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Abstract

In this paper we review some structure theorems which characterize certain
“nearly optimal” configurations, mostly in Erdés—type Geometry problems and
also in Algebra. Some of the latter will even generalize Freiman’s theorem on
sumsets to composition sets of linear functions. As far as we know, these are
the first Freiman—type results for non—Abelian groups.

One common feature of the problems we study is that they can usually be
re—formulated in terms of n x n or n X n x n Cartesian products in the two
or three dimensional Euclidean plane/space and certain straight lines, curves
or surfaces which pass through many points of the Cartesian product (at least
cn for curves and cn? for surfaces, respectively, for a fixed ¢ > 0 and large n).
That is why we shall also review certain bounds on incidences like those of
Szemerédi—Trotter and Pach—Sharir.



On the influence of Paul Erdos

Writing an article for a volume dedicated to the memory of Erdés and reviewing
results which are closely related to his beautiful conjectures, problems and the-
orems, certainly requires no further explanation of his influence on the subject.
However, the impact of his personality on the author himself may be worth de-
scribing in detail. Actually, I would like to mention two of my most remarkable
experiences with him.

In 1971 I was a student graduating from E6tvés University, fortunate enough

to attend a Colloquium Lecture of Erd6s on, among others, infinite combina-
torics. One of the problems really caught my phantasy. That year E.P. came
to Budapest several times and I — previously unknown to him — went to the
Institute and asked several questions on the topic. And Prof. Erdds, one of
the most famous mathematicians of the world for decades, answered the long
series of sometimes boring questions of a (that time quite illiterate) beginner
with incredible patience, explaining details in his usual, clear and elegant ways.
Last but not least, a few months later he paid $25 for the problem he helped
me solve.
The other — for me very instructive — story which also sheds some light on
his way of mathematical thinking, happened in the late eighties, at a Geom-
etry workshop in Visegrdd, Hungary. An informal group of participants were
discussing, among others, the maximal number of squares or equilateral trian-
gles which can be found in a set of n points of the plane. We soon came to
the conclusion that (portions of) a square or triangular lattice, respectively,
must give the optimal configurations. When I suggested considering regular
pentagons, Erdds immediately grasped the question and we started working on
it that night. After some (unsuccessful) attempts of finding upper bounds, he
turned by 180 degrees: “OK; we’d better define pentagonal lattices” he said. I
answered what (almost) everyone else would: “But Uncle Paul, you know, there
are no pentagonal lattices”. “Right” he replied; “that is why we should define
one”. The reader can find the end of the story in Example 3.16 and Theorem
3.17 below.

Introduction

Everywhere in mathematics, whenever we determine the maximum or minimum
of a quantity, it is interesting to describe those configurations for which this
extremum is attained. Sometimes even the stability of the extremal structures
is interesting i.e., if we are not far from the best possible value, can the structure
change very much or must it remain close to the optimal one? Such questions,
of course, tend to be harder than those of the first type.

A good example is the characterization of small sumsets. If we have an n
element set of real numbers then there must exist at least 2n — 1 distinct two—
term sums; moreover, it is not difficult to show that 2n — 1 is only attained for
arithmetic progressions. However, it was the main result of a 100-page paper of
Freiman that if we have at most, say, 1000n distinct two—term sums then the



set is contained in a (not too large) “generalized” arithmetic progression (see
Theorem 1.3 below).

In this paper we review some structure theorems which characterize such
“nearly optimal” configurations, mostly in Erdés—type Geometry problems and
also in Algebra. Some of them, e.g., Theorems 3.4 and 3.8, will even generalize
Freiman’s aforementioned result to linear functions. As far as we know, these
are the first Freiman—type theorems for non—Abelian groups.

One common feature of the problems we study is that they can usually be
re—formulated in terms of n X n or n X n x n Cartesian products in the two or
three dimensional Euclidean plane/space and certain straight lines, curves or
surfaces which pass through many points of the Cartesian product (at least cn
for curves and cn? for surfaces, respectively, for a fixed ¢ > 0 and large n). That
is why we shall heavily rely upon certain bounds on incidences (to be described
in Section 1.2).

The structure of this paper is like a tree in an orchard: it has roots, a
trunk, and several branches with fruits. For a tourist (i.e., reader), probably
the latter are most interesting so we start listing them first. Beyond the global
geometric flavor all over, one branch (Section 3.1) grows fruits (i.e., results) with
some algebraic spices: structure theorems on affine transforms of the real line
and their compositions can be found there, including the already mentioned
generalizations of Freiman’s Theorem. The next branch (Section 3.2) leans
against the former one and uses it to characterize those point sets which contain
many subsets similar or homothetic to each other. Sets which determine few
distinct directions or distances are the topic of Sections 3.3 and 3.4, respectively.
Finally, certain “circle grids” are described in Section 3.5.

However, all these fruits and branches are supported by the trunk of the tree;
i.e., the results which characterize Cartesian products and curves or surfaces
with many points. Our structure theorems typically state that such configura-
tions must contain many curves or surfaces from a family described by as few
as one parameter — though, say, straight lines form a two-parameter family,
hyperbolas y = a + b/(z — ¢) a three-parameter one, etc. An example (which,
in fact, lies in the core of the whole survey) states that if each of cin straight
lines contains can or more points of an n X n Cartesian product then at least
csn of them must be parallel or concurrent (i.e., pass through a common point,
see Theorem 2.13).

The trunk and a young shoot — Section 2.1 on the “hybrid problem”, on
which no further branches and fruits (i.e., applications) have been found so far
— grow directly from the roots formed by Sections 1.1 on sumsets and 1.2 on
the theory of incidences.

A common feature of the results shown in the “middle” part is that most
proofs use the paradigm “if you have many functions but not enough, compose
them to get more”. Sometimes these compositions will be all distinct and then
the incidence bounds work well. However, sometimes they may coincide and in



such cases a detailed analysis of the possible coincidences becomes necessary,
after which certain “commutator pairs” will be the main tools we use.

Last but not least, all the results presented in this survey suggest a general
philosophy: in a wide variety of problems it is impossible to mix up arithmetic
and geometric progressions in order to construct nearly optimal configurations.
In other words, addition and multiplication cannot tolerate each other. If a
sumset is small then the product set is large (Theorems 2.1 and 2.3); if the
composition set of some linear functions is small then they are graphs of either
parallel or concurrent lines (Theorem 3.4); if two collinear point sets determine
few directions then they must be close to either an arithmetic or a geometric
progression (a special case of Theorem 3.29); etc.

I would like to express my gratitude to Vera Sés whose comments have
increased the possible values of this survey exponentially.



Chapter 1

The roots

This first part presents the two groups of theorems (or, rather, two theories)
from which all further results developed.

Sumsets are the topic of Section 1.1. The theorem of Freiman and its “sta-
tistical” variants are mentioned here, together with a common generalization.
These will be used later on in Sections 3.1 through 3.5.

Section 1.2 studies bounds on the number of incidences between planar point
sets and families of straight lines or curves. Also, some classical applications
e.g., Beck’s “Two extremities” Theorem 1.19 and the “weak” Dirac-Motzkin
problem (Theorem 1.20) will be mentioned there.

1.1 Small sumsets

For two (usually finite) subsets X,Y of the real or complex numbers we put

X+y ¥ {z+y;ze X, yeY} and call it a sumset. In his celebrated works

[Fre66, Fre73|, Freiman studied the structure of “small” sumsets, i.e., those for
which | X + X| < C|X]| for some fixed positive C.

How can one make X + X this small? One example is the case of an arith-
metic progression when | X + X| = 2| X |—1. Also, some “generalized” arithmetic
progressions will do the trick:

Definition 1.1 Let d and n4,... ,ng be positive integers and Ay, Aq, ..., Ay
arbitrary real or complex numbers. A set G is a generalized arithmetic progres-
sion (“arithmetic GP” for short) of dimension d and size n = ny -ny-... - ng
if

d
G:{Zki~Ai; ngi<nifori:1...d},

i=1

and these elements are all distinct.



In what follows, G*™ will denote the class of arithmetic GP’s of dimension not
exceeding d and size at most n.

Remark 1.2 An arithmetic GP does, indeed, have few distinct sums; it is not
difficult to show that |G + G| < 2¢|G].

The following result says that there are essentially no other examples of small
sumsets.

Theorem 1.3 (Freiman [Fre66, Fre73], Ruzsa [Ruz92, Ruz94], Bilu [Bil99]) If
| X],1Y| > n and | X + Y| < Cn then X UY is contained in an arithmetic GP
G € G¥C " where d* = d*(C) and C* = C*(C) do not depend on n.

Remark 1.4 Theorem 1.3 remains valid in any torsion—free Abelian group.

A “statistical” version of this result was found by Balog and Szemerédi in [BS94].
Let X be a subset of the reals or the complex numbers and E a set of unordered
pairs of X (i.e., the edge set of an undirected graph H(X, E) on vertex set X).
Put

X+pXx ™ {z' +2"; (2',2") € E}.

Also, X +gY can be defined similarly for bipartite graphs H(X,Y, E) on vertex
sets X, Y.

Theorem 1.5 (Balog-Szemerédi [BS94]) If |E| > a|X|? and |X +g X| <
C|X| then some a*|X| elements of X are contained in an arithmetic GP G €
G4&HCTIXL ) where d* = d*(C,a), C* = C*(C,a) and o* = o*(C,a) do not
depend on | X|.

Their proof is based upon Szemerédi’s famous “Regularity Lemma” [Sze78].
Theorem 1.5 was used for settling a conjecture of Erdés on three-term arith-
metic progressions (see Theorem 1.7 below). First we mention a simple conse-
quence of Theorem 1.5 [BS94].

Corollary 1.6 If a set of n real numbers contains cn?® three-term arithmetic

progressions then it contains some c*n elements of an arithmetic GP G €
gd*,C*n.

Theorem 1.7 (Erdds Conjecture, Balog-Szemerédi [BS94]) If a set A of n real
numbers contains cn?® three-term arithmetic progressions then it also contains a
k—term arithmetic progression, provided that n > ng(c, k).

Outline of the proof: Such a set, by the previous Corollary, contains many
elements of an arithmetic GP of dimension d < d*. The largest of these di-
mensions, say ni, must be at least /c*n, which can be arbitrarily large if n is
large. Moreover, one of the “fibers” in this direction must intersect A in at least
c*ny elements. By a famous result of Szemerédi [Sze75], a k-term arithmetic
progression can be found. ll



Balog—Szemerédi’s Theorem 1.5 says nothing about the number of edges in E
spanned by GNX. Such a slightly stronger extension was proven by Laczkovich
and Ruzsa [LR96].

