
Math 142: Series Test Proofs

Theorem: (The Monotone Convergence Theorem) If an is a decreasing sequence that is bounded
below, then it converges. Similarly, is an is increasing and bounded above, then it converges.

Proof: Suppose an is decreasing and bounded below. Let ε > 0, and consider the greatest lower bound L
of the sequence (this exists by the completeness axiom). Then by definition of greatest lower bound, L+ ε
is not a lower bound of an. Let N be the smallest value such that aN < L+ ε. Then since an is decreasing,
we know that an < L+ ε for all n ≥ N . Finally, this says that an − L < ε for all n ≥ N , and since L is a
lower bound of an, we know that an − L ≥ 0. Thus, |an − L| < ε, so lim

n→∞
an = L by definition.

Suppose an is increasing and bounded below. The proof is identical, except this time we let L be the
least upper bound of the sequence, note that L− ε is not an upper bound of an, and find an N such that
an > L− ε for all n ≥ N . Since L− an ≥ 0, we get that |an − L| < ε. �

Theorem: (Geometric Series) The geometric series
∞∑
n=1

arn−1 converges to
a

1− r
when |r| < 1 and

diverges when |r| ≥ 1.

Proof: First, we’ll get an expression for sn:

sn = a+ ar + ar2 + ar3 + ...+ arn−1

rsn = ar + ar2 + ar3 + ...+ arn−1 + arn

Subtracting these two equations, we get that sn− rsn = a− arn, so sn (1− r) = a (1− rn), and finally, we

get an expression for sn:
a (1− rn)

1− r
. We now proceed to take the limit of sn.

If |r| < 1, lim
n→∞

a (1− rn)

1− r
=
a (1− 0)

1− r
=

a

1− r
, so it converges to

a

1− r
.

If |r| > 1, lim
n→∞

rn diverges, so sn diverges and hence the series diverges.

If r = 1, then the series is simply
∞∑
n=1

a = a+ a+ a+ ..., which diverges.

If r = −1, then the series is simply
∞∑
n=1

a (−1)n−1 = a− a+ a− a+ ..., which diverges. �

Theorem: (The Divergence Test) If lim
n→∞

an 6= 0 or does not exist, then
∞∑
n=1

an diverges.

Proof: We’ll prove the contrapositive: If the series
∞∑
n=1

an is convergent, then lim
n→∞

an = 0.

Notice that an = sn − sn−1, where sn is the nth partial sum of
∞∑
n=1

an. Since
∞∑
n=1

an converges, sn → s.

Clearly, this means that sn−1 → s as well. So, lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn− lim
n→∞

sn−1 = s− s = 0.

�
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Theorem: (Constant Multiples of Series) If
∞∑
n=1

an converges, then
∞∑
n=1

can converges to c
∞∑
n=1

an. If

∞∑
n=1

an diverges, then
∞∑
n=1

can diverges.

Proof: Let sn be the partial sums of
∞∑
n=1

an. If
∞∑
n=1

an converges, then say sn → s. The nth partial sum of

∞∑
n=1

can is ca1 + ca2 + ...+ can = c (a1 + a2 + ...+ an) = csn. So, lim
n→∞

csn = c lim
n→∞

sn = cs. If
∞∑
n=1

an diverges,

then lim
n→∞

sn diverges. Thus, lim
n→∞

csn diverges, so
∞∑
n=1

can diverges. �

Theorem: (Sum of Series) If
∞∑
n=1

an and
∞∑
n=1

bn converge, then
∞∑
n=1

(an + bn) converges to
∞∑
n=1

an +
∞∑
n=1

bn.

If one of
∞∑
n=1

an or
∞∑
n=1

bn diverges, then
∞∑
n=1

(an + bn) diverges. Finally, if
∞∑
n=1

an or
∞∑
n=1

bn both diverge to ∞

or both diverge to −∞, then
∞∑
n=1

(an + bn) diverges to the same value.

Proof: Let sn be the partial sums of
∞∑
n=1

an and tn be the partial sums of
∞∑
n=1

bn. If
∞∑
n=1

an and
∞∑
n=1

bn

converge, then say sn → s and tn → t. The nth partial sum of
∞∑
n=1

(an + bn) is (a1 + b1) + (a2 + b2) + ...+

(an + bn) = (a1 + a2 + ...+ an) + (b1 + b2 + ...+ bn) = sn + tn. So lim
n→∞

(sn + tn) = lim
n→∞

sn + lim
n→∞

tn = s+ t.

