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1 q-binomial coefficients

Definition. For natural numbers n, k,the q-binomial coefficient
[
n
k

]
q

(or just
[
n
k

]
if there no ambi-

guity on q) is defined as the following rational function of the variable q:

(qn − 1)(qn−1 − 1) · · · (q − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1) · (qn−k − 1)(qn−k−1 − 1) · · · (q − 1)
. (1.1)

For n = 0, k = 0, or n = k, we interpret the corresponding products 1, as the value of the empty
product. If we exclude certain roots of unity from the domain of q, (1.1) is equal to

(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1) · 1
(1.2)

=
(qn−1 + . . .+ q + 1) · · · (q2 + q + 1)(q + 1) · 1

(qk−1 + . . .+ q + 1) · · · (q2 + q + 1)(q + 1) · 1(qn−k−1 + . . .+ q + 1) · · · (q2 + q + 1)(q + 1) · 1
.

As the notation starts to be overwhelming, we introduce to q-analogue of the positive integer n,
denoted by [n] or [n]q, as qn−1 + . . . + q + 1; and the q-analogue of the factorial of the positive
integer n, denoted by [n]! or [n]q!, as [n]q! = [1]q · [2]q · · · [n]q. With this additional notation, we
also can say [

n

k

]
q

=
[n]q!

[k]q![n− k]q!
, (1.3)

when we avoid certain roots of unity with q. It is easy too see from (1.1) that[
n

0

]
q

=

[
n

n

]
q

= 1

and that for every 0 ≤ k ≤ n the symmetry rule[
n

k

]
q

=

[
n

n− k

]
q

holds. Furthermore, as
lim
q→1

[n]q = n and lim
q→1

[n]q! = n!,
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(1.3) implies that

lim
q→1

[
n

k

]
q

=

(
n

k

)
.

This justifies using the name q-binomial coefficient. They are also called Gaussian binomial coef-
ficients.

Claim 1 The q-binomial coefficient is not just a rational function of q, it is actually a polynomial
of q.

We prove this by induction on n. We extend the definition of
[
n
k

]
q

for k < 0 and k > n with[
n
k

]
q

= 0. We have
[
0
0

]
q

= 1, and as 0 and 1 are polynomials of q, the claim holds n = 0. Next we

observe that the familiar recurrence of binomial coefficients in the Pascal Triangle(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
(1.4)

has its analogue for the q-binomial coefficients in the form[
n+ 1

k

]
q

=

[
n

k

]
q

+ qn−k+1

[
n

k − 1

]
q

. (1.5)

This easy to verify directly from (1.1). However, if
[
n
k

]
q

and
[
n
k−1

]
q

are polynomials of q, then so is[
n+1
k

]
q
, due to (1.5).

It is easy to compute the degree of the polynomial
[
n
k

]
q
. There must be cancellation in the

formula (1.1), as it gives a polynomial. So the degree of
[
n
k

]
q

must be the difference between the

degrees of the numerator and denominator in (1.1). We have

deg

([
n

k

]
q

)
=

(
n+ 1

2

)
−
(
k + 1

2

)
−
(
n− k + 1

2

)
= k(n− k).

Therefore can write [
n

k

]
q

=

k(n−k)∑
α=0

cn,k,αq
α. (1.6)

The coefficients satisfy an unexpected new symmetry rule:

cn,k,α = cn,k,k(n−k)−α. (1.7)

The reason is the following. For any polynomial p(x) = a0 + a1x + . . . + anx
n, we have xnp( 1

x
) =

a0x
n + a1x

n−1 + . . . + an. Therefore, the coefficient sequence reads from top down the same way
as from bottom up, if and only if p(x) = xnp( 1

x
) is an identity. It is easy to see directly from (1.1)

that the required identity [
n

k

]
1
q

=
1

qk(n−k)

[
n

k

]
q
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holds.
Definition A sequence is called unimodal, if it is increasing up to a point, and then turns

decreasing. Many combinatorial sequences are unimodal, like
(
n
k

)
or S(n, k) for any fixed n.

Sylvester proved that cn,k,α is unimodal for any fixed n and k using invariant theory. It took
a century to find a combinatorial proof to this fact. A combinatorial proof needs counting in-
terpretation of these numbers and then some injections. A combinatorial interpretation is the
following:

Claim 2 cn,k,α is the number of lattice walks from (0, 0) to (k, n− k) (using the usual horizontal
and vertical steps of unit length) such that the area between the walk and the x axis is exactly α.