Theorem 1.8 (Laczkovich-Ruzsa [LR96]) In Theorem 1.5 above, GN X can
be required to span at least 3| X|? edges of E, for some B = B(C, ).

Their result was applied to deduce some consequences concerning planar point
sets which contain many similar copies of a given pattern, see Theorem 3.19
below.

None of the above two statistical results can assert the total coverability of X
by structures like arithmetic GP’s, since their assumption allows lots of elements
of X not related to any others (not occurring in any sums) at all.

Under the slightly stronger “uniform statistical” assumption that each ele-
ment occurs in “many” pairs (which is still weaker than that of Theorem 1.3)
X can already be covered with a bounded number of arithmetic GP’s.

Theorem 1.9 (Elekes—Ruzsa [ER03b]) Let X C C be finite, a > 0 fized and
H(X,E) a graph with all degrees at least a|X|. Let, moreover, an arbitrary
positive € be given. Now if |X +g X| < C|X| then X can be decomposed into
disjoint parts X1, Xa, ... , X with the following properties.

(1) each X; is contained in an arithmetic GP G; € G C Xl (which may not
be disjoint);

(2) each X; spans at least | X |*> edges of E (which implies that k < 1/v);

(3) there are at most €| X |*> “leftover” edges outside the X;, i.e.,

S IBN (X x X;)| < e|XP,
1<i<j<k

where d* = d*(a, C,€) and C* = C*(a,C,€) do not depend on |X|; nor does
v =7(a,C) depend on e or on | X]|.

This result does, indeed, generalize all the previous Theorems on sumsets. Of
those, the statistical versions are direct applications while to prove Theorem 1.3,
one can just take ¢ = y(1/2, C')/2; the resulting decomposition cannot have two
or more parts X;.

1.2 Incidences

In this section we review certain facts concerning point-line and/or point-curve
incidences in the plane.

We must emphasize that all the forthcoming results are specific to the Eu-
clidean plane R? (or at most the complex plane C?) i.e., they do not hold in



finite planes. Historically, the first combinatorial distinction between Euclidean
and finite projective planes was a theorem of Gallai (see [EP95]) who — solving
an old problem of Sylvester — proved that if n points are not all collinear then
there is a straight line which contains ezactly two of them.

Beyond straight lines we shall also consider certain families of curves, as
well. They will be defined in full generality in Definition 1.23. At the moment
for our purposes it suffices to recall that a plane curve is called algebraic if it
is defined as the zero set {(z,y) € C?> ; F(x,y) = 0} of a bivariate polynomial
F € C[z,y]. Also, the degree of such a curve is the (total) degree of its defining
polynomial F'.

1.2.1 The general problem of nearly optimal incidence
structures

Problem 1.10 What is the structure of those configurations of n planar points
and g curves of degree at most v (i.e., they can be described by polynomial equa-
tions of degree not exceeding r) in which the number of incidences is mazimal
or asymptotically mazimal?

It is not surprising that nothing is known — except for some trivial cases — in
this generality. Even the case of straight lines is unsolved.

In Section 2.2 we shall focus on the characterization of those configurations
which consist of n x n Cartesian products A x B with |A| = |[B| =n, A,BCR
or C, and curves which contain a positive proportion of the maximal possible
number of elements of the point set (i.e., at least cn points for a fixed ¢ > 0).

Definition 1.11 Given a positive integer k, a curve vy is k—rich in a point set
PCRif [ynP|>k.

Using this notion, we can say that the main results of Section 2.2 describe
the structure of families of straight lines, hyperbolae, graphs of polynomials or
of algebraic curves of degree r, which are cn—rich in n x n Cartesian products.
(In case of straight lines, for every Cartesian product there are n vertical and
n horizontal lines with n points each; that is why we shall only be interested in
“non-trivial” lines which are neither vertical nor horizontal.)

Instead of asking for structures, only determining the maximum number of
incidences (or, perhaps, just its order magnitude) is a much better understood
problem. Such bounds are the topic of the next section.

1.2.2 Bounds on the number of incidences

The following estimate was conjectured by Erdés and proven by Szemerédi—
Trotter [ST83] for real points and lines. Recently Csaba Téth has extended it
to C2, i.e., to complex point-line configurations.

Theorem 1.12 (Szemerédi-Trotter [ST83], Cs. Toth [T6t03]) The mazimum
number I(n,m) of incidences between n points and m straight lines of the real



or complez plane satisfies
I(n,m) = O(n**m?*?® + n + m).

Remark 1.13 a. One might expect that this result also generalizes to set-
systems where any two sets share at most one point in common. However,
as a finite projective plane of order ¢ shows, n = ¢? + ¢ + 1 points and
m = ¢*> + q + 1 lines (subsets) can produce I = (¢> + ¢+ 1)(¢ + 1) ~ ¢*
incidences which exceeds the order of magnitude of n?/3m?2/3 + n+m ~ ¢%/3.

b. Thus the above Theorem also depends on the topology of the underlying
planes. Indeed, all the known proofs of the real version rely heavily upon the
fact that a straight line cuts R? into two parts. However, the topology of C?
is much different: the four (Euclidean) dimensional space is not cut into two
by a two (Euclidean) dimensional affine subspace. That is why it is not at all
obvious to extend any of the proofs of the real version to the complex case.

c. Even the incidence structures of the real and the complex plane are different.
E.g., Gallai’s Theorem (mentioned at the beginning of Section 1.2) does not
hold in C?: nine appropriate points of an elliptic cubic have the property
that a straight line through any two of them will always pass through a third
one, as well.

A simple and elegant proof of the original real Szemerédi—Trotter result was
found by L. Székely [Sz&97]. Cs. Téth’s complex proof follows the “old” way.

This bound is asymptotically best possible. Before presenting an example,
we mention that the result also has another version which is sometimes — actu-
ally quite frequently — more convenient to use. Moreover, it is even equivalent
to the original statement (but we do not need this fact).

Corollary 1.14 (Szemerédi-Trotter [ST83] and Cs. Téth [T6t03]) There is an
absolute constant (denoted by Cs,rr in the sequel) such that, given a set of N
points in the real or complex plane, the number of k—rich lines is at most

N2 N
Cs.rr - max{ﬁ, Z} L

Remark 1.15 Of the two terms in the "max{ }”, the first one dominates if
k < v/N and the second one otherwise.

Also this result is asymptotically best possible. For k > \/N/2, just use N/k
lines with k points on each of them. Otherwise the following example works.
(The original construction of Erdés used some Number Theory to show that a
VN x +/N lattice and its “richest” lines would also do the trick.)

1.16 Example Let P ={1,2,... ,k}x{1,2,...,|N/k|} and consider the lines
y=mz +b, wherem =1,2,...,[N/(2k?)| and b=1,2,...,|N/(2k)].



There are |N/(2k?)] - [N/(2k)| > (1/16)N?/k® of them (since [z]| > 2/2 if
z > 1). Moreover, substituting z = 1,2, ..., k into any of these linear equations,
we get one of the values 1,2,...,|N/k| by

= +b<N k—l—N—N
y=mrTo=opm % k-

Therefore, all the lines contain at least k£ points of P.

The following observation asserts that “medium rich” lines cannot contain
very many pairs. More precisely, let P = {P1,..., Py} be a set of N points in
the plane and b < v/N an arbitrary number. Call a straight line L “medium
rich” (with respect to b) if b < [LNP| < v/N. We shall bound the number of
pairs P; P; located on these lines.

Corollary 1.17 The number of such pairs is at most CN? /b, where C' is an
absolute constant.

Proof: Let ly,ls,...,1; be the lines which contain at least b and at most v N
points of P and put k; = |l;NP| < /N fori =1...t. Then, (“<" in the middle
is implied by Corollary 1.14),

¢ log[V/N /b]

t
# of pairs §Z<kl> <Zki2: Z Z k? <
i=1 2 i=1 J=0  b.29 <k;<b-29+1

log[V/N/b]

. N2
< b2 Copp - ——— =
> JZ:;) ( ) SzTr (b i 2j)3
2 VR o
:4‘CSZTT‘T Z 2_]<8'CSZTT"T.

=0

A similar argument — using the “second case” of Corollary 1.14 and the
Remark after it — proves the following.

Corollary 1.18 There is an absolute constant ¢ with the following properties.
Let P = {Pi,...,Pyx} be a set of N points in the plane and B > /N an
arbitrary number. Then the number of pairs P;P; located on those straight lines
which contain at least N and at most B points of P cannot ezceed cNB. Il

Another interesting consequence is a result of Beck. Originally, it asserted
that any set of n points has at least one of the following extreme properties:
“many” points are collinear or they determine “many” distinct straight lines.

Here we show a “statistical” version of Beck’s Theorem. The notion of
“statistical” results originates from Balog and Szemerédi [BS94]. They used it
for statements in which not all pairs of n objects are considered, just a positive
proportion of them, i.e., some cn? pairs. These can be represented e.g., by a
“dense” graph on the set of objects as its vertex set.



Theorem 1.19 (“Two Extremities” Theorem) (Beck [Bec83]) Let P be a
set of n points in the plane and H(P, E) a graph with vertez set P and a set E of
at least cn? edges. Draw a straight line through each pair which is connected by
an edge of E. Then at least one of the following two must hold (with a constant
¢ = d(c), independent of n):

(i) some c'n? pairs determine all distinct lines;

(ii) or some c'n? pairs determine the very same line (and then, of course, at
least c''n points must be collinear, e.g., for ¢' =+/2c').

Proof: (unpublished) With some modifications, we follow Beck’s original proof
[Bec83]:

Denote by Lj, Lo, ..., L,, the straight lines determined by pairs from E. Put
D1,D2,--- ,Pm and ej,es,... e, for the number of points (of P) and of graph
edges, respectively, which are on the L;. (Of course, e; < (”2"), ie., v2e; < p;
for all i <m.)
Then we have

m
Zei = |E| > cn’.
i=1

For a sufficiently large constant Cy and another, small ¢y, decompose this sum

as follows:
Zei: Z e; + Z e; + Z e; + Z €;.

1<e; <Co Co<e;<n n<e;<con? con?<e;

These four sums will be denoted by >>;, > 5, > 3, D4, respectively.

Here ), and ), can be made less than cn?/4 each (which is just one
quarter of all pairs) for suitable constants Cy and co, by Corollaries 1.17 and
1.18, respectively. Now the Theorem comes easily since then either )", is non-
zero whence the existence of at least one line with many pairs — i.e., case (ii)
holds — or, otherwise, >, > cn?/2 — i.e., case (i) holds for a suitable ¢’. Hl

This also implies an affirmative answer to the “weak” Dirac—-Motzkin problem.

Theorem 1.20 (Beck [Bec83]) Given n non-collinear points in the plane, it is
always possible to select one (say Py) such that the pairs PyP; (i # 0) determine
at least cn distinct straight lines for o fized ¢ > 0, independent of n.

