥ (|xD′(v)− xD′(udv−i+1)|+ |xD′(v)
− xD′(ui)| − 1)δG − dv. (2)

Using (2) observe that, for v ∈ V1 with dv ≥ 2,

bdv
2
c∑

i=1

(bcrD′(uiv) + bcrD′(udv−i+1v))

≥ δG

bdv
2
c∑

i=1

(|xD′(v) − xD′(ui)|+ |xD′(v)− xD′(udv−i+1)|)− δG
⌊
dv
2

⌋
−
⌊
dv
2

⌋
dv. (3)
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Thus, using (3), when dv ≥ 2 is even, we have

dv∑
i=1

bcrD′(uiv) =
bdv

2
c∑

i=1

(bcrD′(uiv) + bcrD′(udv−i+1v))

≥ δG
bdv

2
c∑

i=1

(|xD′(v)− xD′(ui)|+ |xD′(v)− xD′(udv−i+1)|) − δG
⌊
dv
2

⌋
−
⌊
dv
2

⌋
dv

= δG

dv∑
i=1

|xD′(v) − xD′(ui)| − δG
⌊
dv
2

⌋
−
⌊
dv
2

⌋
dv. (4)

Moreover, when dv ≥ 2 is odd, we have,

dv∑
i=1

bcrD′(uiv) ≥ bcrD′(ubdv
2
cv) + bcrD′(uddv

2
ev)

≥ (xD′(uddv
2
e)− xD′(ubdv

2
c)− 1)δG,

where the upper bound is obvious, and the lower bound holds since no vertex adjacent to v is between
uddv

2
e and ubdv

2
c. Consequently, when dv ≥ 2 is odd, we have,

dv∑
i=1

bcrD′(uiv) ≥ bcrD′(ubdv
2
cv) + bcrD′(uddv

2
ev)

≥ (xD′(uddv
2
e)− xD′(v) + xD′(v) − xD′(ubdv

2
c)− 1)δG

≥ δG|xD′(v)− xD′(uddv
2
e)| − δG,

where the last line is obtained by observing that xD′(uddv
2
e) > xD′(v) > xD′(med(v)) = xD′(ubdv

2
c).

Combining this with (3), for odd dv, we obtain

2
dv∑
i=1

bcrD′(uiv) ≥ δG
dv∑
i=1

|xD′(v)− xD′(ui)| − δG − δG
⌊
dv
2

⌋
−
⌊
dv
2

⌋
dv. (5)

We note that since (5) is weaker than (4), it must also hold when dv is even, and conclude by summing
(5) over all v ∈ V1 with dv ≥ 2, that

4bcr(D′) ≥ δG
∑

uv∈E,v∈V1
dv≥2

|xD′(v)− xD′(u)|

− δG|V1| − δG
∑
v∈V1

⌊
dv
2

⌋
−
∑
v∈V1

⌊
dv
2

⌋
dv

≥ δG
∑

uv∈E,v∈V1
dv≥2

|xD′(v)− xD′(u)| − 2
∑
v∈V1

d2
v.

Using Lemma 2.2, we get

4bcr(D′) ≥ δGLxD′ − ε− 2
∑
v∈V1

d2
v. (6)

Consider the bijection f∗ in Part (ii) of Lemma 2.1. Then

δGLxD′ ≥ δGLf∗ − 8bcr(D′)− δGm− δG
∑
v∈V0

dvd
∗
v.

6



Observe that δG ≥ 2 implies
∑
v∈V0

dvd
∗
v = 0, and hence

δGLxD′ ≥ δGLf∗ − 8bcr(D′)− δGm−
∑
v∈V0

dvd
∗
v.

Hence (6) implies

12bcr(D′) ≥ δGLf∗ − δGm− ε−
∑
v∈V0

dvd
∗
v − 2

∑
v∈V1

d2
v. (7)

Observing that Lf∗ ≥ L̂(G), bcr(D′) ≤ 3bcr(D), δGm + ε = ε +
∑
v∈V0

dvδG ≤
∑
v∈V d

2
v, and∑

v∈V0
dvd
∗
v + 2

∑
v∈V1

d2
v ≤ 2

∑
v∈V d

2
v, we obtain

36bcr(D) + 3
∑
v∈V

d2
v ≥ δGL̂(G),

which finishes the proof. 2

Next, we investigate the cases for which the error term
∑
v∈V d

2
v can be eliminated from Theorem

2.2.

Corollary 2.1 Let G = (V0, V1, E) so that m ≥ (1 + γ)n, and
∑
v∈V (dv − d∗v)2 ≥ α

∑
v∈V d

2
v, where

γ and α are positive constants. Then

bcr(G) ≥ Cα,γδGL̂(G), where Cα,γ =
1
36
· 1

1 + 8+4γ
3α

.

