Math 142: Series Test Proofs

Theorem: (The Monotone Convergence Theorem) If a_n is a decreasing sequence that is bounded below, then it converges. Similarly, is a_n is increasing and bounded above, then it converges.

Proof: Suppose a_n is decreasing and bounded below. Let $\epsilon > 0$, and consider the greatest lower bound L of the sequence (this exists by the completeness axiom). Then by definition of greatest lower bound, $L + \epsilon$ is not a lower bound of a_n . Let N be the smallest value such that $a_N < L + \epsilon$. Then since a_n is decreasing, we know that $a_n < L + \epsilon$ for all $n \ge N$. Finally, this says that $a_n - L < \epsilon$ for all $n \ge N$, and since L is a lower bound of a_n , we know that $a_n - L \ge 0$. Thus, $|a_n - L| < \epsilon$, so $\lim_{n \to \infty} a_n = L$ by definition.

Suppose a_n is increasing and bounded below. The proof is identical, except this time we let L be the least upper bound of the sequence, note that $L - \epsilon$ is not an upper bound of a_n , and find an N such that $a_n > L - \epsilon$ for all $n \ge N$. Since $L - a_n \ge 0$, we get that $|a_n - L| < \epsilon$.

Theorem: (Geometric Series) The geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ converges to $\frac{a}{1-r}$ when |r| < 1 and diverges when |r| > 1

diverges when $|r| \ge 1$.

Proof: First, we'll get an expression for s_n :

$$s_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-1}$$

 $rs_n = ar + ar^2 + ar^3 + \dots + ar^{n-1} + ar^n$

Subtracting these two equations, we get that $s_n - rs_n = a - ar^n$, so $s_n (1 - r) = a (1 - r^n)$, and finally, we get an expression for s_n : $\frac{a (1 - r^n)}{1 - r}$. We now proceed to take the limit of s_n .

If |r| < 1, $\lim_{n \to \infty} \frac{a(1-r^n)}{1-r} = \frac{a(1-0)}{1-r} = \frac{a}{1-r}$, so it converges to $\frac{a}{1-r}$. If |r| > 1, $\lim_{n \to \infty} r^n$ diverges, so s_n diverges and hence the series diverges. If r = 1, then the series is simply $\sum_{n=1}^{\infty} a = a + a + a + ...$, which diverges. If r = -1, then the series is simply $\sum_{n=1}^{\infty} a(-1)^{n-1} = a - a + a - a + ...$, which diverges.

Theorem: (The Divergence Test) If $\lim_{n\to\infty} a_n \neq 0$ or does not exist, then $\sum_{n=1}^{\infty} a_n$ diverges.

Proof: We'll prove the contrapositive: If the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n \to \infty} a_n = 0$.

Notice that $a_n = s_n - s_{n-1}$, where s_n is the *n*th partial sum of $\sum_{n=1}^{\infty} a_n$. Since $\sum_{n=1}^{\infty} a_n$ converges, $s_n \to s$. Clearly, this means that $s_{n-1} \to s$ as well. So, $\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1}) = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = s - s = 0$. Theorem: (Constant Multiples of Series) If $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} ca_n$ converges to $c \sum_{n=1}^{\infty} a_n$. If

 $\sum_{n=1}^{\infty} a_n \text{ diverges, then } \sum_{n=1}^{\infty} ca_n \text{ diverges.}$

Proof: Let s_n be the partial sums of $\sum_{n=1}^{\infty} a_n$. If $\sum_{n=1}^{\infty} a_n$ converges, then say $s_n \to s$. The nth partial sum of $\sum_{n=1}^{\infty} ca_n$ is $ca_1 + ca_2 + \ldots + ca_n = c(a_1 + a_2 + \ldots + a_n) = cs_n$. So, $\lim_{n \to \infty} cs_n = c\lim_{n \to \infty} s_n = cs$. If $\sum_{n=1}^{\infty} a_n$ diverges,

then $\lim_{n \to \infty} s_n$ diverges. Thus, $\lim_{n \to \infty} cs_n$ diverges, so $\sum_{n=1}^{\infty} ca_n$ diverges.

Theorem: (Sum of Series) If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge, then $\sum_{n=1}^{\infty} (a_n + b_n)$ converges to $\sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$. If <u>one</u> of $\sum_{n=1}^{\infty} a_n$ or $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} (a_n + b_n)$ diverges. Finally, if $\sum_{n=1}^{\infty} a_n$ or $\sum_{n=1}^{\infty} b_n$ both diverge to ∞ or both diverge to $-\infty$, then $\sum_{n=1}^{\infty} (a_n + b_n)$ diverges to the same value.

or both diverge to $-\infty$, then $\sum_{n=1}^{\infty} (a_n + b_n)$ diverges to the same value.