The still unsolved “strong” Dirac-Motzkin problem asks the same with ¢ = 1/2
and n large enough.

Finally we mention that not only the number of pairs but also that of the
collinear triples can be estimated, as well. Here we only show a result for
Cartesian products. (The proof follows that of Corollary 1.17.)

Corollary 1.21 There is an absolute constant C such that, given any n X n
Cartesian product X x Y in the plane, at most Cn*logn of its triples can be
collinear. W

10



1.2.3 Pseudolines and bounded-degree curves

A family of simple continuous curves (which do not intersect themselves) is a
pseudoline system if any two has at most one common point.

Theorem 1.22 (Clarkson et al. [CEG' 90]) The Szemerédi-Trotter Theorem
(Theorem 1.12) and Corollary 1.1/ hold for pseudoline systems in the real plane
R2.
Unfortunately, nothing is known for complez pseudolines.

In what follows I' will denote a family of simple (i.e., not self-intersecting)
continuous real curves. We say that I' is a family of r degrees of freedom if the

curves are “almost uniquely” determined by r of their points. More precisely
this means the following.

Definition 1.23 T is a family of r degrees of freedom if there is a fixed positive
integer s such that

(i) for any r points of the plane, at most s members of T pass through all of
them;

(ii) any two members of I have at most s points in common.

This notion originates from Pach and Sharir [PS90, PS98]. They found the
following generalization of Corollary 1.14.

Theorem 1.24 (Pach-Sharir [PS90, PS98]) Let P C R? be a set of N points,
' a family of curves of r degrees of freedom, and ¢ > 0. Then the number of
k—rich members of T cannot exceed

C% if k < cV/N;

c. ¥ if k> cVN,

where C = C(c, 7, s) only depends on ¢, and the parameter s in Definition 1.23,
but not on N or k.

This bound, unlike Corollary 1.14, is NOT known to give the correct order of
magnitude for r at least 3 and k < /N . The best lower bound found so far for
the case k < +/N is N"/kr(r+1)/2,
1.25 Example Let P % {1,2,... ,k} x {1,2,...,|N/k|} and T the set of
curves described by the equations

N
Y=ar_12" " +ar_ox" 2 +...a12 + ao, where a; € {1, 2,..., [—J }
rkitl

which really form a family of r degrees of freedom and consists of at least
cN" /k"(rt1)/2 curves, all k-rich in P.

11



Problem 1.26 Does this ezample give the best order of magnitude?

It is worth noting that Theorem 1.24 implies that the number of those curves
of a family of r degrees of freedom which are all en—rich in an n x n Cartesian
product is linear, independently of r.

Corollary 1.27 Let X,Y CR, | X|=|Y| =n and P = X xY C R®. Moreover,
let T' be a family of curves of r degrees of freedom. Then the number of those
v € T which are cn—rich in P is O(n), where the implicit constant depends on
¢, 7 and the parameter s in Definition 1.23, but not on n.

Finally we mention that recently Endre Szabd has proven this statement for
bounded-degree complex algebraic curves, as well (see Corollary 2. in [Sza01])
— though the Pach—Sharir Theorem is not known in this generality.

Theorem 1.28 (E. Szabé [Sza01]) Corollary 1.27 holds in C? for algebraic
curves of degree at most r.

12



Chapter 2

A shoot and the trunk.

This middle part presents the core of our survey. Section 2.1 contains results
from Additive Number Theory which typically state that if a set of numbers
is close to an arithmetic progression then it must be far from a geometric one,
i.e., sums and products cannot really be mixed up with each other. We call this
section a “shoot” (with no branches as yet) since no further applications have
been found so far. The other Section 2.2 (the “trunk”), in the contrary, forms
the basis of all results given in the third part. It presents structural results
for certain nearly extremal configurations concerning straight lines, algebraic
curves and surfaces.

Throughout both sections, the idea of the proofs will be similar. First of all,
we use the Theory of Incidences everywhere. Moreover, another common fea-
ture is that, from the assumptions, we typically have some — but not enough —
lines or curves with many points of a Cartesian product. In order to find more,
we usually compose pairs of those functions which describe the given curves (or,
perhaps, a function with the inverse of another one). These compositions will
sometimes be all distinct — like those in the proof of the “hybrid” bound —
while sometimes they can coincide. In such cases an elaborate study of these
coincidences becomes necessary — like in all the “one-parameter-structure” re-
sults, where, once this detailed analysis is done, certain “commutator pairs” will
work as our basic tools.

2.1 The “hybrid” problem of Erd6s and Sze-
merédi.

During this section A will denote a finite subset of the non-zero real or complex
numbers, and n the number of its elements.

As usual, A+.A4 and A- A stand for the set of all pairwise sums {a+da'; a,a’ € A}
and products {a-a' ; a,a’ € A}, respectively.

The following “hybrid” problem (i.e., one which mixes sums and products) was
posed by Erdés and Szemerédi (see [ES83].)

13



For a given n, how small can one make | A+ A| and | A- A| simultaneously?

In other words, denoting by

m(A) = max{|A+ A, |4- A},
a lower estimate should be found for

(n) & ‘%i:nnm(A).

Remark The philosophy behind the question is that either of |[A+ Al or |A- A|
is easy to minimize — just take an arithmetic or geometric (i.e., exponential)
progression for A. However, in both of these examples, the other set becomes
very large.

In their aforementioned paper, Erdés and Szemerédi managed to prove the
existence of a small but positive constant e such that g(n) > n'** for all n.

Later on, Nathanson and K. Ford found the lower bounds n32/3! and n'6/15,
respectively [Nat97, For98|.

The following result [Ele97b] improves the exponent to 5/4.

Theorem 2.1 There is a positive absolute constant ¢ such that, for every n—ele-
ment set A,

c-n®?<|A+ Al-|A- Al
whence ¢ -n%/* < max{|A+ A|, |A- Al}.

Proof: Denote the elements of A by a1, as,... ,a,, and define the following n?

functions.
Fin(@) = aj( — ay) for 1 <j,k <n.

Lemma 2.2 For every j,k < n, the function f;, maps at least n elements of
A+ A to some elements of A- A.

(Indeed, the image of a; + a; is a; - a; € A- A, for every a; € A.)

From a geometric point of view, the above Lemma asserts that the graph of
each of the functions f;; contains n or more points of P def (A+A) x (A-A).
Put N =|P| =|A+ A|-|A- A|. Then, by applying Corollary 1.14 to P and the
fix (with k& = n there), we get

2
TL2 S CSzTr T30
n
ie, N>C12n52 11

Another related problem was also posed in [ES83] by Erdés and Szemerédi.
They asked whether |A+ A| < C|A| implies |A- A| > ¢|A|?>~¢, for all ¢ > 0 and
¢ =¢(C,¢€). The affirmative answer was found in [ER03a].
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Theorem 2.3 (Elekes—Ruzsa [ER03a]) If |A] = n and |[A + A| < Cn then
|A- Al > cn?/logn.

In this bound one cannot completely get rid of the log factor in the denominator,
as shown by the example A = {1,2,... ,n}, for which |A4- A| <n?/log%n for a
positive exponent a.

Instead of Theorem 2.3, we prove the following more general statement
(which, for |A + A| < |.A]7/%, is also better than the bound found in Theo-
rem 2.1).

Theorem 2.4 (Elekes—Ruzsa [ER03a]) If | A| = n then (|A+A|+n)4~|A~A| >
cn®/logn.

Proof: This one will be a consequence of Corollary 1.21. Put s = |4 + A]
and p = |A- A]. Now A x A can be covered by p hyperbolae of the form
zy = A (A € A- A). An average hyperbola contains n?/p points thus n?/p?
pairs of points of A x A. By the convexity of f(z) = (3), the number of pairs
((as,a;), (ax,a;)) for which a;a; = ara is at least cn*/p, for a suitable absolute
constant ¢ > 0. From these, we can form n? - cn*/p = cn®/p collinear triples of
the type (au, av), (a;+ay, ax+ay), (a1+ay, aj+a,) in (A+A)UA) x ((A+A)UA)
and each such triple is counted at most three times. Applying Corollary 1.21
yields cn8/p < C(s + n)*logn, whence the required inequality.

It is not difficult to demonstrate a similar bound on .A/.A, but one can do
even better.

Theorem 2.5 (Elekes—Ruzsa [ER03a]) If |A] = n and |A + A| < Cn then
|AJA| > en®.

The proof is based upon the following lemma, (cf. Theorem 3.28 below).

Lemma 2.6 Let P = X x X be an N x N Cartesian product in the plane and
H(P,E) a graph on it with |E| > cN*. Then the pairs involved in E determine
at least ' N? distinct directions, for some ¢’ = c'(c).

Proof: Put n = N2 and use Theorem 1.19. The second alternative (c'n = ¢ N2
collinear points) is impossible here if N is large enough so we get ¢'n? = ¢/N*
distinct straight lines of which at most N2 can be parallel (since each contains
at least one point of P).

Proof of Theorem 2.5: Apply this Lemmato P = ((A+A)UA) x ((A+.A)UA),
N = (C + 1)n, and the n* pairs (ay, ay), (ay + a;,ay, + a;) which all determine
segments of slopes a;/a; € A/A . i

One may expect that in Theorems 2.3 or 2.5 the role of addition and multiplica-

tion/division must be symmetric; however, no bound better than n3/2 implied
by Theorem 2.1 is known for the converse situation with “+” and “-” swapped.
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2.1.1 Convexity and Sumsets.

The results of this section are from [ENR99]. It will turn out that products
had no special role in Theorem 2.1; only the concavity of the log function was
important in that statement. The methods we use are still the same: define
sufficiently many distinct compositions of the functions in question and use
incidence bounds.

Theorem 2.7 Let A C R be a finite set, |A| = n, and let f be a strictly convex
(or concave) function, defined on an interval containing A. Write

f(A) ={f(a) :a € A}.
Then we have
|A+ Al-|f(A) + f(A)] > en®/?,

where we are free to write + or — in place of the £ signs and ¢ > 0 is an
absolute constant.

(Theorem 2.1 is the special case when f(z) = logz.)

Proof: Without loss of generality assume that f is strictly monotonic (otherwise,
at the cost of a constant factor, we cut A into two parts). Consider the graph of
the functions f;;(z) = f(z Fa;) £ f(a;) for a;,a; € A. They are all distinct and
they even form a pseudoline system, since any two translates of a strictly convex
or concave graph can intersect each other in at most one point. Moreover, they
are all n-rich in P = (4 + A) x (f(A) £ f(A)), since each f;; passes through
the points (a; £ ag, f(a;) £ f(ax)), for all a;, € A. Applying Theorem 1.22 (the
pseudoline version of Corollary 1.14) to P and the graphs of the f;; yields the
required inequality. W

Put 1/A = {1/a ; a € A}. In [ES83], Erdds and Szemerédi also asked
whether at most one of A+ A, 1/A+1/A and A+ 1/ A can be small. It turns
out that already one of the first two must be large.