Proof. To prove the result we will first show that for any bipartite drawing D of G it holds,

bcr(D) ≥
∑
v∈V (dv − d∗v)2

16
−m. (8)

For now assume that (8) holds. It is easy to see that bcr(G) ≥ m− n + 1 [19], and since n ≤ γ
1+γm,

we conclude that m ≤ (γ + 1)bcr(G). Combining this inequality with (8), we obtain (2 + γ)bcr(G) ≥
1
16

∑
v∈V (dv − d∗v)2 ≥ α

16

∑
v∈V d

2
v, and thus

16(2 + γ)
α

bcr(G) ≥
∑
v∈V

d2
v,

and the claim follows from Theorem 2.2.
To prove (8), let D be any bipartite drawing of G, and let v ∈ V0 so that dv − d∗v ≥ 2. Let

u1, u2, ..., udv−d∗v be the set of vertices of degree at least 2 which are adjacent to v, and assume with
no loss of generality that xD(u1) < xD(u2) < ... < xD(udv−d∗v ). Let i be an integer, 1 ≤ i ≤ bdv−d

∗
v

2 c,
and note that any vertex uj , dv − d∗v − i+ 1 > j > i generates at least one crossing on the edges uiv
and udv−i+1v. Thus bcr(vui) + bcr(vudv−d∗v−i+1) ≥ dv − d∗v − 2i, 1 ≤ i ≤ bdv−d

∗
v

2 c, and therefore

bdv−d
∗
v

2
c∑

i=1

[bcrD(uiv) + bcrD(udv−i−d∗v+1v)] ≥
bdv−d

∗
v

2
c∑

i=1

dv − d∗v − 2i

≥ (dv − d∗v)
dv − d∗v − 1

2
− dv − d∗v

2
· dv − d

∗
v + 2

2

≥ 1
4

(dv − d∗v)2 − dv. (9)

We conclude that by summing (9) over all v ∈ V1 that,

2bcr(D) ≥
∑
v∈V1

(dv − d∗v)2

4
− 2m.

Similarly we can show that 2bcr(D) ≥ (
∑
v∈V0

(dv − d∗v)2/4)− 2m, and hence the claim follows. 2

Remarks. The conditions of Corollary 2.1, involving α and γ are not restrictive at all. For instance,
any bipartite graph of minimum degree at least 3, satisfies the conditions. We identify more additional
graphs which satisfy these conditions in Section 3.
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2.2 An upper bound

We now derive an upper bound on bcr(G). We need the following obvious lemma.

Lemma 2.3 Let D be a bipartite drawing of G = (V0, V1, E). Let e = uv and ē = ab, u, a ∈ V0, v, b ∈
V1 be two edges which cross in D. Assume that |xD(v) − xD(u)| ≥ |xD(a) − xD(b)|, then either a or
b is covered by e in D. Moreover, if a is covered by e, then

|xD(b)− xD(u)| ≤ |xD(v)− xD(u)|,
whereas, if b is covered by e, then

|xD(a)− xD(v)| ≤ |xD(v)− xD(u)|.

2

Let VH and EH , denote the vertex set and the edge set of a subgraph H, of G. The arboricity of G,
denoted by aG, is maxHd |EH ||VH |−1e, where the maximum is taken over all subgraphs H, with |VH | ≥ 2.
Note that δG/2 ≤ aG ≤ ∆G, where ∆G denotes the maximum degree of G. A well-known theorem
of Nash-Williams [21] asserts that aG is the minimum number of edge disjoint acyclic subgraphs that
edges of G can be decomposed to.

Theorem 2.3 Let G = (V0, V1, E), then

bcr(G) ≤ 5aGL̂(G).

Proof. Consider a solution (not necessarily optimal) of the linear arrangement of G, realized by a
bijection f∗ : V0 ∪ V1 → {1, 2, ..., n}. The mapping f∗ induces an ordering of vertices of V0 ∪ V1 in
y0. Lift up the vertices of V1 into y1 and draw the edges with respect to the new locations of these
vertices to obtain a bipartite drawing D. Note that

LxD =
∑
uv∈E

|xD(u)− xD(v)| = Lf∗ (10)

for this drawing D. Let e = uv ∈ E, u ∈ V0, v ∈ V1, and define Ie to be the set all edges crossing e in
D so that for any ab ∈ Ie,

|xD(a)− xD(b)| ≤ |xD(v)− xD(u)|.
Observe that if any edge e′ /∈ Ie crosses e, then e ∈ Ie′ . Hence, in this case the crossing of e and e′

contributes one to |Ie′ |. We conclude that

bcr(D) ≤
∑
e∈E
|Ie|,

and will show that |Ie| ≤ aG(4|xD(u) − xD(v)| + 1). For e = uv ∈ E, with u ∈ V0, v ∈ V1, let V e
0

be the set of all those vertices y of V0 so that |xD(y) − xD(v)| ≤ |xD(u) − xD(v)|. Similarly, let
V e