Proof: Let s_n be the partial sums of $\sum_{n=1}^{\infty} a_n$ and t_n be the partial sums of $\sum_{n=1}^{\infty} b_n$. If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge, then say $s_n \to s$ and $t_n \to t$. The n^{th} partial sum of $\sum_{n=1}^{\infty} (a_n + b_n)$ is $(a_1 + b_1) + (a_2 + b_2) + \ldots + (a_n + b_n) = (a_1 + a_2 + \ldots + a_n) + (b_1 + b_2 + \ldots + b_n) = s_n + t_n$. So $\lim_{n \to \infty} (s_n + t_n) = \lim_{n \to \infty} s_n + \lim_{n \to \infty} t_n = s + t$. If one of $\sum_{n=1}^{\infty} a_n$ or $\sum_{n=1}^{\infty} b_n$ diverges, say without loss of generality that s_n diverges and $t_n \to t$. Then $\lim_{n \to \infty} (s_n + t_n) = \lim_{n \to \infty} s_n + t$. This limit diverges, so $\sum_{n=1}^{\infty} (a_n + b_n)$ diverges. Finally, if $\sum_{n=1}^{\infty} a_n$ or $\sum_{n=1}^{\infty} b_n$ both diverge to ∞, then $\lim_{n \to \infty} (s_n + t_n) = \lim_{n \to \infty} s_n + \lim_{n \to \infty} t_n = \infty$. Thus, $\sum_{n=1}^{\infty} (a_n + b_n)$ diverges to ∞, and the $-\infty$ case is identical. ■

Note 1: $\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} (a_n + (-b_n))$, so we can treat differences in the same manner as the theorem

above. In particular, if both series converge, then $\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$.

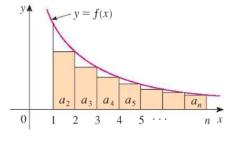
Note 2: All other cases not covered in this theorem must be treated with further analysis, and they cannot be split easily.

Theorem: (The Integral Test) Suppose a_n is a positive decreasing sequence and f(x) is a continuous function such that $f(n) = a_n$. Then,

(1) If
$$\int_{1}^{\infty} f(x) dx$$
 converges, then $\sum_{n=1}^{\infty} a_n$ converges.
(2) If $\int_{1}^{\infty} f(x) dx$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

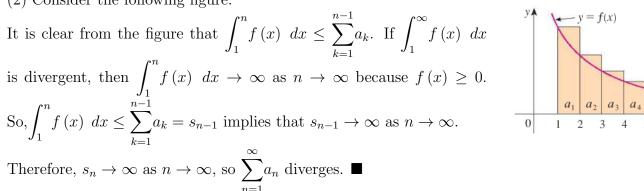
Proof: (1) Consider the following figure:

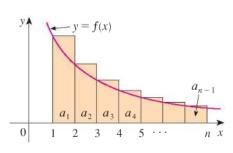
It is clear from the figure that
$$\sum_{k=2}^{n} a_k < \int_1^n f(x) \, dx$$
. If $\int_1^{\infty} f(x) \, dx$ is
convergent, then $\sum_{k=2}^{n} a_k < \int_1^n f(x) \, dx \le \int_1^{\infty} f(x) \, dx$ since $f(x) \ge 0$.
So, $s_n = a_1 + \sum_{k=2}^{n} a_k \le a_1 + \int_1^{\infty} f(x) \, dx$. Let $a_1 + \int_1^{\infty} f(x) \, dx = M$,
which gives that $a_n < M$ for all n . Thus, $\{a_n\}$ is bounded above.



which gives that $s_n \leq M$ for all n. Thus, $\{s_n\}$ is bounded above. Also, $s_{n+1} = s_n + a_{n+1} \geq s_n$ since $a_{n+1} = f(n+1) \ge 0$. Thus, by the Monotone convergence theorem, $\{s_n\}$ converges, so $\sum_{n=1}^{\infty} a_n$ converges.

(2) Consider the following figure:





Theorem: (P-Series Test) The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges when p > 1 and diverges with $p \le 1$. *Proof:* When p = 0, we have the series $\sum_{n=1}^{\infty} 1$, which is obviously divergent. When p < 0, the terms $\frac{1}{n^p}$ are increasing, so $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is again divergent. When p > 0, $\frac{1}{n^p}$ is positive and decreasing, so we'll apply the Integral Test. If p = 1, then $\int_{1}^{\infty} \frac{1}{x} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x} dx = \lim_{t \to \infty} \ln x \Big|_{1}^{t} = \lim_{t \to \infty} \ln t = \infty$. Thus, $\sum_{i=1}^{\infty} \frac{1}{n}$ diverges. If p > 0 and $p \neq 1$, then we have $\int_{1}^{\infty} \frac{1}{x^p} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^p} dx = \lim_{t \to \infty} \frac{x^{1-p}}{1-p} \Big|_{1}^{t} = \lim_{t \to \infty} \frac{t^{1-p}}{1-p} - \frac{1}{1-p}$. So, if

$$\lim_{t \to \infty} t^{1-p} \text{ converges}, \sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges, and if } \lim_{t \to \infty} t^{1-p} \text{ diverges}, \sum_{n=1}^{\infty} \frac{1}{n^p} \text{ diverges}.$$