Corollary 2.8 |A+ A|-|1/A+1/A| > cn/2.
Proof: Use Theorem 2.7 for f(z) = 1/z. 11
Moreover, the third quantity can never be small.
Theorem 2.9 |A+ 1/A| > cn®/4.

The proof [ENR99] uses a generalization of Theorem 2.7.

Problem 2.10 Do the above Corollary and Theorem hold for subsets of C?
Let B = {b; < by < ... < b,} with the property that b; — b;_1 < bj31 — b;

holds for each 1 < i < n. Answering a problem of Erdés, it was shown by

Hegyvéri [Heg86] that |B — B| > cnlogn/ loglogn. Theorem 2.7 yields a better
bound.
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Corollary 2.11 |B — B| > cn®/?.

Proof: By assumption there exists a function f, strictly convex on an interval
I D {1,2,...,n}, whose graph contains all the points (¢,b;) for 1 < ¢ < n.
Let A ={1,2,...,n}; then B = f(A). Using Theorem 2.7 and the fact that
|[A— Al =n —1 < n, we have

5/2
1B —B| = |f(A) - f(4)] > % > en®2. 1

Problem 2.12 Can the exponent 3/2 be improved to 2 —e? Can the ezponents
5/2 in all the previous results be substituted by 3 —e?

2.2 Finding one—parametric families.

In this section we present some structure theorems which form the basis of the
further applications shown in the last part. They all derive qualitative conse-
quences from quantitative (numerical) assumptions. A typical result states that
if a large set of lines, curves, or surfaces contains many points of a Cartesian
product, then many of them must be contained in a family described by as few
as one parameter. The methods — beyond incidence bounds — include commu-
tator pairs and their younger brother: the paradigm “compose your functions
to get more”.

2.2.1 2+42=3 versions of the Linear Theorem

In what follows, we denote by £ the set of non-constant real or complex linear
functions z — az + b (a # 0).

Four equivalent versions of the main result of this section (the “Linear The-
orems” 2.13-2.16) will be presented here in three different settings:

e cN-rich lines of N x N Cartesian products;

e small image sets ®(H) def {¢(h); pe @, he H} for HC Cand ® C L;

e small composition sets ®o¥ lef {poyp ; p€ ®,9p € ¥} for ,¥ C L.

As for the latter, we mention both symmetric and asymmetric composition sets;
that is why there will be four versions altogether.

All these results state that certain sets of straight lines — that form a family
of two degrees of freedom in general — must contain “many” concurrent or
parallel lines which, of course, form a family of just one degree of freedom
[Ele97a).

Theorem 2.13 (Linear Theorem, Cartesian product version) For every

c1,c2 > 0 there exists a c3 = c3(c1, c2) with the following property.
If each of c1 N straight lines contains caIN or more points of an N x N Cartesian

17



product then at least c3N of them must be parallel or concurrent (i.e., pass
through a common point).

We do not give a direct proof; rather, we shall prove one of the three forthcoming
equivalent statements.

For arbitrary subsets H C C and ® C £ put ®(H) lef {#(h); p€ ®,h e H}

and call it an image set. Similarly, for E C ® x H, let the statistical image set
®p(H) be defined by {#(h) ; (¢,h) € E}.

Theorem 2.14 (Linear Theorem, image set version) Let H CC, ® C L
and E C & x H with N < |®|,|H|,|®g(H)| < CN for an |E| > cN?. Then
there exists a ®' C ® which consists of either parallel or concurrent lines and
|EN (' x H)| > 'N2.

Theorem 2.14 obviously implies the previous one while to prove the other impli-
cation it is sufficient to delete from & those ¢ which occur in less then ¢N/(2C)
pairs of E and then substitute CN for N.

Now we define composition sets of families of linear functions. They are
relatives of the sumsets defined in Section 1.1. An even closer relation will be
the topic of Section 3.1 below.

The set £ of non-constant real or complex linear functions, as defined above,
forms a group with operation “o”, i.e., composition ¢oyp : z — ¢(¢(z)). For
@, U C L, we put ®oVU = {poy) ; ¢ € &, € ¥} and call it a composition set.
Similarly, for E C & x ¥, we define

def

Pop¥ = {¢oy; (¢,9) € E},

and call it a statistical composition set.

Theorem 2.15 (Linear Theorem for composition sets) For all ¢,C > 0
there ezists a ¢* = c¢*(¢,C) > 0 with the following property.

Let ®, 9 C L and E C ® x ¥ with |®|,|¥| < N and |E| > cN2. Assume,
moreover, that

|Bop¥| < CN.
Then there are * C ® and ¥* C ¥ for which |(®* x ¥*)N E| > ¢*N? and

(i) either both ®* and U* consist of functions whose graphs are all parallel
(but the directions may be different for ®* and ¥*);

(i) or both ®* and ¥* consist of functions whose graphs all pass through a
common point (which may be different for those in ®* and in ¥*).

Since (£, o) is non—Abelian, the size and structure of ®o¥ and of ¥o® can be
very different, e.g., for ® = {z —» 2z +1 : t=1...N}and ¥ = {z —
2tz : t=1...N}, where |®o¥| = 2N — 1 while |[To®| = N2. That is why we
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shall also consider symmetric composition sets (Pog¥) U (Yog®), as opposed
to asymmetric ones like $ox¥. The following statement involves ¥ ! instead
of just ¥, for reasons which will become clear later in Section 2.2.2.

Theorem 2.16 (Linear Theorem for symmetric composition sets)
Let ®, 9 C L and E C ® x ¥ be as above and assume that

|(Pop® 1)U (T rog®)| < CN.
Then the conclusion of Theorem 2.15 holds.

Of course, the foregoing Theorem 2.15 is stronger than this Theorem 2.16.
(We stated them separately because it is the “weaker” symmetric version whose
proof will be outlined below.) Moreover, they can even be shown to be equivalent
both to each other and to Theorem 2.14.

Claim 2.17 Theorem 2.16 implies Theorem 2.1 and the latter implies Theo-
rem 2.15.

Outline of the proof: (see [Ele97a] for more details). In order to show the first
implication, we define a three—partite graph on vertex sets H, ® and &g (H) by
using the edges in E between H and ® and connecting ¢ € ® to ¢(z) € ®g(H) if
(¢,z) € E. Then we count the two-paths (z1, ¢, ¢(z2)) (NOT just ¢(z1)!") and
find at least ¢’ N® of them. Therefore, there are ¢’ N* four—cycles (z, ¢y, y, ¢2, )
in this graph. We conclude that ¢’ N2 pairs (¢1, ¢») have at least ¢"""’ N common
neighbors both in H and in ®g(H). Denote by E* the graph formed by these
pairs and observe that, for (¢1,¢2) € E*, the functions ¢; 'op; and ¢;op;*
have graphs which are ¢""N-rich in H x H and ®5(H) x ®g(H), respectively.
According to Corollary 1.14 (or 1.27), the number of such straight lines is O(N).
Therefore, |(¢10g-py ") U (¢, ‘op=¢1)| < C'N; thus we can use Theorem 2.16
to find the required sub—structure ®’.

As for the second implication, first pick a “sufficiently general” u € C, i.e., one
for which the values ¥ (u) (¢ € ¥) are all distinct. Put H = ¥({u}) and define
the edge set E' = {(¢,¥(v)) ; (¢,9¥) € E} on vertex set U H. Observe that
|®p (H)| < |®og¥| < CN and use Theorem 2.14 to find many concurrent or
parallel ¢. Repeating for ¥~log(®')~! (at the cost of some technical details,
see [Ele97a)) finishes the proof. ll

2.2.2 Proof of the Linear Theorems

Of the four equivalent versions, it is the “symmetric composition set” form, i.e.,
Theorem 2.16, whose proof we are going to present here.

Since we are studying the non-Abelian group L, it is quite natural to define
some notions that can be considered as relatives of the usual commutators.

Definition 2.18 For ¢, € L, the pair (¢oyy~!,1~tog) is called the commu-
tator pair defined by ¢ and 1. (This name originates from M. Simonovits.)
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Also, for @, ¥ C L and E C ¢ x ¥, the commutator graph éE(V, E) defined by
E, has edge set E which consists of the corresponding commutator pairs, i.e.,

V = (0g¥ ) U (¥ tog®); and
E={(gov ", ¢ "og) ; (¢,9) € E}.

Of course, the two terms of a commutator pair are identical (and the corre-
sponding edge in G is a self-loop) iff ¢ and ¢ commute.

Remark 2.19 The commutator graph has the interesting property that, in any
of its connected components, the vertices represent functions with all identical
leading coeflicients (i.e., equal slopes). This is because the two endpoints of any
edge (the two members of a commutator pair) obviously have this property.

Different pairs may define identical commutator pairs. The following observa-
tion gives a sufficient condition for the commutator graph to have all distinct
edges.

Lemma 2.20 If, for ¢,v € E, the intersection points of the straight lines ¢
and v all exist and are distinct, then no two edges of the commutator graph
coincide.

Proof: If (u,v) is the point of intersection of ¢ and 9 then u is the unique fixed
point of ¢y "'o¢ and v is the unique fixed point of poyp=1. N

Now we prove the “symmetric” Linear Theorem.

Proof of Theorem 2.16: We shall use the dual of Beck’s Theorem 1.19 where the
role of lines and points are exchanged, concluding that many intersection points
are distinct or many coincide. First we apply this to the straight lines & U ¥
(actually functions which we identify with their graphs) and edge set E. If many
pairs (¢, 9) € E have identical points of intersection then we are done; even the
common points of ®* and ¥* coincide. Otherwise there are many distinct points
of intersection, whence, by Lemma 2.20, the commutator graph éE(V, E) has
many distinct edges. It is not difficult to show that a “dense” graph (where the
number of edges is quadratic in the number of vertices) contains a connected
component which still has a quadratic number of edges. These commutator
edges, on the one hand, connect vertices with all equal slopes by Remark 2.19;
while on the other hand, they are generated by many edges from E. There
again, we find a connected component with a quadratic number of such original
edges; their end-vertices in ® and ¥ will do as ®* and ¥*, respectively (see
[Ele97a] for more details). W

2.2.3 Hyperbolas and the projective groups of R and C.

Let P denote the group of non-degenerate projective mappings of C, i.e., the set
of non-constant linear fractions z — Z;_ts (where ad — bc # 0). Note that linear
functions are also contained in P; that is why we shall consider straight lines as
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special hyperbolas in the sequel. The Linear Theorem 2.13 can be generalized
to hyperbolas as follows [EKO01].