We will show this from the following more general theorem. Let us be given an ordered finite
alphabet like A < B < C < ... < Z. We define the number of inversions in a word as the number
of ordered pairs of letters that stand in the wrong order. Two copies of the same letter do not
contribute to this count. For example, LEECH has 6 inversions, as L contributes 4 one for each of
E,E,C,H, both E contributes one more because of C, and finally CH makes no contribution.

Theorem 1 Let us be given an ordered k-letter alphabet x1 < x2 < · · · < xk and ni copies of the
letter xi for i = 1, 2, ..., k. Let wm(n1, ..., nk) denote the number of words using all of these letters
and having m inversions. Then∑

m

wm(n1, ..., nk)q
m =

[n1 + n2 + . . .+ nk]q!

[n1]q![n2]q! · · · [nk]q!
. (1.8)

The term on the RHS of (1.8) is called a q-multinomial coefficient, and for k = 2 it specializes to
a q-binomial coefficient.

Corollary 2 Given n1, ..., nk, the q-multinomial coefficient [n1+n2+...+nk]q !

[n1]q ![n2]q !···[nk]q !
is a polynomial of q. In

particular, for k = 2, the q-binomial coefficient is a polynomial of q, proving Claim 1, without the
use of the identity (1.3).

Now we are in the position to derive the combinatorial interpretation of cn,k,α in Claim 2. Consider
a 2-letter alphabet X < Y , k copies of X and n − k copies of Y. The words that one can build
of these letters are in one-to-one correspondence with the lattice walks (0, 0) to (k, n − k), if X
indicates a horizontal step and Y indicates a vertical step, and we read the word left-to-right to
find out the order of steps. Observe that the area under the lattice walk is exactly the number
of inversions in the corresponding word. Indeed, look at any particular horizontal step. The total
area is the sum of areas of rectangles whose top is a unit horizontal step. What is the height of
such a rectangle? Exactly the number of vertical steps before horizontal step on the top, i.e. the
number of Y’s that came before the current X.

Proof to Theorem 1. First observe that setting q = 1 in (1.8) gives back the elementary counting
result that the number of words that we can make from these letters equals the multinomial
coefficient (n1+n2+...+nk)!

n1!n2!···nk]!
. Recall how the proof for the number of words goes. Distinguish copies

of the letter xi with superscripts as x1i , x
2
i , ..., x

ni
i , for i = 1, 2, ..., k. The number of words with

the superscripted letters is (n1 + n2 + . . . + nk)!, as the letters are all distinct. On the other
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hand, starting with set of words made of these letters without superscripts, each word gives rise to
n1!n2! · · ·nk! superscripted words, by putting on the superscripts as we like. The identity follows,
as each superscripted word is constructed in a unique way. The theorem above refines this result by
extending enumeration to an additional variable, the number of inversions. Order the superscripted
copies as x1i < x2i < · · · < xni

i , for i = 1, 2, ..., k. If you consider the inversions of a superscripted
word, every inversion is either already an inversion after the deletion the superscripts from the
letters of the word, or is a result of an inversion between two superscripted copies of some xi for
a unique i. More formally:

Case 1:
First we show the Theorem for n1 = n2 = . . . = nk = 1. The proof of this case goes by induction
on k. For k = 1, (1.8) reads as 1=1 and is true. Assume that (1.8) holds for k − 1, i.e.∑

m

wm(1, 1, ..., 1︸ ︷︷ ︸
k−1

)qm = [k − 1]q!. (1.9)

Observe now that xk an be inserted in a unique way into any word using the first k − 1 letters
exactly once with 0, 1, ..., k − 1 new inversions, in which xk is involved, hence

(1 + q + . . .+ qk−1)
∑
m

wm(1, 1, ..., 1︸ ︷︷ ︸
k−1

)qm =
∑
`

w`(1, 1, ..., 1︸ ︷︷ ︸
k

)q`.

As the identity (1 + q+ . . .+ qk−1)[k − 1]q! = [k]q! holds, we completed the induction step and the
proof to Case 1.
Case 2:
We have ni ≥ 1 for i = 1, 2, ..., k, i.e. no restrictions. We show (1.8) by proving

[n1 + n2 + . . .+ nk]q! =

(∑
m

wm(n1, ..., nk)q
m

)
[n1]q![n2]q! · · · [nk]q!.