If 0 , then <math>1 - p > 0, and hence $\lim_{t \to \infty} t^{1-p}$ diverges. This completes the proof that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges when $p \le 1$. Finally, if p > 1, then 1 - p < 0. So, $\lim_{t \to \infty} t^{1-p} = 0$, and hence, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges when p > 1.

Theorem: (The Comparison Test) Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms. Then (1) If $\sum_{n=1}^{\infty} b_n$ converges and $a_n \leq b_n$ for all n, then $\sum_{n=1}^{\infty} a_n$ converges.

(2) If $\sum_{n=1}^{\infty} b_n$ diverges and $a_n \ge b_n$ for all n, then $\sum_{n=1}^{\infty} a_n$ diverges.

Proof: Let $s_n = \sum_{k=1}^n a_k, t_n = \sum_{k=1}^n b_k, t = \sum_{n=1}^\infty b_n.$

(1) Since both series have positive terms, $\{s_n\}$ and $\{t_n\}$ are increasing. $(s_{n+1} = s_n + a_{n+1} \ge s_n)$. Also, $t_n \to t$ as $n \to \infty$, so $t_n \le t$ for all n. Since $a_n \le b_n$ for all n, we have $s_n \le t_n$ for all n. Thus, $s_n \le t$ for all n. So, by the Monotone Convergence Theorem, s_n converges, so $\sum_{n=1}^{\infty} a_n$ converges.

(2) If $\sum_{n=1}^{\infty} b_n$ is divergent, then $t_n \to \infty$ as $n \to \infty$ (since $\{t_n\}$ is increasing). But $a_n \ge b_n$ for all n, so

 $s_n \ge t_n$ for all n. Thus, $s_n \to \infty$ as $n \to \infty$, so $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem: (The Limit Comparison Test) Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$, where c > 0 and c is finite, then either both series converge or both series diverge.

Proof: Let $0 < \epsilon < c$. Then by definition of $\lim_{n \to \infty} \frac{a_n}{b_n} = c$, there exists an N > 0 such that $\left| \frac{a_n}{b_n} - c \right| < \epsilon$ when n > N. Rewriting this, we have:

$$\begin{vmatrix} \frac{a_n}{b_n} - c \\ -\epsilon < \frac{a_n}{b_n} - c \\ \epsilon < \frac{a_n}{b_n} - c \\ c - \epsilon < \frac{a_n}{b_n} \\ c - \epsilon < \frac{a_n}{b_n} \\ \epsilon - \epsilon < \epsilon \\ c - \epsilon \end{vmatrix}$$

Let $m = c - \epsilon > 0$, $M = c + \epsilon > 0$. Then we have that $mb_n < a_n < Mb_n$. If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} Mb_n$ converges, so by the Comparison Test, $\sum_{n=1}^{\infty} a_n$ converges. Similarly, if $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} mb_n$ diverges, so by the Comparison Test, $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem: (The Alternating Series Test) If the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} b_n = b_1 - b_2 + b_3 - ...$ $(b_n > 0)$ satisfies (1) $b_{n+1} \le b_n$ for all n (b_n decreasing) and (2) $\lim_{n \to \infty} b_n = 0$, then the series converges.

Proof: First consider the even partial sums: $s_2 = b_1 - b_2 \ge 0$ (since $b_2 \le b_1$), $s_4 = s_2 + (b_3 - b_4) \ge s_2$ (since $b_4 \le b_3$), and in general, $s_{2n} = s_{2n-2} + (b_{2n-1} - b_{2n}) \ge s_{2n-2}$ (since $b_{2n} \le b_{2n-1}$). So, we have that $0 \le s_2 \le s_4 \le \ldots \le s_{2n} \le \ldots$, which tells us that the even partial sums are positive and increasing. Also, $s_{2n} = b_1 - (b_2 - b_3) - (b_4 - b_5) - \ldots - (b_{2n-2} - b_{2n-1}) - b_{2n}$. b_{2n} and every term in parentheses is positive, so $s_{2n} \le b_1$ for all n. Thus, the sequence $\{s_{2n}\}$ of even partial sums is bounded above, so by the Monotone Convergence Theorem, $\{s_{2n}\}$ converges. Let $\lim_{n \to \infty} s_{2n} = s$.