1 be the set of all those vertices y of V1 so that |xD(y) − xD(u)| ≤ |xD(u) − xD(v)|. Note that,
|V e
i | ≤ 2|xD(u)− xD(v)| + 1, i = 0, 1, since the coordinates of all vertices are integers. Therefore, we

have |V e
0 ∪ V e

1 | ≤ 4|xD(u) − xD(v)| + 2. Let ē = ab ∈ Ie, a ∈ V0, b ∈ V1, and observe that by Lemma
2.3, a ∈ V e

0 and b ∈ V e
1 . Consequently, |Ie| ≤ |EH |, where EH is the edge set of the induced subgraph

of G on the vertex set V e
0 ∪ V e

1 . Clearly,

|Ie| ≤ |EH | ≤ aG(4|xD(u)− xD(v)|+ 2− 1) = aG(4|xD(u)− xD(v)|+ 1)

by the definition of aG, and thus

bcr(D) ≤
∑
e∈E

Ie ≤ aG(4LxD +m).

To complete the proof we take f∗ to be the optimal solution to the linear arrangement problem, that
is, Lf∗ = L̂(G) ≥ m. 2
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2.3 Bipartite crossings in trees

We note that if aG is small, then, the gap between the upper bound and the lower bound in Theorems
2.2 and 2.3 is small, and hence, it is natural to investigate the case aG = 1, that is, when G is acyclic.
In fact, in this case the method in the proof of Theorem 2.3 provides for an optimal bipartite drawing.

Theorem 2.4 Let T be a tree on the vertex set V = V0∪V1, where V0 and V1 are the partite sets, and
|V | = n. Let f∗ be a bijection utilizing the optimal solution to the linear arrangement problem. Let
D∗ be a bipartite drawing constructed by the method of Theorem 2.3, that is, by lifting the vertices
in V1 into the line y = 1. Then

bcr(D∗) = bcr(T ) = L̂(T )− n+ 1−
∑
v∈T

⌊
dv
2

⌋ ⌈
dv − 2

2

⌉
. (11)

Proof. We prove the Theorem by induction on n. The result is true for n = 1, 2. Let n ≥ 3. Assume
that the Theorem is true for all l-vertex trees, l < n, and let T be a tree on n vertices. We first
show that the RHS of (11) is a lower bound on bcr(T ). We then show that bcr(D∗) equals to RHS of
(11). Consider an optimal bipartite drawing D of T . It is not difficult to see that one of the leftmost
(rightmost) vertices is a leaf. Denote the left leaf by v0, the right leaf by vk, and let P = v0v1...vk
be the path between v0 and vk. Note that P will cross any edge in T which is not incident to vi,
0 ≤ i ≤ k, it follows that path P will generate at least

cP = n− 1− k −
k−1∑
i=1

(dvi − 2) (12)

crossings, where cP counts exactly the number of edges in T (in D) which are not incident to any
vertex on P . Deleting the edges of P we get trees Ti, on the vertex set V i = V i

0 ∪ V i
1 , rooted in

vi, i = 1, 2, ..., k − 1. Consider the optimal bipartite drawings of Ti, i = 1, 2, ..., k − 1, and place them
consecutively such that Ti does not cross Tj , for i 6= j. Then draw the path P without self crossings
such that v0 (vk) is placed to the left (right) of the drawing of T1(Tk−1). Then clearly the number of
crossings in this new drawings is

∑k−1
i=1 bcr(Ti) + cP , so we conclude that

bcr(D) =
k−1∑
i=1

bcr(Ti) + cP =

(
k−1∑
i=1

bcr(Ti)

)
+n− 1− k −

k−1∑
i=1

(dvi − 2),

for otherwise D is not an optimal drawing. For any v ∈ V , let div denote the degree of v in Ti; applying
the inductive hypothesis to Ti, i = 1, 2, ..., k − 1, we obtain

bcr(T ) =
k−1∑
i=1

(
L̂(Ti)− |V i|+ 1−

∑
v∈V i

⌊
div
2

⌋⌈
div − 2

2

⌉)

+n− 1− k −
k−1∑
i=1

(dvi − 2)

=
k−1∑
i=1

(
L̂(Ti)−

∑
v∈V i

(
⌊
dvi
2

⌋⌈
dvi − 2

2

⌉
+ dvi − 2)