For the equality of two polynomials we have to point out that they are termwise equal, i.e. for `,

coeff

{
q`
}

[n1 + n2 + . . .+ nk]q! = coeff

{
q`
}(∑

m

wm(n1, ..., nk)q
m

)
[n1]q![n2]q! · · · [nk]q!.

This boils down to the identity

w`( 1, 1, . . . , 1︸ ︷︷ ︸
n1+n2+...+nk

) =
∑

m+j1+...+jk=`

wm(n1, n2, . . . , nk︸ ︷︷ ︸
k

)wj1(1, 1, . . . , 1︸ ︷︷ ︸
n1

) · · ·wjk(1, 1, . . . , 1︸ ︷︷ ︸
nk

)

that basically tells that the number of inversions in word using superscripted letters once equals
to the number of inversions in the same word between different letters (without superscript) plus
the sum of inversions, for every type of letters, among superscripted copies of the same letter.

Corollary 3 Given n1, ..., nk, the q-multinomial coefficient [n1+n2+...+nk]q !

[n1]q ![n2]q !···[nk]q !
is a polynomial of q. In

particular, for k = 2, the q-binomial coefficient is a polynomial of q, proving Claim 1, without the
use of the identity (1.3).
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We continue with the q-binomial theorem. For q = 1 it gives back the ordinary binomial
theorem.

Theorem 4 For any n natural number,

n∏
i=1

(1 + qi−1x) =
n∑
k=0

[
n

k

]
q

q(
k
2)xk. (1.10)

Note that for n = 0 the LHS is an empty product with value 1, and the RHS has a single term, a
1. The q-binomial theorem can be proved with an induction mimicking the induction proof of the
binomial theorem. Here we show a useful proof technique in q-combinatorics. Set

f(x) =
n∏
i=1

(1 + qi−1x).

This is a 2-variable polynomial that we can rewrite as f(x) =
∑n

k=0 ak(q)x
k, where ak = ak(q) is a

polynomial of q, in particular a0 = 1. It is easy to see that f(x) satisfies the following functional
equation:

(1 + x)f(qx) = f(x)(1 + qnx).

Extracting the coefficient of xk from both sides we obtain akq
k + ak−1q

k−1 = ak + qnak−1. Solving
this for ak

ak−1
, we obtain

ak
ak−1

=
qn − qk−1

qk − 1
.

As ak = ak
ak−1

ak−1

ak−2
· · · a1

a0
a0, we obtain

ak =
qn − qk−1

qk − 1
· q

n − qk−2

qk−1 − 1
· · · q

n − 1

q − 1
= q(

k
2)
[
n

k

]
q

.

We state the infinite version of the q-binomial theorem, and leave its proof and applications to
the problems section. Define

(a; q)0 = 1; for a positive integer n

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1); and

(q; q)n = (1− q)(1− q2) · · · (1− qn); and for |q| < 1

(a; q)∞ =
∞∏
i=0

(1− aqi).

Theorem 5 For |t| < 1 and |q| < 1, the following equality holds:

∞∑
n=0

(a; q)n
(q; q)n

tn =
(at; q)∞
(t; q)∞

. (1.11)
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2 Linear spaces over finite fields

Recall that for every prime power q = pα there is unique field with q elements. We denote it by
GF (q). First observe that an n-dimensional linear space V has exactly qn elements. Indeed, the
linear space has a basis b1, ...,bn. The elements of V can be written in a unique way as linear
combinations

γ1b1 + · · ·+ γnbn,

where γi ∈ GF (q). There are exactly qn such linear combinations.

Theorem 6 An n-dimensional linear space V has exactly
[
n
k

]
q
k-dimensional subspaces.

First count in V the ordered s-tuples of linearly independent vectors: there are

(qn − 1)(qn − q) · · · (qn − qs−1)

of them. Indeed, selecting < v1,v2, ...,vs > sequentially, we have qn − 1 choices for v1, as it can
be anything but the zero vector. For v2, we have qn − q choices, as it can be any vector but those
among the q element span of v1. Finally, selecting vs, it can be anything but those in the span of
the previously selected s− 1 linearly independent vectors.

As a special case (n = k, s = k) of the observation above, note that the number of or-
dered bases in a fixed k-dimensional subspace is (qk − 1)(qk − q) · · · (qk − qk−1). Finally ob-
serve that #(k-dimensional subspaces) × #(ordered bases in a fixed k-dimensional subspace) =
#(ordered k-tuples of linearly independent vectors).

We work towards a combinatorial proof to the identity (1.5) for prime power q. We prove first
a claim that we need.