Theorem 2.21 (Hyperbola Theorem, Cartesian product version) For
every ¢ > 0 there is a co = co(c) with the following property.

Let X xY C C? be an N x N Cartesian product and H a set of cN hyperbolas of
equations y = y(z) (for somey € P). If each h € H contains at least cN points
of X XY then there exists a Ho C H with |Ho| > coN, and linear fractions f,
g € P for which

Ho C{zr f(g9(z)+t); teCl or

Ho € {2 f(g(e) 1) ; teCh 21

This result generalizes the Linear Theorem 2.13 since parallel and concurrent
lines are graphs of functions of the first and second type in (2.1), respectively.
Moreover, — just like its linear counterpart — it follows from its forthcoming
composition set version.

Remark 2.22 As for real linear fractions, it is possible that we must use
complez coefficients in the foregoing expansion. E.g., the graphs of the func-
tions hpy(z) = (z + tan(m))/(1 — ztan(m)) (1 < m < N/2) are N/2-rich in
{tan(1),... ,tan(N)} x {tan(1),... ,tan(N)}. However, they can only be writ-
ten as

o (1) = a(m +¢ tan(m) +i)

z—i tan(m)—i

where a(¢) =i(¢ — 1)/(¢ + 1). This — not really aesthetic — situation can be
avoided by also allowing a third form: for real fractions f, g,

%oc{x|—>f<%) ; t € R},

in (2.1), which turns out to be a special case of the (complex) second version
there.

In what follows we consider P with the composition as group operation and
state a result on composition sets.

Theorem 2.23 (Projective Theorem, function version) For every C > 0
there is a cog = co(C) with the following property.

Let , % C P with N < |®|,|¥| < CN and E C ® x ¥ with |E| > N2. If
|®op¥| < CN, then there ezist g C &, ¥o C ¥ with |[E N ($¢ x ¥g)| > cgN?,
such that either both are of the first type or both are of the second type in (2.1),
perhaps with different pairs of functions (f,g) for ®o and ¥y.
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The proof [EKO1] is similar to that of the Linear Theorems in the previous
section. Actually, an equivalent symmetric version can be proven using commu-
tator pairs while in the proof of equivalence, in place of Corollary 1.14, Corollary
1.27 is used in the real case and Theorem 1.28 for complex linear fractions.

This result can also be reformulated in terms of subgroups and cosets as
follows [EKO1].

Theorem 2.24 (Projective Theorem, subgroup version) If ® and ¥ are
as above then there exist ¢ € ®, ¢ € ¥, and an Abelian subgroup S C P such
that

[N S| > coN;

It would be interesting to know whether something similar to Theorem 2.24
holds for other groups beyond P. One cannot expect the original statement
without any modifications, as shown by the following example of Endre Szabé.

2.25 Example Let N = m* and & consist of the following matrices:

1 z y
M(z,y,2)= [0 1 2],
0 0 1
where £,z = 1,2,... ,mand y = 1,2,... ,m?. Then |®| = m* = N, moreover

1 z4+a b+zc+y
M(may’z)'M(a’abac): 0 1 z+c ;
0 1

o

thus we only get |$o®| < CN distinct products. (The coefficient C' = 12 will
dosincel1<z+a<2m,1<z+c<2mand1<b+zc+y<3m?)

On the other hand, M(z,y, z) and M(a,b, c) only commute if zc = az, i.e., the
vectors (z,z) and (a,c) are parallel. We conclude that any coset of an Abelian
subgroup only contains m3 = N3/4 = o(N) elements of ®.

It may well be true that e.g., even for higher dimensional matrix groups, Theo-
rem 2.24 holds with S a nilpotent subgroup.

2.2.4 Polynomial and rational curves.

As usual, we denote by R[¢] and C[t] the ring of polynomials with real or complex
coefficients, respectively. Similarly, R(¢) and C(¢) stands for rational functions
(quotients of polynomials) over R and C. For short, the graph of a polyno-
mial or rational function will be called a polynomial curve or a rational curve,
respectively.

The following result [ER00] generalizes Theorems 2.13 and 2.21 to rich poly-
nomial and rational curves. The proof reduces the general statement to those
two special cases, using some Commutative Algebra.
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Theorem 2.26 (Elekes—Rényai [ER00]) For every ¢ > 0 and positive integer
d there is a co = co(c,d) with the following property.

Let X xY C C? be an N x N Cartesian product and F C C(t) a set of cN
rational functions of degree at most d. If the graph of each f; € F contains at
least ¢cN points of X X Y then there ezists an Fo C F with |Fo| > coN, and
rational functions f, g € C(t) for which

.7'-0C{$I—>f
.7'-0C{$I—>f

g(z)+s); s€C}; or
g(z)-s); seC}.

Moreover, if F C C[t] or F C R[t] consists of polynomials, then also f and g
can be required to be polynomials in C[t] or R[t], respectively.

