2.3: Other Set Operations

Definition: If A and B are sets, the intersection of A and B, denoted $A \cap B$, is the set of elements that are in**both** A and B. That is,

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}.$$

An intersection can be thought of in the following manner. The shaded region is $A \cap B$:

Examples:

$$\{1, 2, 3, 4\} \cap \{2, 4, 6, 8\} = \{2, 4\}$$

$$\{x^{2} | x \in \mathbb{Z}\} \cap \{1, 2, ..., 20\} = \{1, 4, 4, 4, 4, 4\}$$

$$\{0, 1, 4, 9, 16, 25, ..., 3\}$$

$$\{1, 2\} \cap \{1, 2, 3\} = \{1, 2\}$$

$$\{1, 2\} \cap \{3, 4\} = \emptyset \{3\}$$

$$\emptyset \cap \{1, 2\} = \emptyset \{3\}$$

Definition: If A and B are sets, the <u>union of A and B</u>, denoted $A \cup B$, is the set of elements that are in **either** A **or** B. That is,

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$$

A union can be thought of in the following manner. The shaded region is $A \cup B$:

Examples:

Definition: If A and B are sets, the set difference of B and A (or relative complement of A relative to B), denoted A - B and read "A set minus B", is the set of elements that are in A but not in B. That is,

$$A - B = \{x \mid x \in A \text{ and } x \notin B\}.$$

A set difference can be thought of in the following manner. The shaded region is A - B:

Examples:

Examples:
$$\{1, 2, 3, 4\} - \{2, 4, 6, 8\} = \{1, 3\}$$
 $\{1, 2, 3, 4\} - \{2, 4, 6, 8\} = \{1, 3\}$
 $\{1, 2, 3, 4\} - \{2, 4, 6, 8\} = \{1, 3\}$
 $\{1, 2, 3, 4\} - \{2, 4, 6, 8\} = \{1, 3\}$
 $\{1, 2, 3, 4\} - \{1, 2, 3\} = \emptyset$
 $\{1, 2, 3, 4\} - \{1, 2, 3\} = \emptyset$
 $\{1, 2, 3, 4\} - \{1, 2, 3\} = \emptyset$
 $\{1, 2, 3, 4\} - \{1, 2, 3\} = \emptyset$

Example: Draw the Venn Diagram for

Union: Draw same direction, and highlight

everything shaded.

Example: Draw the Venn Diagram $for \overline{A}$

Example: Draw the Venn Diagram for \overline{B} .

Intersection! Shade opposite ways. Highlight where

The lines intersect

Example: Draw the Venn Diagram for A

Set Minus: Shade opposite ways. Highlight what

was shaded for only the first set.

Example: Draw the Venn Diagram for $\overline{A-B}$.

Complement over whole thing: Shade what's

underneath, then highlight everything not shaded

Example: Draw the Venn Diagram for $A \cap B \cup C$.

Example: Draw the Venn Diagram for $A \cup B - C$

Problem 1: Draw the Venn Diagram for B

Problem 2: Draw the Venn Diagram for A.

Problem 3: Draw the Venn Diagram for $\overline{A \cap B} = \overline{A \cup B}$

Problem 4: Draw the Venn Diagram for $\overline{A \cup B}$.

Problem 5: Draw the Venn Diagram for $A \cap B$

Problem 6: Draw the Venn Diagram for $A \cap (B \cup C)$

Problem 7: Draw the Venn Diagram for $A - B \cup C$

Problem 8: Draw the Venn Diagram for $(A - B) \cup C$

Problem 9: Draw the Venn Diagram for $B \cup (B \cup C)$.

Problem 10: Draw the Venn Diagram for $\overline{B \cap C}$

You have an average of 70 on 5 guizzes, and you may drop your lowest guiz grade of 50. What is your new average? $70 = \frac{91 + 92 + 93 + 94 + 50}{5}$ 350 = 91 + 92 + 93 + 94 + 50 300 = 91 + 92 + 93 + 94New average: $\frac{300}{4} = 75$

$$S = \frac{n(n+1)}{2} + 2$$

Find the sum
$$|+4+7+10+13+16+19+22+25=5$$

$$26+22+19+16+13+10+7+4+1=5$$

$$26+26+26+26+26+26+26+26+26=25$$

$$25=9\times26=234$$

$$5=\frac{234}{2}=\frac{117}{2}$$

Andrew, Danny, Heather, and Michael went to an undisclosed location to conduct the secret business of deciding what to eat for lunch the next day. They arrived at 9:55 PM, 10:00 PM, 10:10 PM, and 10:15 PM. Using the clues below, determine who arrived at each time.

 Danny thought he was being followed, so he circled around the block several times and ended up arriving at 10:10 PM.

- Heather arrived 15 minutes before Michael.

