
Abel’s binomial theorem

The following was assigned as homework problem: for variables x, y, z the
following polynomial identity holds:

n∑
k=0

(
n

k

)
x(x+ kz)k−1(y + (n− k)z)n−k = (x+ y + nz)n; (1)

for nonzero numbers x, y the identity
n∑
k=0

(
n

k

)
(x+ k)k−1(y + (n− k))n−k−1 = (

1
x

+
1
y
)(x+ y + n)n−1 (2)

holds, and finally, the following numerical identity holds:

n−1∑
k=1

(
n

k

)
kk−1(n− k)n−k−1 = 2(n− 1)nn−2. (3)

First note that (1) implies the binomial theorem with z = 0. The term k = 0
may cause a suspicion if we deal with a polynomial on the LHS at all, but for
k = 0, the corresponding term is x · x−1(y + nz)n. If one wants to avoid this
case, he may prove instead of (1)

(y + nz)n +
n∑
k=1

(
n

k

)
x(x+ kz)k−1(y + (n− k)z)n−k = (x+ y + nz)n, (4)

where both sides are polynomials without any doubt. To prove (1) or (4), we
differentiate both sides by y and apply induction on n. Formulas (2), (3) easily
will follow from (4). Call fn(x, y, z) the LHS of 1 or (4), call gn(x, y, z) the RHS
of (1) or (4). Note that for n = 1 f1(x, y, z) = y+ z+x = g1(x, y, z). We apply
induction on n to prove the identity. For this goal, it is enough to show that
the partial derivatives in y are equal polynomials, and in addition, for a certain
value of y the identity holds, i.e.

∂

∂y
fn(x, y, z) =

∂

∂y
gn(x, y, z); (5)

fn(x,−x− nz, z) = gn(x,−x− nz, z). (6)

It is easy to see that

∂

∂y
gn(x, y, z) = n(x+ (y + z) + (n− 1)z)n−1 = ngn−1(x, y + z, z). (7)

On the other hand, using the identity n
(
n−1
k

)
=
(
n
k

)
(n− k), we obtain

∂

∂y
fn(x, y, z) =

n∑
k=0

(
n

k

)
x(x+ kz)k−1(n− k)(y + (n− k)z)n−k−1, (8)



= n
n−1∑
k=0

(
n− 1
k

)
x(x+kz)k−1[(y+z)+((n−1)−k)z](n−1)−k = nfn−1(x, y+z, z).

(9)
It follows from the induction hypothesis that

nfn−1(x, y + z, z) = ngn−1(x, y + z, z),

and this finishes the proof of (5). We turn to the proof of (6). This will be proved
much like in the manner of the proof to (5). Since obviously gn(x,−x−nz, z) =
0, we have to prove fn(x,−x − nz, z) = 0. We are going to do it by induction
on n. The base case is trivial again. We have to prove the following two facts:

∂

∂z
fn(x,−x− nz, z) = 0; (10)

fn(x,−x, 0) = 0. (11)

Let us start with

fn(x,−x− nz, z) =
n∑
k=0

(
n

k

)
(−1)n−kx(x+ kz)n−1.

To verify (10),

∂

∂z
fn(x,−x− nz, z) = (n− 1)

n∑
k=0

(
n

k

)
xk(−1)n−k(x+ kz)n−2

(using k
(
n
k

)
= n

(
n−1
k−1

)
for k > 0)

= n(n− 1)
n∑
k=1

(
n− 1
k − 1

)
x(−1)n−k(x+ kz)n−2

= n(n− 1)
n−1∑
j=0

(
n− 1
j

)
x(−1)n−1−j(x+ (j + 1)z)n−2. (12)

We have to show that (12) is equal to zero. Use the hypothesis

0 = fn−1(x,−x,−(n− 1)z, z)

to prove

0 =
n−1∑
j=0

(−1)n−1−j
(
n− 1
j

)
x(x+ jz)n−2. (13)

Substitute in (13) x+ z to the place of x and multiply the resulting formula by
x/(x+ z) to obtain that (12) is equal to zero.
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The proof of (11) is trivial, since

fn(x,−x, 0) = xn
n∑
k=0

(
n

k

)
(−1)n−k = 0,

because of the rule on the summation of binomial coefficients with alternating
sign in a row of the Pascal triangle.

An alternative proof of (6) goes in a more direct way but uses a basic
inclusion-exclusion result:

fn(x,−x− nz, z) = x
n∑
k=0

(
n

k

)
(−1)n−k(x+ kz)n−1

= x
n∑
k=0

(
n

k

)
(−1)n−k

n−1∑
j=0

(
n− 1
j

)
kjzjxn−j = x

n−1∑
j=0

xn−jzj
n∑
k=0

(
n

k

)
(−1)n−kkj .

Note that for j < n natural number
∑n
k=0

(
n
k

)
(−1)n−kkj = the number of

surjections from an j-element set to an n-element set, and hence is zero.