Now, looking at the odd partial sums, $\lim_{n \to \infty} s_{2n+1} = \lim_{n \to \infty} b_{2n+1}$. Now, since $\lim_{n \to \infty} b_n = 0$, $\lim_{n \to \infty} b_{2n+1} = 0$. Thus, we have that $\lim_{n \to \infty} s_{2n+1} = s$, so $\lim_{n \to \infty} s_n = s$. Finally, by definition, $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ converges.

Theorem: (The Absolute Convergence Test) If $\sum_{n=1}^{\infty} |a_n|$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent. *Proof:* First, note that $a_n \leq |a_n|$ for all n. So, $0 \leq a_n + |a_n| \leq 2 |a_n|$ ($|a_n|$ is either a_n or $-a_n$, so $a_n + |a_n| \geq 0$ for all n). Since $\sum_{n=1}^{\infty} |a_n|$ is convergent, $\sum_{n=1}^{\infty} (a_n + |a_n|)$ is convergent by the Comparison Test. Finally, $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (a_n + |a_n|) - \sum_{n=1}^{\infty} |a_n|$, so since both of these converge, $\sum_{n=1}^{\infty} a_n$ converges.

Theorem: (The Ratio Test) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent. If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, then the test is inconclusive, meaning we cannot determine whether $\sum_{n=1}^{\infty} a_n$ converges or diverges using this test.

Proof: Let $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$, and suppose that L < 1. Let r be a value such that L < r < 1 (r is like $L + \epsilon$). Then by the definition of a limit, there is an N > 0 such that for all $n \ge N$, $\left| \frac{a_{n+1}}{a_n} \right| < r$. Equivalently, $|a_{n+1}| < |a_n| r$. This gives us a few facts:

$$\begin{aligned} |a_{N+1}| &< |a_N| r\\ |a_{N+2}| &< |a_{N+1}| r < |a_N| r^2\\ |a_{N+3}| &< |a_{N+2}| r < |a_N| r^3\\ \vdots\\ |a_{N+k}| &< |a_N| r^k \text{ for all } k \ge 1 \end{aligned}$$

So, using the comparison test,

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{N} |a_n| + \sum_{n=N+1}^{\infty} |a_n|$$
$$= \sum_{n=1}^{N} |a_n| + \sum_{k=1}^{\infty} |a_{N+k}|$$
$$\leq \sum_{n=1}^{N} |a_n| + \sum_{k=1}^{\infty} |a_N| r^k$$

Since 0 < r < 1, $\sum_{k=1}^{\infty} |a_N| r^k$ converges, and hence $\sum_{n=1}^{N} |a_n| + \sum_{k=1}^{\infty} |a_N| r^k$ converges. Thus, by the comparison test, $\sum_{n=1}^{\infty} |a_n|$ converges, so $\sum_{n=1}^{\infty} a_n$ converges absolutely.

Suppose that L > 1. Then there exists an N > 0 such that for all $n \ge N$, $\left|\frac{a_{n+1}}{a_n}\right| > 1$ (follows from letting $L < \epsilon < 1$ and using the definition). Thus $|a_{n+1}| > |a_n|$, so $\lim_{n \to \infty} a_n$ is either infinite or does not exist. Therefore, $\sum_{n=1}^{\infty} a_n$ diverges by the Divergence Test.

Theorem: (The Root Test) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. If $\lim_{n\to\infty} \sqrt[n]{|a_n|} > 1$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent. If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, then the test is inconclusive, meaning we cannot determine whether $\sum_{n=1}^{\infty} a_n$ converges or diverges using this test.

Proof: Let $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L$, and suppose that L < 1. Let r be a value such that L < r < 1. Then by the definition of a limit, there is an N > 0 such that for all $n \ge N$, $\sqrt[n]{|a_n|} < r$. Equivalently, $|a_n| < r^n$. So, using the comparison test,

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{N} |a_n| + \sum_{n=N+1}^{\infty} |a_n|$$
$$< \sum_{n=1}^{N} |a_n| + \sum_{n=N+1}^{\infty} r^n$$

Since 0 < r < 1, $\sum_{n=N+1}^{\infty} r^n$ converges, and hence $\sum_{n=1}^{N} |a_n| + \sum_{n=N+1}^{\infty} r^n$ converges. Thus, by the comparison test, $\sum_{n=1}^{\infty} |a_n|$ converges, so $\sum_{n=1}^{\infty} a_n$ converges absolutely.

Suppose that L > 1. Then there exists an N > 0 such that for all $n \ge N$, $\sqrt[n]{|a_n|} > 1$. Thus $|a_n| > 1$, so $\lim_{n \to \infty} a_n \ne 0$ or does not exist. Therefore, $\sum_{n=1}^{\infty} a_n$ diverges by the Divergence Test.