)
. (13)

Now observe that for v ∈ V i, div = dv, if v 6= vi; otherwise div = dv−2, i = 1, 2, ..., k−1. Consequently,

∑
v∈V i

⌊
div
2

⌋⌈
div − 2

2

⌉
+ dvi − 2 =

⌊
dvi − 2

2

⌋ ⌈
dvi − 4

2

⌉
+ dvi − 2 +

∑
v∈V i−vi

⌊
dv
2

⌋⌈
dv − 2

2

⌉

=
∑
v∈V i

⌊
dv
2

⌋⌈
dv − 2

2

⌉
, (14)
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where the last line is obtained by observing that
⌊
dvi−2

2

⌋ ⌈
dvi−4

2

⌉
+ dvi − 2 =

⌊
dvi
2

⌋ ⌈
dvi−2

2

⌉
. Thus it

follows using (13) that

bcr(D) =
k−1∑
i=1

L̂(Ti)−
∑
v∈V

⌊
dv
2

⌋ ⌈
dv − 2

2

⌉
. (15)

Now consider the optimal linear arrangements of the trees Ti, for i = 0, 1, 2, ..., k and place them
consecutively in that order on a line, and the path P . Let g denote the bijection associated with this
arrangement, then Lg =

∑k−1
i=1 L̂(Ti) + n− 1. Using this fact (15) implies

bcr(T ) ≥ L̂(T )− n+ 1−
∑
v∈T

⌊
dv
2

⌋⌈
dv − 2

2

⌉
,

since Lg ≥ L̂(T ).
To finish the proof we will show that bcr(D∗) equals to the RHS of (11). Consider an optimal

linear arrangement f∗ of the tree T . It is not difficult to see that, f∗−1(1) and f∗−1(n) are leaves,
[25, 4]. Let P = v0v1...vk be the path between v0 = f∗−1(1) and vk = f∗−1(n) in T , and let Ti be
trees defined in the first part of the proof. Note that for the bijection g, described earlier, it holds
Lg =

∑k−1
i=1 L̂(Ti) + n− 1, and thus we conclude that,

Lf∗ = L̂(T ) =
k−1∑
i=1

L̂(Ti) + n− 1, (16)

and note that the above equation implies that P does not cross itself, in the arrangement associated
with f∗. It follows that P does not cross itself in the bipartite drawing D∗. Let f∗i be the restriction
of f∗ to V i, and D∗i be the subdrawing in D∗ which is associated with Ti, i = 1, 2, ..., k − 1. Note that
bcr(D∗) =

∑k−1
i=1 bcr(D

∗
i ) + cP . However, it is easy to see that D∗i is obtained from f∗i by lifting the

vertex set V i
1 to the line y = 1, and hence we can apply the induction hypothesis to D∗i , i = 1, 2, ...k−1,

to obtain

bcr(D∗) =
k−1∑
i=1

(
L̂(Ti)− |Vi|+ 1−

∑
v∈Vi

⌊
dv
2

⌋ ⌈
dv − 2

2

⌉)
+cP . (17)

Substituting cP its value from (12), and repeating the same steps used in deriving (15), we obtain

bcr(D∗) =
k−1∑
i=1

L̂(Ti)−
∑
v∈V

⌊
dv
2

⌋ ⌈
dv − 2

2

⌉
. (18)

To complete the proof use (16) in (18) and obtain,

bcr(D∗) = L̂(T )− n+ 1−
∑
v∈T

⌊
dv
2

⌋ ⌈
dv − 2

2

⌉
.

2

Since the optimal linear arrangement of an n-vertex tree can be found in O(n1.6) time [4], computing
D∗ can also be done in O(n1.6) time.

3 Applications

It is instructive to provide examples of graphs G for which bcr(G) = Θ(δGL̂(G)). Consider any
bipartite G with δG ≥ 3 and δG = Θ(aG), for instance, take any regular bipartite graph with δG ≥ 3.
Then, conditions of Corollary 2.1 are met, and thus by Theorem 2.3, bcr(G) = Θ(δGL̂(G)). Moreover,
consider any connected bipartite G of degree at most a constant k, with m ≥ (1 + γ)n, where γ > 0
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is fixed. Note that, dv − d∗v ≥ 1 for any v ∈ V , since G is connected and is not a star, and thus,∑
v∈V (dv − d∗v)2 ≥ n. (Note that the star is excluded by the density condition m ≥ (1 + γ)n.) Now let

α = 1
k2 , to obtain n ≥ 1

k2

∑
v∈V d

2
v. Hence this graph satisfies the conditions of Corollary 2.1, moreover,

it is easy to see that aG ≤ k = O(1), and we conclude using Theorem 2.3 that bcr(G) = Θ(L̂(G)).