Turning to the proof of (2), apply (1) with z = 1:

fn(x, y, 1) =
n∑
k=0

(
n

k

)
x(x+ k)k−1(y + n− k)n−k−1(y + n− k) (14)

=
n∑
k=0

(
n

k

)
x(x+ k)k−1y(y + n− k)n−k−1 (15)

+
n∑
k=0

(
n

k

)
x(x+ k)k−1(y + n− k)n−k−1(n− k). (16)

Here, using
(
n
k

)
(n− k) = n

(
n−1
k

)
for k ≤ n− 1, we have that (15) is equal to

n−1∑
k=0

n

(
n− 1
k

)
x(x+ k)k−1((y + 1) + (n− 1)− k)(n−1)−k

= nfn−1(x, y + 1, 1) = n(x+ y + n)n−1.

Since fn(x, y, 1) = (x+ y + n)n, (14,15,16) imply that (16) is equal to

(x+ y + n)n − n(x+ y + n)n−1 = (x+ y)(x+ y + n)n−1.

Dividing by xy yields the required identity (2).

Finally, in order to prove (3), subtract

1
x

(y + n)n−1 +
1
y
(x+ n)n−1
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from both sides of (2). We get

n−1∑
k=1

(
n

k

)
x(x+ k)k−1(y + n− k)n−k−1 =

1
x

[(x+ y + n)n−1 − (y + n)n−1] +
1
y
[(x+ y + n)n−1 − (x+ n)n−1].

Taking the limit when x, y → 0 we obtain the LHS of (1) on the LHS by
continuity, on the RHS we have

lim
x→0

1
x

[(x+y+n)n−1− (y+n)n−1] =
d

dx
(x+y+n)n−1|x=0 = (n−1)(y+n)n−2,

and by continuity limy→0(n−1)(y+n)n−2 = (n−1)nn−2. Another (n−1)nn−2

comes from the other term in the RHS. We proved (3).

We mention here, that Abel’s binomial theorem has been further genereral-
ized by Hurwitz into the following polynomial identity in variables x, y, z1, ..., zn:

Hurwitz’ Binomial Theorem:∑
εi=0,1

x(x+
n∑
i=1

εizi)
∑

n

i=1
εi−1(y +

n∑
i=1

(1− εi)zi)n−
∑

n

i=1
εi =

(x+ y + z1 + ...+ zn)n;

or, in alternative description, corresponding to (2), we have

∑
εi=0,1

x(x+
n∑
i=1

εizi)
∑

n

i=1
εi−1y(y +

n∑
i=1

(1− εi)zi)n−1−
∑

n

i=1
εi =

(x+ y)(x+ y + z1 + ...+ zn)n−1.

The summation means 2n terms. The simplest proof of Hurwitz’ Binomial
Theorem — what a surprise! — goes by counting trees. It is an easy to see how
Hurwitz’ Binomial Theorem implies Abel’s Binomial Theorem. You may note
that the second version of Hurwitz’ Binomial Theorem generalizes a version of
(2), where both sides are multiplied by xy. Hence (2) also has a polynomial
identity version:

n∑
k=0

(
n

k

)
x(x+ k)k−1y(y + (n− k)z)n−k−1 = (x+ y)(x+ y + nz)n−1.

There is a subtle point here that has to be mentioned. What we really
proved is that (1) holds for all real values of x, y, z, but we have not proved the

4



polynomial identity yet. By definition, polynomial identity means that for all
α, β, γ the coefficients of xαyβzγ are identical in the RHS and in the LHS of
(1). However, the following theorem holds:

Theorem If f(x1, x2, ..., xn) and g(x1, x2, ..., xn) are multivariate polyno-
mials, so that we have infinite sets A1, A2, ..., An such that f(a1, a2, ..., an) =
g(a1, a2, ..., an) whenever ai ∈ Ai, then f(x1, x2, ..., xn) = g(x1, x2, ..., xn) as
polynomials.

You know this theorem for n = 1 from elementary algebra: two different
polynomials of degree at most d can agree in at most d places. The proof of the
theorem goes by induction on n. Write

f(x1, x2, ..., xn) =
∑
α

fα(x1, x2, ..., xn−1)xαn

and
g(x1, x2, ..., xn) =

∑
α

gα(x1, x2, ..., xn−1)xαn.

We are going to show that for all ai ∈ Ai (i = 1, 2, ..., n− 1) and all α,

fα(a1, a2, ..., an−1) = gα(a1, a2, ..., an−1).

Using the hypothesis for n− 1, we obtain that for all α,

fα(x1, x2, ..., xn−1) = gα(x1, x2, ..., xn−1)

as polynomials, and this will imply the theorem.

Fix ai ∈ Ai in an arbitrary way. Define the single variable polynomials

f∗(xn) =
∑
α

fα(a1, a2, ..., an−1)xαn

and
g∗(xn) =

∑
α

gα(a1, a2, ..., an−1)xαn.

Polynomials f∗ and g∗ agree on infinetely many places for xn (namely, on the
elements of An), and therefore by the n = 1 base case these polynomials are
identical polynomials, i.e. agree termwise, hence

fα(a1, a2, ..., an−1) = gα(a1, a2, ..., an−1)

holds.
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