
Math 142: Taylor Series Proof Example

To show that a function has a power series expansion, it is generally easier to show that it is equal to its
Taylor Series expansion. Let Tn (x) be the degree n partial Taylor series of f (x) centered at a. That is,

Tn (x) =
n∑

k=0

f (k) (a)

n!
(x− a)k. Next, let Rn (x) = f (x)− Tn (x) so that f (x) = Tn (x) + Rn (x). We’ll now

need two theorems to show this for most functions.

Theorem 1: If lim
n→∞

Rn (x) = 0, for |x− a| < R, then f (x) is equal to its Taylor series expansion on the

interval |x− a| < R. �

Theorem (Taylor’s Inequality): If
∣∣f (n+1) (x)

∣∣ ≤ M for |x− a| ≤ d, then the remainder Rn (x) of the

Taylor series satisfies |Rn (x)| ≤ M

(n + 1)!
|x− a|n+1 for |x− a| ≤ d.

Example: Prove that ex is equal to its Taylor series expansion,
∞∑
n=0

xn

n!
. First, note that if f (x) =

ex, then f (n+1) (x) = ex. Let d be any positive number, and assume that |x| ≤ d. Then
∣∣f (n+1) (x)

∣∣ =

ex ≤ ed. So, using a = 0 and M = ed, by Taylor’s Inequality, |Rn (x)| ≤ ed

(n + 1)!
|x|n+1 for |x| ≤ d. Thus,

lim
n→∞

|Rn| ≤ lim
n→∞

ed

(n + 1)!
|x|n+1 = ed

|x|n+1

(n + 1)!
= 0. By the squeeze theorem, this means that lim

n→∞
Rn (x) = 0

for all values of x (since d was arbitrary), so by Theorem 1, ex =
∞∑
n=0

xn

n!
for all x.

Below are the proofs of the above theorems, included for reference.

Proof of Theorem 1: Consider lim
n→∞

f (x) for |x− a| < R. By our setup, lim
n→∞

f (x) = lim
n→∞

Tn (x) +

lim
n→∞

Rn (x) = lim
n→∞

Tn (x) + 0. Now, lim
n→∞

Tn (x) = lim
n→∞

n∑
k=0

f (k) (a)

n!
(x− a)k, which is equal to the Taylor

expansion of f (x) by the definition of a convergent series. �

Proof of Taylor’s Inequality: Since
∣∣f (n+1) (x)

∣∣ ≤ M , we have that −M ≤ f (n+1) (x) ≤ M . We’ll use

f (n+1) (x) ≤ M for right now, and we’ll assume that a ≤ x ≤ a + d (a− d ≤ x ≤ a) is similar. With this
in mind, ∫ x

a

f (n+1) (t) dt ≤
∫ x

a

M dt

f (n) (x)− f (n) (a) ≤M (x− a)

f (n) (x) ≤ f (n) (a) + M (x− a)

Now, we integrate again:
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∫ x

a

f (n) (t) dt ≤
∫ x

a

f (n) (a) + M (x− a) dt

f (n−1) (x)− f (n−1) (a) ≤ f (n) (a) (x− a) + M
(x− a)2

2

f (n−1) (x) ≤ f (n−1) (a) + f (n) (a) (x− a) + M
(x− a)2

2

Continuing this process, we have:

f (n−2) (x) ≤ f (n−2) (a) + f (n−1) (a) (x− a) + f (n) (a)
(x− a)2

2
+ M

(x− a)3

3!

f (n−3) (x) ≤ f (n−3) (a) + f (n−2) (a) (x− a) + f (n−1) (a)
(x− a)2

2
+ f (n) (a)

(x− a)3

3!
+ M

(x− a)4

4!
...

f ′ (x) ≤ f ′ (a) + f ′′ (a) (x− a) + f ′′′ (a)
(x− a)2

2
+ ... + f (n) (a)

(x− a)n−1

(n− 1)!
+ M

(x− a)n

n!

f (x) ≤ f (a) + f ′ (a) (x− a) + f ′′ (a)
(x− a)2

2
+ ... + f (n) (a)

(x− a)n

n!
+ M

(x− a)n+1

(n + 1)!

So, we have that f (x) − f (a) − f ′ (a) (x− a) − f ′′ (a)
(x− a)2

2
− ... − f (n) (a)

(x− a)n

n!
≤ M

(x− a)n+1

(n + 1)!
,

which is the same as f (x) − Tn (x) ≤ M

(n + 1)!
(x− a)n+1, and finally, Rn (x) ≤ M

(n + 1)!
(x− a)n+1. By

a similar argument, using f (n+1) (x) ≥ −M , we can show that Rn (x) ≤ −M
(n + 1)!

(x− a)n+1. Thus,

|Rn (x)| ≤ M

(n + 1)!
|x− a|n+1 for |x− a| ≤ d. �
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