Finally, if F C R(t) consists of real rational functions and we insist on real
f,g € R(t), then a third type (similar to that in Remark 2.22) must also be
allowed.

~~~

2.2.5 Polynomial and rational surfaces.

Now we turn our attention to rational and polynomial surfaces in three dimen-
sions (i.e., graphs of functions from one of C(z, y), Clz,y], R(z,y) or R[z,y]). In
the plane, the graph of any function can be ¢N—rich in a suitably chosen N x N
Cartesian product. (That is why we were only interested in large families of such
curves.) This is not the case for N x N x N Cartesian products and ¢N2-rich sur-
faces in the three-space. Of course, any plane z = ux + vy +w will contain N?2/2
points of {1/w,2/u,... ,N/u} x{1/v,2/v,... ,N/v}x{1l4+w,24w,... ,N+w}.
However, already for very simple surfaces like rational or polynomial ones, this
is impossible in general. It turns out that surfaces which are rich like those
mentioned above, must have a rather special form (which, again, has a certain
“either sums or products” flavor). The problem originates from [Ele98b].

Theorem 2.27 (Elekes—Rdonyai [ER00]) For every ¢ > 0 there is an ng = no(c)
with the following property.

Assume that F' € C(z,y) has the property that for an N > ng there exists an
N x N x N Cartesian product X xY x Z C C® in which the graph of F is
cN2%-rich. Then there erist rational functions f,g,h € C(t) such that

F(z,y) = f(g(z) + h(y)); or
F(z,y) = f(g(z) - h(y)).

Also, the special cases concerning polynomials and real rational functions men-
tioned in Theorem 2.26 remain valid.

Remark 2.28 Such functions are really sufficiently rich in appropriate Carte-
sian products X x Y x Z. E.g., if F' can be expressed in terms of a sum or
product then we can make g(X) and h(Y) an arithmetic or geometric progres-
sion, respectively. Even generalized arithmetic or geometric progressions will do.
It can also be shown using Theorem 1.5 that each of g(X), h(Y) and f~!(2)
must contain ¢*N elements of such a progression of size ¢**N.
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The following is a simple analytic consequence which may be useful in certain
applications (e.g., Theorem 3.37).

Corollary 2.29 (Elekes—Rényai [ER00]) If ¢ and F' are as above then
(1) the quantity

(z,y) & oF oF
DHY) = 5z 5y
is the product/quotient of two functions of one variable each; indeed, using
Theorem 2.27, in the first case q1(z,y) = ¢'(z)/h'(y); while the second case
can be reduced to this one since f(g(z)-h(y)) = f(exp(log g(z)+logh(y))) =

o(v(z) + x(y));
(2) also,

def 62( log| ¢1(z,y)|)

identically (by (1)), wherever q» is well-defined.

2.2.6 Algebraic surfaces.

Problems of Combinatorial Geometry can often be transformed into polynomial
(i.e., algebraic) equations. Several questions on distances or incidences can be
reduced to studying whether the zero set

Sr déf {(:c,y,z) € R? 5 F(fﬂ,y,z) :0}

of a polynomial F' € Rz, y, z] of three variables can contain many points of an
N x N x N Cartesian product of the three—space. In the previous section we
could see surfaces of equation z = f(z,y) i.e., F(z,y,2) = z — f(z,y) = 0; now
we show some structure theorems on general trivariate polynomials.

A purely algebraic result of E. Szabé [Sza01] is the following. (Note that it
only requires less than N2 points of a Cartesian product on the surface.)

Theorem 2.30 (E. Szabd [Sza01]) If the surface Sg contains cN'%5 points of
an N x N x N Cartesian product then F is “locally the pull-back of a one
dimensional algebraic group operation”. (We do not define these notions here.)

In some sense, this is a generalization of Theorem 2.26. (Here — beyond the
additive and multiplicative groups of C — there also occurs the Abelian group
C/7? related to elliptic cubics.)

Assume that the algebraic surface S = Sg is not “vertical cylindric”, i.e.,
F € C[z,y, 2] does depend on z. Then its tangent planes are non-vertical at
almost every point P € Sp. (Here “almost every” is not meant in measure
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theoretic sense; rather, it stands for “on a dense open subset relative to S”.) In
a sufficiently small neighborhood of such a P € Sg, the surface is the graph of
an analytic function ¢p(z,y).

What we really need is a consequence of Theorem 2.30 [ES03]. It, again, is
a relative of Theorem 2.26 for general algebraic curves.

Theorem 2.31 (Elekes—E. Szabd [ES03]) For any positive integer r there exists
an no = no(r) with the following property.

Let F € Clz,y,z] of degree v depend on each of z, y and z. Assume that
the algebraic surface S = Sg contains at least NV points of an N x N x N
Cartesian product, for an N > ng. Then, for almost every point P € S, there
ezist analytic functions f, g, h in one variable such that the function ¢p defined
above (i.e., which describes S in a neighborhood of P) can be expressed as

¢p(z,y) = f(9(z) + h(y))-

One might wonder why the product form disappeared. However, as mentioned
in Corollary 2.29 part (1), they can be expressed in terms of sums if we also
allow analytic functions like exp and log. (Actually, we must allow even more
complicated functions in this theorem, like the Weierstrass p function.)

Also, Corollary 2.29 holds for algebraic surfaces, as well.
Corollary 2.32 (Elekes—E. Szabo [ES03]) If S is as in Theorem 2.31 then

def O¢p O0¢p
q(r,y) = or 8—y

def 9*(log| qi(z,y)|)
0zxdy

q2 ($, y)

satisfy the statement of Corollary 2.29; especially, g2 = 0 for almost all P € S.
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Chapter 3

Branches and some fruits

3.1 Generalizations of Freiman’s Theorem

The main result of this section, on the one hand, generalizes Freiman’s result
Theorem 1.3, while, on the other hand, it characterizes small composition sets.
We have seen (in Theorem 2.15) that such composition sets must contain many
functions with parallel or concurrent graphs. Now we show that they must even
be contained in the union of a bounded number of such parallel or concurrent
bunches.

We start with two examples of small composition sets. Recall that £ denotes
the set of non-constant real or complex linear functions z — az + b (a # 0).

3.1 Example Let G C C be an arithmetic GP, ®,¥ C £ and C a positive
integer. We say that the pair (@, ¥) is an arithmetic GP-type structure based
upon G with C slopes if there are non-zero complex numbers si, sz, ... , S¢ such
that

'UT = {z—sz+g; 1<i<C andg€G)

Such structures really determine small composition sets since it is known from
Remark 1.2 that arithmetic GP’s have small sumsets.

Remark 3.2 At first glance it might seem awkward that ®~! occurs together
with ¥. However, a closer look shows that “®o¥ is small” is equivalent to
“T~1od~! is small”; thus ! and ¥ must play equal roles.

Geometric GP’s can be defined similarly to arithmetic ones (Definition 1.1);
instead of sums of linear combinations of the differences A; we consider products
+]] qf" of powers of positive quotients ¢;. (Note that for convenience we allow
both positive and negative signs here.) Also, we shall use G%™ for geometric, as
well as arithmetic, GP’s — hopefully this will cause no ambiguity.
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arithmetic GP slopes from a

geometric GP

= C slopes

arithmetic GP

Figure 3.1: ® (not ®~!) and ¥ in an (a) arithmetic (b) geometric GP-type
structure.

3.3 Example Let G C C be a geometric GP, ®, ¢ C L and C a positive
integer. We say that the pair (@, ¥) is a geometric GP-type structure based
upon G with C bunches if there are complex numbers u;, us, ... ,uc and v such
that

'UT = {z—gr—uw)+v; 1<i<C andge€ G}

These structures, again, determine small composition sets by the “geometric
progression” version of Remark 1.2 for product sets. Moreover, no other, essen-
tially different example exists beyond these. This is formulated in the following
statement which is the main result of this section.

Theorem 3.4 (Elekes [Ele98a]) For every C > 0 there are C* = C*(C) > 0,
C** = C**(C) > 0 and d* = d*(C) > 0 with the following property. If ®,¥ C L
with |®|,|[¥| > N and

|8o¥| < CN

then (®,T) is contained in an arithmetic or in a geometric GP-type structure

with < C* slopes or bunches, respectively, based upon an arithmetic or geometric
G c GiCN.

Outline of the proof: First use Theorem 2.15 to find a regular subset ®* (we
shall not need ¥* here). This is contained in a left coset of one of the two types
of Abelian subgroups of £: functions of slope 1 or those which pass through a
common point (u, ) on the line y = z. Therefore, ¥, too, must be contained in
a bounded number of such right cosets (otherwise the composition set would be
too large). This implies that the original @ is contained in a bounded number of
left cosets. Then we use Freiman’s Theorem 1.3 or its multiplicative counterpart
to find suitable arithmetic or geometric GP’s, respectively. Finally, we collect
these in one — larger — GP (see [Ele98a]). W

Remark 3.5 As mentioned before, this theorem is a common generalization
of Theorem 1.3 and of its product version, as well. They are equivalent to the
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special cases when ® = ¥ = {z +a; ; a; € X} or they are of type a;z (a; € X),
respectively. (Of course, this gives no new proof for Freiman’s Theorem since it
was used in the foregoing argument.)

Also an “uniform” statistical version can be deduced from Theorem 1.9.

Theorem 3.6 Let a > 0 be fized, ®,¥ C L as in Theorem 3.4, and H(®, ¥, E)
a bipartite graph with all degrees at least aN. If

then (&, ¥) is contained in a bounded number of arithmetic and geometric GP-
type structures.

We also show a related result on the structure of small image sets.

Definition 3.7 Let G be an arithmetic GP and C a positive integer. We say
that ® C £ and H C C is an arithmetic GP-type structure based upon G with
C slopes if there are non-zero real or complex numbers s1, Sa,. .. ,Sc such that

H =G;
d={z—s(z+g9); 1<i<C, geqG}; andso

C
®(H) = | s:(G+G).

Similarly, if G is a geometric GP then ® C £ and H C C is a geometric GP-type
structure based upon G with C bunches if there are real or complex numbers u
and vy, vs,...,vc such that

H = (GU{0}) + u;
d={zglz—u)+v;; 1<i<C, g€ G}; andso
c
®(H) = |J((G-GU{0}) + ).

i=1

Theorem 3.8 For every C > 0 there are C* = C*(C) > 0 and d* = d*(C) >0
with the following property. If ® C L and H C C with |®|,|H| > N and

|®(H)| < CN

then (®, H) is contained in an arithmetic or in a geometric GP-type structure
with < C* slopes or with < C* bunches, respectively, based upon an arithmetic
or geometric gdCTN

This result, again, generalizes the two versions of Freiman’s Theorem 1.3.

It would be interesting to know whether also an “uniform” statistical version,
similar to Theorem 3.6, can be stated. In terms of Cartesian products, this
question is equivalent to the following.
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Problem 3.9 Is it true that if each of cN straight lines are c¢N—-rich in an
N x N Cartesian product then the lines are contained in the union of C = C(c)
arithmetic and geometric GP-type structures?

An affirmative answer would be implied by the following conjecture of Jézsef
Solymosi. We say that some straight lines are in general position if no two are
parallel and no three pass through a common point.

Conjecture 3.10 (J. Solymosi, unpublished) Among the lines which are cN-
rich in an N x N Cartesian product, at most C = C(c) can be in general
position.

3.2 Similar and homothetic subsets.

How many subsets of a set of n points in the Euclidean plane (or in higher
dimensions) can be similar/homothetic to each other, or to a prescribed pattern?
The study of this problem was initiated in [EE94].

Definition 3.11 Given a set (or “pattern”) P = {P,P,,... ,P;} of t > 2
points and another set A = {43, As,... ,A,} in the r dimensional space R", we
denote the number of those subsets of A which are similar to P by

sV (PA) E #{A cA; A ~P}

where “~” means “similar”,i.e. a magnified/shrunk and possibly rotated image.
Similarly, the number of subsets homothetic to P is

RO (P, A) A cA; A ~P)

where “~” means “homothetic”, i.e. a magnified/shrunk image in the same
position (rotations are not allowed).

We shall be interested in the order of magnitude of these two quantities for large
values of n = |A|. The following planar bound is obvious.

Proposition 3.12 h® (P, A) < s®)(P, A) < 2n(n - 1).

Indeed, P; € P is to be mapped to one of the n points of A and P, to one of
the remaining n — 1. Once these two images are given, there remain at most
two possibilities.

As we shall see, the order of magnitude of s(3)(P, A) can really be quadratic
for various (fixed) patterns and can be close to quadratic anyway. As for the
order of magnitude of h(®) (P, A), it cannot exceed n3/2 if P is a proper planar
(i.e., non—collinear) pattern and this, again, can be attained.