3.1 Bipartite crossings, bisection, genus, and page number

The appearance of aG in the upper bound of Theorem 2.3 relates bcr(G) to other important topological
properties of G such as genus of G, denoted by gG [32], and page number of G [1], denoted by pG.

Observation 3.1 Let G = (V0, V1, E), and assume that δG ≥ 2 and m ≥ (1 + γ)n, for a fixed γ > 0.
Then bcr(G) = Θ(L̂(G)), provided that aG = O(1). Consequently, under the given conditions for G,
if either pG = O(1), or gG = O(1), then bcr(G) = Θ(L̂(G)).

Proof. Assume that aG = O(1), then using Corollary 2.1 and Theorem 2.3, and observing that,
aG = O(1), implies δG = O(1), we conclude that bcr(G) = Θ(L̂(G)). (Note that, δG ≥ 2, gives d∗v = 0,
for all v ∈ V . ) To finish the proof, observe that pG = O(1) (gG = O(1)), implies that aG = O(1). 2

Next, we provide another application of our results, by deriving nontrivial upper bounds on the
bipartite crossing number.

Observation 3.2 Let G = (V0, V1, E), with page number pG and genus gG. Then

bcr(G) ≤ 10pGL̂(G) and bcr(G) ≤ (10
√
gG + 20)L̂(G).

Proof. Since cr(G) ≤ bcr(G) ≤ 5aGL̂(G), by Theorem 2.3, we need to bound aG in terms of gG and
pG. Let H be a subgraph of G with the vertex set VH , |VH | ≥ 2, and the edge set EH . Note that
pH ≤ pG, and |EH |

|VH |−1 ≤ 2pH [1], and hence aG ≤ 2pG, which verifies the upper bound involving pG .

To finish the proof observe that |EH |4 − |VH |2 + 1 is a lower bound on the genus of H, or gH [32]. Thus,

gH
|VH | − 1

≥ 1
4
|EH |
|VH | − 1

− |VH |
2|VH | − 2

+
1

|VH | − 1
.

Since gH is at most (|VH | − 1)2/12 [32], it follows that for any subgraph H,
√
gG/12 ≥

√
gH/12 ≥

gH
|VG|−1 ≥

1
4
|EH |
|VH |−1 , and consequently aG ≤ 2

√
gG + 4. 2

Let 0 < β ≤ 1
2 be a constant and denote by bβ(G) size of the minimal β-bisection of G. That is,

bβ(G) = min
βn≤|A|≤(1−β)n

|(A, Ā)|

where (A, Ā) denotes a cut which partitions V into A and Ā. Leighton [16] proved for any degree
bounded graph G, the inequality cr(G)+n = Ω(b21

3

(G)), where cr(G) is the planar crossing number of
G. Another very interesting consequence of Theorem 2.2 is providing a stronger version of Leighton’s
result, for bcr(G).

Theorem 3.1 Let G = (V0, V1, E), Then, for any constant 0 < β < 1
2 , it holds

bcr(G) +
∑
v∈V

d2
v = Ω(δGnbβ(G)),

in particular when G is regular, it holds

bcr(G) = Ω(mbβ(G)).

Proof. The claim follows from the lower bound in Theorem 2.2 and the well-known observation that
L̂(G) ≥ (1− 2β)nbβ(G). (See for instance [12].) 2

Remarks. After proving Theorem 3.1, we discovered that a weaker version of this Theorem for degree
bounded graphs can be obtained by a shorter proof which uses Menger’s Theorem [27].
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3.2 Approximation algorithms

Given a bipartite graph G, the bipartite arrangement problem is to find a bipartite drawing D of G
with smallest LxD , or smallest length, so that the x coordinate of any vertex is an integer. We denote
this minimum value by L̄(G). Note that coordinate function xD, for a bipartite drawing need not
to be an injection, since we may have xD(a) = xD(b), for a ∈ V0, and b ∈ V1. Thus, in general
L̄(G) 6= L̂(G). Our approximation algorithms in this section provide a bipartite drawing in which all
vertices have integer coordinates, so that the number of crossings and at the same time the length of
the drawing is small. We need the following Lemma giving a relation between L̄(G) and L̂(G).

Lemma 3.1 For any connected bipartite graph G = (V0, V1, E) it holds

L̄(G) ≥ L̂(G) − 1
4

.