Claim 3 For A and B finite dimensional subspaces in some linear space over any field,

dim(span{A,B}) = dim(A) + dim(B)− dim(A ∩B). (2.12)

Assume dim(A) = `, dim(B) = k, and dim(A ∩ B) = m. Take a basis a1, ..., am of A ∩ B,
and extend it to a basis a1, ..., am, am+1, ..., a` of A and a basis a1, ..., am,bm+1, ...,bk of B.
Clearly span{A,B} = span{a1, ..., am, am+1, ..., a`,bm+1, ...,bk}, and hence dim(span{A,B}) ≤
` + k − m = dim(A) + dim(B) − dim(A ∩ B). On the other hand, we will show that the vec-
tors a1, ..., am, am+1, ..., a`,bm+1, ...,bk are linearly independent. If there were a linear dependence
among these vectors, we can write it as

γ1a1 + ...+ γmam + γm+1am+1 + ...+ γ`a` = βm+1bm+1 + ...+ βkbk.

If both sides happen to be the 0 vector, then all γ’s and β’s must be zero, so the linear combination
was trivial. If both sides happen to be v nonzero vector, then v ∈ A∩B. Hence it can be expressed
with the base of A ∩B, so v = α1a1 + ...+ αmam. Therefore

α1a1 + ...+ αmam = βm+1bm+1 + ...+ βkbk,
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and as we see the basis vectors of B above, all α’s and all β’s are zero. Therefore all γ’s are zero
as well, the linear combination was trivial. End of the proof of the Claim.

Now we provide a combinatorial proof to the identity (1.5). Assume first that q is a prime
power. Take a fixed n and k. Consider an (n+1)-dimensional linear space, V , over GF (q). By the
theorem above, it has

[
n+1
k

]
q
k-dimensional subspaces. With a different count, we obtain the RHS

of (1.5). Fix an n-dimensional subspace V ′ of V . Any H k-dimensional subspace of V either is a
subspace of V ′ or not. By the claim above, dim(V ′∩H) = k or k−1. The number of k-dimensional
subspaces of V ′ is

[
n
k

]
q
. So we have to count those H’s for which dim(V ′ ∩H) = k − 1. There are[

n
k−1

]
q

choices for V ′ ∩ H. Observe the following bijective correspondence between the following
sets:

{(K,u) : K subspace in V ′, dim(K) = k − 1,u /∈ V ′} and

{(L,w) : L subspace in V, dim(L) = k, dim(L ∩ V ′) = k − 1,w ∈ L \ V ′},
and hence

[
n
k−1

]
q
(qn+1 − qn) = (qk − qk−1)#{L : dim(L) = k, dim(L ∩ V ′) = k − 1}. Therefore

#{L : dim(L) = k, dim(L ∩ V ′) = k − 1} =
[
n
k−1

]
q

qn+1−qn
qk−qk−1 =

[
n
k−1

]
q
qn−k+1. Fix n and k. Note

that the LHS and RHS of (1.5) are polynomials of q. (We used (1.5) identity in our first proof
that the q-binomial coefficients are polynomials of q. Relying on that proof would make a circular
argumeny here. However, we have an alternative proof in Corollary 3.) As the identity (1.5) holds
for all values of two polynomials at prime power q’s, (1.5) is a polynomial identity.

Let us be given a fixed base v1,v2, ...,vn of the linear space V . For vectors u =
∑n

i=1 αivi and
w =

∑n
i=1 βivi, define the dot product

u ·w = uTw = uT Iw =
n∑
i=1

αiβi. (2.13)

The dot product is a bilinear function of the two vectors. For a subspace L of V , define its
orthocomplement by

L⊥ = {v ∈ V : for all u ∈ L u · v = 0}.
It is easy to see that L⊥ is a subspace of V as well, and that L is a subspace of (L⊥)⊥.

On the other hand, observe that dim(L⊥) = n − dim(L). Indeed, L⊥ is nothing else but the
solution space of a system of homogeneous linear equations, in n variables, where the rank of the
coefficient matrix is dim(L). (In other words, if v has zero dot product with every vector of a base
of L, then it has zero dot product with every vector of L. Linearly independent vectors of L provide
linearly independent rows of the coefficient matrix.) From here, dim((L⊥)⊥) = n− (n−dim(L)) =
dim(L). It follows that L = (L⊥)⊥. Note that unlike in linear spaces over R, in linear spaces over
GF (p), it may happen that L⊥ ∩ L has nonzero vectors, and then span{L,L⊥} 6= V . Note that
all these arguments remain valid if we change the identity matrix I in the definition of the dot
product, formula (2.13), to any non-singular n× n matrix.