Moreover, we also consider “larger” homothetic and similar subsets, as well.
This means that, together with n = |.A|, also ¢ = |P| may go to infinity. E.g., we
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may ask for the maximal number of similar/homothetic 1/n—subsets or n/100-
subsets of an n element set. In such cases, we shall use the notation

HO(t,n) & max{h®) (P, A) ; [P| =1, |4] = n}
and consider H as a function of two variables. The only dimension, where the
order of magnitude of H is known for general (i.e., not fixed) ¢ and proper
r—dimensional patterns P, is r = 1.

Theorem 3.13 There is a positive constant C (independent of t and n) for
which

2
HO(t,n) < C"T.

Moreover, if n > 2t then

TL2

(1) 1

HY(t,n) > TR

Proof: [Ele99c] Assume that |P| =t, |A| =n and H = HV (t,n) = h()(P, A).

Denote by Py,...,Py the subsets of A which are homothetic to P and by f;

(for ¢ = 1,..., H) those linear functions f;(z) = m;z + b; which map P to P;,

i.e., for which f;(P) = P;. Then the graph of each such f; contains ¢ points of

P x A, i.e., those of the form (p, f;(p)) for p € P. By the Szemerédi—Trotter

Theorem (actually by its Corollary 1.14) the number of such graphs (straight
lines) satisfies

(tn)*> _ , n?
-C -

P x AP?
HSCSZT‘I"| t3 | =C t3
as required.

The lower bound comes easily by showing that an arithmetic progression of n
terms contains | 53 || 5] (or more) homothetic copies of an arithmetic progression
of t terms. ll

Remark 3.14 The foregoing result gives the exact order of magnitude (apart
from the multiplicative constant) for 2¢ < n. Even for smaller values of n, two
arithmetic progressions show that

n—t+1 ifn<2t-1

HY(t,n) > .
t+1 ifn=2t—1.

Perhaps this formula also gives the exact value, i.e., equality may hold here in
place of “ >”.

Moreover, for higher dimensional cases, the same upper bound as in Theo-
rem 3.13 can be demonstrated by projecting the space to a sufficiently general
straight line (such a way that the images of no two points of A coincide). How-
ever, for full dimensional patterns, this bound is not known to be best possible
and, probably, it is never sharp — as it has already been mentioned for fixed
size P.
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For similar subsets in the plane, we have the following.

Theorem 3.15 (Cs. Téth [T6t03]) cn?/t < SP)(t,n) < Cn?/t.

Proof: The first inequality comes from H®)(t,n) < §?)(¢,n) and Theorem 3.13
while the second one can be shown by repeating the previous argument using
complex linear functions. l

Here again, nothing is known in higher dimensions, unless ¢ is fixed.

3.2.1 Fixed patterns.

For P fixed and n an arbitrary positive integer, we write

S (P, n) def lr}{l‘a;x s (P, A) and

HO(P,n) & max h" (P, A).

By Proposition 3.12, S (P,n) = O(n?). The simplest non-collinear example,
when this order of magnitude is attained, is a square as P and a 1/n x v/n square
lattice. There also are this many equilateral triangles in a triangle lattice. The
first non-trivial question asks about P a regular pentagon. It might be natural to

think — since no pentagonal lattice exists — that a quadratic order of magnitude
is impossible here; but this is not the case [EE94].

3.16 Example Let ¢ be the principal fifth root of unity and define a “pentag-
onal pseudo-lattice” by

Goo &
Then n suitable points of G, contain cn? regular pentagons. Indeed, if we
consider G, := {aze® + aze? + a1e + ap ; V]a;| < m} C G, then any pair of
points of G,,, will determine a regular pentagon (the first point as its center and
the other one as a vertex) whose vertices are in Gy7y,. Thus, for n = |Gi7,,|, the
order of magnitude of S©)(P,n) is at least |G,,|? > cn?.

{ase® + a2e® + a1e +ap ; a; € 7.}.

Similar constructions give the following result.

Theorem 3.17 (Elekes—Erdés [EE9/])

(a) If P C R? can be represented in the complex plane C as a set of algebraic
complez numbers then S (P,n) > c,n?, where c, depends on P but not
on n.

(b) If s denotes the transcendence degree of P C C then
__ b
S (P,n)>c-n "V logn

where b and ¢ depend on P but not onn. Thus, for anye, S (P,n) > n?—c.
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There remains one more question: is it true that if a pattern cannot be repre-
sented as algebraic complex numbers then S()(P,n) = o(n?)? The answer is
in the negative, since all triangles can occur a quadratic number of times.

Theorem 3.18 (Elekes—Erdds [EE94]) For any triangle T and n =1 mod 3,

18
It was observed by Laczkovich and Ruzsa [LR96] that the order of magnitude
depends on the algebraicity of the cross ratios — instead of the algebraicity of

the points themselves.

Theorem 3.19 (Laczkovich—Ruzsa [LR96]) If the cross ratio of any four points
of P C C is algebraic then S@ (P,n) > c,n?. Otherwise S (P,n) < B(n),
where B(n) is a bound independent from P, satisfying B(n)/n? — 0.

The structure of the asymptotically extremal configurations is also described for
certain patterns in [AEFMO02]. An interesting phenomenon appears here. For £
an equilateral triangle and a set .A of n points, if s(3) (£, A) > (1/6+¢)n?, then A
must contain a k x k portion of a triangular lattice (provided that n > ng(k,€)).
However, for a smaller positive constant c, it is not difficult to find a set A of
n points located on as few as three straight lines with s(2)(£,.4) > cn?. This
means that, in this case, the asymptotically extremal structure is not stable.

The problem of estimating s(") (P, A) and S")(P,n) in the higher dimen-
sional space R" is still wide open. The simplest question is the following.

Problem 3.20 (Elekes-Erdés [EE9]]) Denote the regular r—dimensional sim-
plex by A”. Determine the order of magnitude of S®)(A2%,n) and S®) (A3, n).

The only estimates known that time were

en? < S@ (A% n) < S® (A% n) =o(n®) and
en®/? < SG)(A3 n) = o(n?).

Here, for equilateral triangles (in the first row), the o(n®) bound comes from
the well-known fact that, among the angles determined by n points of R?, only
o(n®) can be equal (see [CCEGT79]). As for tetrahedra, the lower bound is best
demonstrated by a parallelepiped lattice (which even contains at least that many
homothetic tetrahedra) while the upper bound comes from the triangle bound
and from the fact that S©) (A%, n) < 1SG)(A2 n).

Recently Akatsu—-Tamaki-Tokuyama [ATT98] have improved the upper bounds
to cn?2. Abrego and Fernandez-Merchant [AFMO02] proved

SW (A% n) < S (A%)n) < en®71/0.

They also mention that, for r > 6, the order of magnitude of S(") (A2, n) is n?,

as shown by a generalization of Lenz’ construction (the original can be found in
[Exrd75]).
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Finally, for a cube o, a result of Sarkozi [Sar61] implies S©®)(a®,n) > cn®/3.

The right order of magnitude is still unknown.

As for the number of homothetic copies of fixed patterns in the general r—
dimensional Euclidean space, the order of magnitude is given by the following
result.

Theorem 3.21 (a) H")(P,n) = O(n'+t/7) if P is not contained in any r — 1
dimensional subspace;

(b) This order of magnitude is attained for any pattern where the coordinates
of the points are all algebraic; moreover, H(") (P,n) > en' V¢ anyway;

(¢c) There are patterns for which H")(P,n) = o(n+1/7).
Here (a) and (b) can be found in [EE94] while (c) in [LR96].

3.2.2 The structure of large homothetic subsets.

The one dimensional form of the problem we study in this section is the follow-
ing.

Question 3.22 What is the structure of those pairs P, A for which h() (P, A)
is asymptotically best possible, i.e., |P| =t, |A| = n and hV (P, A) > con?/t,
for a fized co > 07

Historically, the first result in this direction was that of Balog-Szemerédi [BS94]
who settled the special case of P = {0, 1,2} as a lemma to prove a conjecture
of Erdés on three-term arithmetic progressions. Other fixed patterns have been
mentioned in the previous section.

As for the case t — 00, no structure theorem is known in general. One pos-
sible reason for this is that the (asymptotically) extremal configurations for the
Szemerédi—Trotter Theorem and its Corollary 1.14 have not been characterized
so far. (Perhaps this characterization may not be easy.)

However, in the “upper extreme” case when ¢ is a positive proportion of n,
it is possible to describe the asymptotically optimal configurations, i.e., those,
for which H)(¢yn,n) > can. Of course, one can only describe that portion of
A, whose points are covered by at least one homothetic copy of P. (The rest
can be arbitrary.) That is why the following result involves

Ap E | J{P' c A; P~ P}

The interesting feature of the statement is that all elements of Ap can be
accounted for — even those which are contained in as few as one copy P’.

For arithmetic and geometric GPs, denote by “@®” the natural operation:
“+” and “-”, respectively. Using this notation, the following structure theorem
holds [Ele99c].
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Theorem 3.23 If P, A C R with |A| = n, [P| = cin and hD (P, A) > con
then there ezists an arithmetic or geometric GP G € G4 ¢ in R for which
P is contained in a shifted copy of G while Ap is contained in C* homothetic
copies of G ® G.

The proof is an easy application of Theorem 3.8, using the functions f; defined
in the proof of Theorem 3.13. This argument (using complex f;) also gives the
following.

Theorem 3.24 If P, A C R? with |A| = n, |P| = cin and s (P, A) > con
then there exists an arithmetic or geometric GP G € G4 €™ in C for which P
is contained in a shifted copy of G while Ap is contained in C* similar copies

of G G.

Here again, no structure result is known about similar copies in higher dimen-
sions.

Also, for the homothetic Theorem 3.23, it is not obvious, how to generalize
it to higher dimensions and how to define GP’s there.

Of course, arithmetic GPs consisting of numbers extend naturally to arith-
metic GPs of vectors of R" — we just let the differences A; be such vectors.
In this generality, an arithmetic GP has two parameters related to dimension:
we shall call r the vector dimension while d the progression dimension. It will
still hold that |G + G| < 2%|G| and it also remains true that G + G contains |G|
homothetic copies of G.

Geometric GPs do not really extend to R". (There is no natural multiplica-
tion there.) The best we can do in order to have proper r-dimensional geometric
GP-type structures is to place a copy of a one dimensional G on each of some
concurrent straight lines which span R”. It will turn out that no other geomet-
ric GP-based configurations can produce many large homothetic subsets. (This
phenomenon can be considered as an “implicit evidence” of the intuitive fact
that geometric GPs are inherently one-dimensional objects.)

Definition 3.25 Let C be a positive integer. We call J a geometric GP-type
bunch, of center b € R", located on C straight lines and based upon a geometric
G C R, if there exist vectors v1,... ,v¢c € R" such that

C
J={b}u|J{gmi +b; g€ G}.
i=1

Also, with the same center b and vectors 7; but with G - G in place of G above,
we shall denote the resulting structure by J - J. (Thus, in this “product”, the
lines do not change — just the geometric GPs on them extend.)

Note that J - J contains | 7| homothetic copies of J. Of course, |7 -J| < 2¢|7|
still holds.
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Theorem 3.26 (Elekes [Ele99c]) If P, A C R" with |A| < n, |P| > cin, and
h(") (P, A) > can, then

(i) either a shifted copy of an arithmetic G € G4 ™™ contains P, while Ap
is contained in C* homothetic copies of G+ G;

(i) or a geometric GP-type bunch J on C* lines, based upon a geometric GP
G € GO contains P, while Ap is contained in C* homothetic copies

Of j : j;
where d* and C* only depend on ¢ and C' but neither on n nor on r.

(Note again the asymmetry between several dimensional arithmetic versus one
dimensional geometric GPs; cf. Figure 3.3 below.)

It would be natural to try a proof by induction and everything goes well
from r > 2 upwards. However, no inductive proof is known fromr = 1 tor = 2.
Rather, a result on plane sets with few directions (see Theorem 3.29) can be
shown using Theorem 3.23 as in [Ele99c] — or directly from Theorem 3.8 —
and that result can be generalized to higher dimensions by induction; finally,
the high dimensional version will imply Theorem 3.26 (see Corollary 3.35).

3.3 Sets which determine few directions

Definition 3.27 For a finite point set A4 C R", we write
D(A) def #{directions of segments A; Ay | A1, 4> € A, A; # A>}.

We do not distinguish segments A; A; and A3 A;; thus two segments have equal
directions iff they are parallel.

The study of sets which determine few distinct directions was initiated by
Scott [Sco70]. His following conjecture was settled in the affirmative by Un-
gar [Ung82].

Theorem 3.28 (Scott’s Conjecture, Ungar [Ung82]) For any mon—collinear