Proof. Let D be a bipartite drawing of G in which all x coordinates are integers. Let e = ab ∈ E,
and note that ND(e) ≤ |xD(a)− xD(b)|, since any vertex in V0 ∪ V1 has an integer x coordinate. Let
f∗ be the bijection in Part (i) in Lemma 2.1, then |f∗(a)−f∗(b)| ≤ 2|xD(a)−xD(b)|+1, and hence by
taking the sum over all edges, we obtain Lf∗ ≤ 2LxD +m. To prove the lemma, we claim that there
are at least m−1

2 edges e = ab, so that xD(a) 6= xD(b), and consequently LxD ≥ m−1
2 , which implies

the result. To prove our claim, note that there are at most n
2 edges ab, so that xD(a) = xD(b), and

hence at least m− n
2 ≥

m−1
2 edges ab, with xD(a) 6= xD(b), since G is connected and therefore has at

least n− 1 edges. 2

Even et al. [9] in a breakthrough result came up with polynomial time O(log n log log n) times
optimal approximation algorithms for several NP-hard problems, including the linear arrangement
problem. Combining their result with ours, we obtain the following.

Theorem 3.2 Let G = (V0, V1, E), and consider the drawing D (with integer coordinates) in Theorem
2.3 obtained form an approximate solution to the linear arrangement problem provided in [9]. Then
LxD = O(log n log log nL̄(G)). Moreover, if G meets the conditions in Corollary 2.1, then bcr(D) =
O(log n log log nbcr(G)), provided that δG = Θ(aG).

Proof. Note that LxD = O(L̂(G) log n log log n) and thus the claim regarding LxD follows from
Lemma 3.1. To finish the proof note that, Theorem 2.3 gives bcr(D) = O(aG log n log lognL̂(G)), and
the claim regarding bcr(D) is verified by the application of Corollary 2.1, since δG = Θ(aG).

2

The divide and conquer paradigm has been very popular in solving VLSI layout problems both in
theory and also in practice. Indeed, the only known approximation algorithm for the planar crossing
number is a simple divide and conquer algorithm in which the divide phase consists of approximately
bisecting the graph [2]. This algorithm approximates cr(G)+n to within a factor of O(log4 n) from the
optimal, when G is degree bounded [17]. A similar algorithm approximates L̂(G) to within a factor of
O(log2 n) from the optimal. To verify the quality of the approximate solutions, in general, one needs
to show that the error term arising in the recurrence relations associated with the performance of
algorithms are small compared to the value of the optimal solution. A nice algorithmic consequence
of Theorem 3.1 is that the standard divide and conquer algorithm in which the divide phase consists
of approximately bisecting the graph gives a good approximation for bcr(G) in polynomial time. The
divide stage of our algorithm uses an approximation algorithm for bisecting a graph such as those in
[10, 17]. These algorithms have a performance guarantee of O(log n) from the optimal [10, 17]. It
should be noted that the lower bound of Ω(b21

3

(G)), although is sufficient to verify the the performance
of the divide and conquer approximation algorithm for the planar crossing number, can not be used to
show the quality of the approximation algorithm for bcr(G), since (as we will see) it does not bound
from above the error term in our recurrence relation. Thus our lower bound of Ω(nδGb 1

3
(G)) is crucial

to show the suboptimality of the solution.
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Theorem 3.3 Let A be a polynomial time 1/3−2/3 bisecting algorithm to approximate the bisection
of a graph with a performance guarantee O(log n). Consider a divide and conquer algorithm which (a)
recursively bisects the graph G, using A, (b) obtains the two bipartite drawings, and then (c) inserts
the edges of the bisection between these two drawings. This divide and conquer algorithm generates,
in polynomial time, a bipartite drawing D with integer coordinates, so that LxD = O(log2 nL̄(G)).
Moreover, if G meets the conditions in Corollary 2.1, then bcr(D) = O(log2 nbcr(G)), provided that
δG = Θ(aG).

Proof. Assume that using A, we partition the graph G to 2 vertex disjoint subgraphs G1 and G2

recursively. Let b̄(G) denote the number of those edges having one endpoint in the vertex set of G1,
and the other in the vertex set of G2. Let DG1 , and DG2 be the bipartite drawings already obtained
by the algorithm for G1 and G2, respectively. Let D denote the drawing obtained for G. To show the
claim regarding LxD , note that

LxD ≤ LxDG1
+ LxDG2

+ b̄(G)n.

Since, we use the approximation algorithm A for bisecting we have b̄(G) = O(log nb 1
3
(G)), hence

the error term in the recurrence relation is O(n log nb 1
3
(G)). Moreover, 3L̂(G) ≥ b 1

3
(G)n, [12], and

consequently using Lemma 3.1, we obtain, 12L̄(G)+3 ≥ b 1
3
(G)n. Thus the error term is O(log nL̄(G)),

and consequently,

LxD ≤ LxDG1
+ LxDG2

+O(log nL̄(G)),

which implies LxD = O(log2 nL̄(G)). To verify the claim regarding bcr(D), note that

bcr(D) ≤ bcr(DG1) + bcr(DG2) + b̄2(G) + b̄(G)m.