Many results for subsets of a set has an analogue for subspaces of a linear space. The subspace
relation is analogous to the subset relation, and defines a partial order. In both partial orders, any
two elements have a greatest lower bound (intersection) and a smallest upper bound (union for
sets, span for two subspaces). The orthocomplement is analogous to the complement. There will
be many examples for this paradigm, which was put in focus by Gian-Carlo Rota.
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3 Problems

Finding combinatorial proof is a plus!
Q1) Prove

h∑
k=0

[
n

k

]
q

[
m

h− k

]
q

q(n−k)(h−k) =

[
m+ n

h

]
q

.

Q2) Prove [
n+m+ 1

m+ 1

]
q

=
n∑
j=0

qj
[
m+ j

m

]
q

.

Q3 ) Prove

n∑
i=0

(−1)i
[
n

i

]
q

=

{
0, if n odd

(1− q)(1− q3)(1− q5) · · · (1− qn−1), if n even.

Q4) Show that the following polynomial identity in x, q is equivalent to the q-binomial theorem:

(x− 1)(x− q) · · · (x− qn−1) =
n∑
k=0

[
n

k

]
q

q(
n−k
2 )(−1)n−kxk. (3.14)

Q5) a) Let us be given a linear space V of dimension n, and a linear space W with x elements over
GF (q). Show that |Hom(V,W )|, the number of linear maps from V to W , is on the one hand xn,
on the other hand

∑n
k=0

[
n
k

]
q
(x− 1)(x− q) · · · (x− qk−1).

b) Show the following polynomial identity in variables x, q

xn =
n∑
k=0

[
n

k

]
q

(x− 1)(x− q) · · · (x− qk−1). (3.15)

c) Observe that for any fixed value of q, the identities (3.14) and (3.15) provide an inverse pair.
Hence, for a pair of sequences of complex numbers an and bn,

∀n an =
n∑
k=0

[
n

k

]
q

bk iff ∀n bn =
n∑
k=0

[
n

k

]
q

q(
n−k
2 )(−1)n−kak.

d) Assume that an(q) and bn(q) are polynomials of the variable q with complex coefficients. Then

∀n an(q) =
n∑
k=0

[
n

k

]
q

bk(q) is a polynomial identity

if and only if

∀n bn(q) =
n∑
k=0

[
n

k

]
q

q(
n−k
2 )(−1)n−kak(q) is a polynomial identity.
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Q6) Show that q(
k
2)
[
n
k

]
q

is the ordinary generating function of the number of partitions into k

distinct terms, where every term is between 0 and n− 1. (We do not specify which number is to

be partitioned!) In other words, if q(
k
2)
[
n
k

]
q

=
∑

` c`q
`, then c` = the number of partitions of ` into

k distinct terms, where every term is between 0 and n− 1.
Q7) Fixing a and a |q| < 1, show that the function F (t) =

∏∞
n=0

1−atqn
1−tqn satisfies the functional

equation (1 − t)F (t) = (1 − at)F (qt), and derive from here the infinite version of the q-binomial
theorem.
Q8) Derive Theorem 4 from Theorem 5.
Q9) (a) Substitute a = qm for some m ∈ N into (1.11). What do you obtain?
(b) What is the limit of your identity as q → 1?
(c) Show that

[
m+n−1

n

]
q

is the ordinary generating function of the number of partitions (of unspec-

ified numbers) into n terms, all terms between 0 and m−1. In other words, if
[
m+n−1

n

]
q

=
∑

` c`q
`,

then c` = the number of partitions of ` into n terms, all terms between 0 and m− 1.
(d) Show that

[
m+n−1

n

]
q

is the ordinary generating function of the number of partitions (of un-

specified numbers) into at most m − 1 terms, all terms between 1 and n. In other words, if[
m+n−1

n

]
q

=
∑

` c`q
`, then c` = the number of partitions of ` into at most m − 1 terms, all terms

between 1 and n.
Q10) Prove Jacobi’s Triple Product Identity: for any 0 6= z ∈ C and q ∈ C with |q| < 1, the
following identity holds

∞∏
n=1

(
1 + q2n−1z

)(
1 + q2n−1z−1

)(
1− q2n

)
=

∞∑
n=−∞

qn
2

zn.
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