planar point set, D(A) > |A| — 1.

Sets for which equality holds are called critical by Jamison [Jam84] and those
with one more directions, i.e., D(A) = |A|, are near—critical. He gives an
overview of the known critical and near—critical configurations of the Euclidean
plane. Among others, he characterizes those such configurations .4 which lie on
the union of two or three straight lines. His two basic structures are:

(a) copies of an arithmetic progression on each of two or three parallel lines
(with the starting points fitted appropriately) — Jamison calls them “bi-
columnar” and “tricolumnar” arrays, respectively; and
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Figure 3.2: Generalized Jamison configurations

copies of a geometric progression on each of the four half-lines of the two
b iesof a g tri gressi h of the four half-li f the t
coordinate axes, plus the origin — an “exponential cross”.

His results can be extended to point sets which determine more than n directions
but not more than Cn, provided that a good proportion of the set is collinear.
Beyond the aforementioned “Jamison configurations”, we define “generalized
Jamison configuration” to consist either of C copies of an arithmetic GP, one
on each of C parallel straight lines, or a geometric GP-type bunch (see Definition
3.25 and Figure 3.2). Moreover, we write

D(As, As) def #{directions of segments A; 4> | 4; € A;}.

Theorem 3.29 Let C > 1 be fized; A1, A2 C R? with n < |A4],|Az2| < Cn and
l a straight line which contains Ay but no point of As.

If D(A1, A2) < Cn then Ay U Az is contained in a “generalized Jamison con-
figuration”.

Proof: We can reduce this statement to Theorem 3.8 by applying a polarity
(a,b,c) < cx+by+az=0

of the projective plane, where the point with projective coordinates (a, b, ¢) will
correspond to the line on the right and vice versa. (This mapping is known to
be incidence preserving.) The lines which correspond to the original points of
A> are to be considered as graphs of linear functions (see [Ele99c]). Il

Even an uniform statistical version holds. For E C A; x A,, write
Dg (A, A2) def #{directions of segments A; A5 | (41, 42) € E}.

Theorem 3.30 Leta > 0 be fized, Ay, As asin Theorem 3.29 and H(A;, A2, E)
a bipartite graph with all degrees at least aN. If Dg(A;, A2) < Cn then A1 UA;
is contained in a bounded number of generalized Jamison configurations.

There are several examples of point sets which determine at most Cn directions:
equidistant points on a circle (or, as their affine image, on an ellipse); appropri-
ate points on a hyperbola or parabola; moreover square lattices will also do the
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trick. These configurations all arise from conics, except for the last one which
contains many collinear points (and so do generalized Jamison configurations).
It is natural to believe the following.

Conjecture 3.31 (Elekes [Ele99b]) For every C > 0 there is an ng = ng(C)
with the following property.

If A C R? with |A| > ng and D(A) < C|A| then A contains siz points of a
(possibly degenerate) conic.

As usual, a pair of lines is considered a degenerate conic.

It is very likely that Conjecture 3.31 holds for any number in place of six, for
| A| large enough. It was pointed out by M. Simonovits, that one cannot expect
c*|.A| conconic points in general (as shown by a square lattice.) However, some
|A|* such points may exist, for a suitable o = a(C) > 0. Perhaps even c*|A]
can be found, provided that A is the vertex set of a convex polygon.

A weaker version could be the following.

Conjecture 3.32 If a non-collinear set A of n points is located on an irre-
ducible algebraic curve of degree v, and D(A) < Cn, then the curve must be a
conic, provided that n > ng(r, C).

In order to support Conjectures 3.31 and 3.32 we mention that, of all polynomial
curves y = p(z) (where p € Rz]), only parabolas can accommodate n non-
collinear points with at most Cn directions, provided that n is large enough as
compared to the degree of p.

Theorem 3.33 (Elekes [Ele99b]) Let v > 3 be an integer and C > 1. Then
there exists an ng = no(r,C) with the property that no polynomial curve of
degree v (defined by an equation y = p(z)) can contain a set of n > ng points

A={A4,,...,A,} with D(A) < Cn.
Proof: Consider

F(z,y) = pi(x; :z(y)

)

the slope of the segment which connects two generic points of the curve. After
appropriate simplifications, F' becomes a polynomial in two variables.

Let the given points have coordinates A; = (sl,p(sl)) fori = 1,...,n; then
F only takes at most Cn distinct values while  and y, independently of each
other, range over {si,...,s,}. Therefore, by Theorem 2.27, F' can be written
in one of the forms

(1) F(z,y) = f(g(z) + h(y)); or
2)  Flz,y) = f(g(z) - h(y)),

for suitable polynomials f, g, h € R[z].
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Figure 3.3: Generalized Jamison configurations in three dimensions

Now if p(z) = a,z" + ar_12""1 + ... + a1z + ag, then the highest (total)
degree terms of F are a,(z" ' +2" 2y +...+y" ). Note that, for r > 3, there
are three or more monomials here and they involve at least one which contains
both z and y.

These leading terms must come from the highest power in f(z), with the
sum or product of the leading terms of g and h substituted into z, in cases (1)
or (2), respectively.

We show that this is impossible.

(1) in case of F(z,y) = f(g9(z) + h(y)), the coefficients of the highest degree
terms on the right hand side come from a binomial expansion and, thus,
they cannot be equal — unless deg f = 1. However, in the latter case, no
term can involve both z and y simultaneously, a contradiction;

(2) in case of F(z,y) = f(g(z) - h(y)), there is just one highest degree term on
the right hand side; again a contradiction. ll

Finally we mention high dimensional sets which determine few directions. In
what follows, we consider R" to be a special subspace of R*, for r < k:

R" = {(z1,%2,... ,T}) ; Try1 = Tpy2 = ... =z} = 0} C RE.

Theorem 3.34 (Elekes [Ele99c]) Let A1, Ax C RF with N < |A;|,|A2| < CN.
Assume, moreover, that Ay C R" (for some r < k) while Ay NR" = 0.
If D(Ay, As) < CN then

(i) either Ay is contained in a shifted copy of an r—dimensional arithmetic
G € G¥CN where G C R", while Ay can be covered with at most C*
shifted copies of G;

(i) or Ay U As is contained in a geometric GP-type bunch J, based upon a
geometric G € G C"N where G C R and J is located on C* straight lines
with center in R".

(See Figure 3.3 for the three dimensional cases.)
Outline of the proof: The case r = 1, k = 2 is Theorem 3.29. Proceed by
induction on r and k, of which we only give the details for the case r =2, k = 3.
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Assume that A; is contained in the z—y plane and project all points on a generic
vertical plane. Here “generic” means that non-collinear triples are not mapped
to collinear points unless the three points lie in a horizontal plane; non-parallel
lines are not mapped to parallel lines unless they are horizontal; and three non-
concurrent lines are not mapped to concurrent lines unless one of the lines lies
in a horizontal plane and the other two intersect at a point of this plane.

Now we use Theorem 3.29 for the projected image and find horizontal or concur-
rent lines (with common point on the image of the z—y plane) which contain the
projected points. In the first case we have suitable horizontal planes and, using
Theorem 1.3 and Remark 1.4, also the arithmetic GP can be found. Other-
wise, for many general vertical planes (at least two suffice), the projected image
can be covered by concurrent lines, hence the intersections of the pre-image
planes provide the required bunch which contains the original points (using the
multiplicative version of Theorem 1.3). il

Corollary 3.35 Theorem 3.26 holds.

Proof: Apply in backward direction a high dimensional version of the polarity
used in the proof of Theorem 3.29. il

3.4 Plane sets with few distinct distances

Throughout this section e and f will denote two straight lines of the Euclidean
plane and A C e, B C f two collinear subsets located on these lines. For the set
of distances between their points write

D(A,B) &
These n? distances will not be all distinct in general; those which occur several
times are, of course, counted just once in D(A, B).

Erdds posed in [Erd46] the problem of determining the minimal number of
distinct distances which can occur among n points of the plane. (This question
is still open, see the survey of Székely [Szé02] for more details). The study
of the number of distances between two collinear point sets was initiated by
Purdy (see the end of Problem 2, page 3 in the excellent collection by Moser
and Pach [MP95]). Two examples of such configurations with few distances are
the following.

{AB; Ac A BeB}.

3.36 Example (1) Let e and f be parallel while A and B two copies of an n—
term arithmetic progression on e and f, respectively. Then |D(A, B)| = n—1;

(2) Let e and f be orthogonal e.g., the two axes of a coordinate system while
A={(5,0); i=1...n}
B={(0,vj); i=1...n}.

Then |D(A,B)| = 2n — 1, since 4;B;° = i +j € {2,3,...,2n} for 4; =
(v/1,0) and B; = (0,/7)-
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The following result was also conjectured by Purdy and solved in [ER00].

Theorem 3.37 (Elekes—Rdnyai [ER00]) For every C > 1 there is a bound
no = no(C) such that if
|D(A, B)| < Cn,

then e and f are parallel or orthogonal, provided that n > ng.

Proof: Let a be the angle of e and f;, A = — cosa and consider the polynomial
P(z,y) = 22+ 2\zy + y2. Its graph, by assumption, is n?-rich in an n x n x Cn
Cartesian product. We show that this implies A = 0 or +1, provided that
n > ng.

Using Theorem 2.27 and its Corollary 2.29, the quantity

wr OF OF 54y
9z’ Oy A +y

a(z,y)

must satisfy

déf 82( 10g| q1($7y)| )

O0zOy =0,

qz ($, y)

wherever well-defined. Here we have

B A B A AN —1)(y? —2?)
= Az +y)?2 (z+M)?2  (Az+y)2(z+ Ay)?’

which can only vanish if A = 0 or +1. li

Remark 3.38 Even the structure of A and B can be described here using
Theorem 1.3: they must come from an arithmetic GP or the square root thereof.
Also, an uniform statistical version could be stated for Dg(A, B), had we defined
it in this generality.

It was asked by P. Brass and J. Matousek whether a “gap theorem” holds i.e.,
if all other angles give essentially more distances. This was answered in the
affirmative in [Ele99a].

Theorem 3.39 There is a positive absolute constant ¢ for which, if e and f are
neither parallel nor orthogonal, then

|D(A, B)| > cn®/?.

3.5 Circle grids

The topic of this section is, again, related to point sets which determine few
distances.

In what follows we denote by K (P,r) the circle centered at P € R? and of
radius r. For three points Py, P, P; of the Euclidean plane and any subset
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Figure 3.4: Portion of a circle grid with collinear centers.

R C RT of the positive reals, the set of points which are covered by all three
families {K (P;,r) ; r € R} will be denoted by

def

T(P,P,,P;,R) = {X €R?; Vi=1,2,33r; € R such that X € K(P;,r;)}

and we call them “triple points” for short. Moreover, write

t(Py, Py, Py,n) mmax |T(P1, P, P5,R)|.
=n

We study the following question: is ¢(Py, P>, P3,n) > cn? possible for three

non-collinear points P;, a fized ¢ > 0 and infinitely many values of n?

This problem — apart from the non-collinearity condition — originates from
Erd4s-Lovasz—Vesztergombi [ELV89]. As for collinear triples, there exist “circle
grids” like in Figure 3.4 with this large order of magnitude of triple points
[Ele95]. The construction is simple: let P, = (—1,0), P, = (0,0), Ps = (1,0)
and r; = +/j.

However, the behavior of collinear and non-collinear P; is rather different. Ac-
tually, ¢ has a strict jump here [ES03].

Theorem 3.40 (Elekes—E. Szabd [ES03]) If the P; are non-collinear then, for
n > nog,

t(Pl, P2, P3, TL) S ’I’Ll’95.

The proof depends on the algebraic equation satisfied by the three distances
between a point X € R? and the P;. The surface described by this (trivariate)
polynomial equation must obey Theorem 2.31 and its Corollary 2.32. It can be
shown (using some elementary calculus) that this is only possible if the P; are
collinear.

It would be interesting to characterize those configurations which consist of
three families of n circles each and the number of triple points is quadratic as a
function of n. Even the following is unsolved.

41



Conjecture 3.41 (L. Székely, unpublished) If F(U, F®) | FG) are three fami-
lies of n unit circles each with the property that, for i = 1,2, 3, the circles of F()
pass through a common point X9, then the number of triple points is o(n?).
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