Now observing that m ≤ aGn, b̄(G) = O(log nb 1
3
(G)), and nb 1

3
(G) ≤ 3L̂(G), we obtain,

bcr(D) ≤ bcr(DG1) + bcr(DG2) +O(aGL̂(G) log n)

which implies

bcr(D) = O(aGL̂(G) log2 n).

Note that by Corollary 2.1, bcr(G) = Ω(aGL̂(G)), and the claim follows. 2

Remarks. The method of Even et al. that we suggested to use in Theorem 3.2, although a theo-
retical breakthrough, requires the usage of specific interior point linear programming methods which
may be computationally expensive or hard to code. Hence, the the divide and conquer approximation
algorithm, although in theory, weaker than the method of Theorem 3.2, it may be easier to implement.
Moreover, one may use very fast and simple heuristics developed by the VLSI and CAD communities
[24] for graph bisection in the divide stage. Although, these heuristics do not produce provably sub-
optimal solutions for bisecting a graph, they work well in practice, and are extremely fast. Therefore,
one may anticipate that certain implementations of the divide and conquer algorithm are very fast
and effective in practice.

Note that since aG can be computed in polynomial time, the class of graphs with aG ≤ cδG is
recognizable in polynomial time, when c is a given constant. Hence, those graphs which meet the
required conditions in Theorems 3.2, and 3.3 can be recognized in polynomial time. Also, note that
many important graphs such those introduced in Section 3 meet the conditions, and hence for these
graphs the performance of both approximation algorithms is guaranteed.
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4 Largest biplanar subgraphs in acyclic graphs

Let T = (VT , ET ) be a tree and wij be a weight assigned to each edge ij ∈ ET . For any B ⊆ ET ,
define the weight of B, denoted by w(B), to be the sum of weights for all edges in B. In this section
we present a linear time algorithm to compute a biplanar subgraph of T of largest weight.

A tree on at least 2 vertices is called a caterpillar if it consists of a path to which some vertices of
degree 1 (leaves) are attached. We distinguish four categories of vertices in a caterpillar. First consider
caterpillars which are not stars. They have a unique path connecting two internal vertices to which
all leaves are attached to. We call this path the backbone of the caterpillar. The two endvertices of
the backbone are called endbone vertices, internal vertices of the backbone are called midbone vertices.
Leaves attached to endbones are called endleaves. Leaves attached to midbones are called midleaves.

For a star with at least 3 vertices, the middle vertex is considered as endbone, the backbone path
consists of this single endbone, and the leaves in the star are considered endleaves. If a star has two
vertices, then we treat these vertices as endbones.

Let T = (VT , ET ) be an unrooted tree and r ∈ VT . Then, we view r as the root of T . Then any
vertex x ∈ VT , x 6= r will have a unique parent which is the first vertex on the path towards the root.
For x ∈ VT , the set of children of x, denoted by Nx, are those vertices of T whose parent is x. For any
x ∈ VT , x 6= r we denote by Tx the component of T , containing x, which is obtained after removing
the parent of x from T . We define Tr to be T .

We use the notation Bx for a biplanar subgraph of Tx, x ∈ VT , and treat Bx as an edge set. We say
that Bx spans a vertex a, if there is an edge ab ∈ Bx. For x ∈ VT , we define

W (Tx) = max
Bx⊆ETx

w(Bx). (19)

Our goal is to determine W (Tr). To achieve this goal, we define 5 additional related optimization
problems as follows:

w1(Tx) = max {w(Bx) : x is endleaf in Bx}
w2(Tx) = max {w(Bx) : x is midleaf in Bx}
w3(Tx) = max {w(Bx) : x is endbone in Bx}
w4(Tx) = max {w(Bx) : x is midbone in Bx}
w5(Tx) = max {w(Bx) : x is not spanned by Bx} .

It is obvious that

W (Tx) = max
1≤i≤5

wi(Tx), (20)

and therefore solving all 5 problems for Tx determines W (Tx). For any leaf v set w1(v) = w5(v) = 0,
W (v) = 0 and wi(v) = −∞ for i = 2, 3, 4 as initial condition. Finally, for u ∈ Nx, x ∈ VT define,

f(u) = max{wux + w5(Tu),W (Tu)}.

It is well-known and easy to show that a graph is biplanar iff it is a collection of vertex disjoint
caterpillars. This is equivalent to saying that a graph is biplanar iff it does not contain a double
claw which is a star on 3 vertices with all three edges subdivided. Therefore our problem is to find a
maximum weight forest of caterpillars in an edge-weighted acyclic graph. We will use these facts in
the next lemma, sometimes without explicitly referring to them.

Lemma 4.1

w1(Tx) = max
y∈Nx

{( ∑
y′∈Nx\{y}

W (Ty′)

)
+wxy + max

i=1,3
wi(Ty)

}
(21)
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w2(Tx) = max
y∈Nx

{
wxy + w4(Ty) +

∑
y′∈Nx\{y}

W (Ty′)

}
(22)

w3(Tx) = max

{
max
y∈Nx

{
wxy + max

i=1,3
wi(Ty) +

∑
y′∈Nx\{y}

f(y′)

}
,
∑
y∈Nx

f(y)

}
(23)

w4(Tx) = max
y1,y2∈Nx
y1 6=y2

{
wxy1 + wxy2 + max

i=1,3
wi(Ty1) + max

i=1,3
wi(Ty2) +

∑
y′∈Nx\{y1,y2}

f(y′)

}
(24)

w5(Tx) =
∑
y∈Nx

W (Ty). (25)

Proof Sketch. The basic idea for the recurrence relations is to describe how an optimal solution for
Tx decomposes in the trees rooted in Nx. Indeed, (21), (22), and (25) are obvious. For (23), note that
if x is an endbone in a maximum weight biplanar Bx, then x is an endbone in a caterpillar C ⊆ Bx.
Consider the case that C is not a star. Since, x is an endbone of C, it has at least two neighbors in
C, and all but one of its neighbors are leaves in C. Then exactly one neighbor y of x is an endbone
or an endleaf in C \ {x}. This justifies the presence of the first two terms in the inner curly bracket.
To justify the presence of the sum on y′, note that, in order to maximize the total weight of Bx, we
must attach y′ ∈ Nx \ {y} to C as a leaf, only if f(y′) = wy′x + w5(Ty′); otherwise we must include
in Bx, the maximum biplanar subgraph of Ty′ which has the total weight f(y′) = W (Ty′). To justify
the term

∑
y∈Nx f(y), consider the case that C is a star. Then we must attach any y ∈ Nx to C as a

leaf only if f(y) = wxy + w5(Ty); otherwise we include in Bx the maximum biplanar subgraph of Ty.
For (24), note that, if x is a midbone in a maximum weight Bx, then x is a midbone of C ⊆ Bx, and
has 2 neighbors y1 and y2 in C. By deleting x from C, we obtain exactly two caterpillars C1 and C2

so that yi is either an endbone or an endleaf for Ci, i = 1, 2. Now follow an argument similar to (23)
to finish the proof of (24) 2

Theorem 4.1 For an edge-weighted acyclic graph T = (VT , ET ), a largest weight biplanar subgraph
can be computed in O(|VT |) time.

Proof Sketch. With no loss of generality assume that T is connected, otherwise we apply our
arguments to the components of T . We select a root r for T , and then perform a post order traversal
and show that we can compute wi(Tx), 1 ≤ i ≤ 5, and W (Tx) in O(|Nx|) time, if all these quantities
are already known for the children of x. This is obvious for (20) and (25). For (21) and (22) the
expressions in curly braces are easy to evaluate in linear time, if a maximizing y is known. So the
issue is to find a maximizing y in linear time. It is easy to see that for (21) we look for y ∈ Nx

which maximizes wxy + maxi=1,3w
i(Ty) −W (Ty), and for (22) we look for y ∈ Nx which maximizes

wxy + w4(Ty)−W (Ty); all these can be computed in O(|Nx|) time.
For (23), it suffices to show that a y ∈ Nx can be found in O(|Nx|) time which maximizes g(y) =

wxy + maxi=1,3w
i(Ty) +

∑
y′∈Nx\{y} f(y′) = wxy + maxi=1,3w

i(x)− f(y) +
∑
y′∈Nx f(y′). To do so find

y∗ ∈ Nx which maximizes wxy +maxi=1,3w
i(Ty)− f(y). For (24), note that

w4(Tx) =
( ∑
y∈Nx

f(y)
)

+ max
y1 6=y2∈Nx

{
wxy1 + max

i=1,3
wi(Ty1)− f(y1) + wxy2 + max

i=1,3
wi(Ty2)− f(y2)

}
.

Thus, to maximize w4(Tx), we should find y1, y2 ∈ Nx, y1 6= y2 which give the largest two values for
wxy + maxi=1,3w

i(Ty)− f(y).
It is easy to maintain for every x not just the values wi(Tx), W (Tx), but also the edge-set of Bx which
realizes this value, therefore, we can store the edge set of a largest biplanar subgraph as well. 2
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