If one of
∞∑
n=1

an or
∞∑
n=1

bn diverges, say without loss of generality that sn diverges and tn → t. Then

lim
n→∞

(sn + tn) = lim
n→∞

sn + t. This limit diverges, so
∞∑
n=1

(an + bn) diverges. Finally, if
∞∑
n=1

an or
∞∑
n=1

bn both

diverge to∞, then lim
n→∞

(sn + tn) = lim
n→∞

sn + lim
n→∞

tn =∞. Thus,
∞∑
n=1

(an + bn) diverges to∞, and the −∞

case is identical. �

Note 1:
∞∑
n=1

(an − bn) =
∞∑
n=1

(an + (−bn)), so we can treat differences in the same manner as the theorem

above. In particular, if both series converge, then
∞∑
n=1

(an − bn) =
∞∑
n=1

an −
∞∑
n=1

bn.

Note 2: All other cases not covered in this theorem must be treated with further analysis, and they cannot
be split easily.
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Theorem: (The Integral Test) Suppose an is a positive decreasing sequence and f (x) is a continuous
function such that f (n) = an. Then,

(1) If

∫ ∞
1

f (x) dx converges, then
∞∑
n=1

an converges.

(2) If

∫ ∞
1

f (x) dx diverges, then
∞∑
n=1

an diverges.

Proof : (1) Consider the following figure:

It is clear from the figure that
n∑

k=2

ak <

∫ n

1

f (x) dx. If

∫ ∞
1

f (x) dx is

convergent, then
n∑

k=2

ak <

∫ n

1

f (x) dx ≤
∫ ∞
1

f (x) dx since f (x) ≥ 0.

So, sn = a1 +
n∑

k=2

ak ≤ a1 +

∫ ∞
1

f (x) dx. Let a1 +

∫ ∞
1

f (x) dx = M ,

which gives that sn ≤ M for all n. Thus, {sn} is bounded above. Also, sn+1 = sn + an+1 ≥ sn since

an+1 = f (n+ 1) ≥ 0. Thus, by the Monotone convergence theorem, {sn} converges, so
∞∑
n=1

an converges.

(2) Consider the following figure:

It is clear from the figure that

∫ n

1

f (x) dx ≤
n−1∑
k=1

ak. If

∫ ∞
1

f (x) dx

is divergent, then

∫ n

1

f (x) dx → ∞ as n → ∞ because f (x) ≥ 0.

So,

∫ n

1

f (x) dx ≤
n−1∑
k=1

ak = sn−1 implies that sn−1 →∞ as n→∞.

Therefore, sn →∞ as n→∞, so
∞∑
n=1

an diverges. �

Theorem: (P-Series Test) The series
∞∑
n=1

1

np
converges when p > 1 and diverges with p ≤ 1.

Proof: When p = 0, we have the series
∞∑
n=1

1, which is obviously divergent. When p < 0, the terms
1

np

are increasing, so
∞∑
n=1

1

np
is again divergent. When p > 0,

1

np
is positive and decreasing, so we’ll apply the

Integral Test. If p = 1, then

∫ ∞
1

1

x
dx = lim

t→∞

∫ t

1

1

x
dx = lim

t→∞
lnx|t1 = lim

t→∞
ln t =∞. Thus,

∞∑
n=1

1

n
diverges.

If p > 0 and p 6= 1, then we have

∫ ∞
1

1

xp
dx = lim

t→∞

∫ t

1

1

xp
dx = lim

t→∞

x1−p

1− p

∣∣∣∣t
1

= lim
t→∞

t1−p

1− p
− 1

1− p
. So, if

lim
t→∞

t1−p converges,
∞∑
n=1

1

np
converges, and if lim

t→∞
t1−p diverges,

∞∑
n=1

1

np
diverges.
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If 0 < p < 1, then 1 − p > 0, and hence lim
t→∞

t1−p diverges. This completes the proof that
∞∑
n=1

1

np
diverges

when p ≤ 1. Finally, if p > 1, then 1−p < 0. So, lim
t→∞

t1−p = 0, and hence,
∞∑
n=1

1

np
converges when p > 1. �

Theorem: (The Comparison Test) Suppose that
∞∑
n=1

an and
∞∑
n=1

bn are series with positive terms. Then

(1) If
∞∑
n=1

bn converges and an ≤ bn for all n, then
∞∑
n=1

an converges.

(2) If
∞∑
n=1

bn diverges and an ≥ bn for all n, then
∞∑
n=1

an diverges.

Proof: Let sn =
n∑

k=1

ak, tn =
n∑

k=1

bk, t =
∞∑
n=1

bn.

(1) Since both series have positive terms, {sn} and {tn} are increasing. (sn+1 = sn + an+1 ≥ sn). Also,
tn → t as n → ∞, so tn ≤ t for all n. Since an ≤ bn for all n, we have sn ≤ tn for all n. Thus, sn ≤ t for

all n. So, by the Monotone Convergence Theorem, sn converges, so
∞∑
n=1

an converges.

(2) If
∞∑
n=1

bn is divergent, then tn → ∞ as n → ∞ (since {tn} is increasing). But an ≥ bn for all n, so

sn ≥ tn for all n. Thus, sn →∞ as n→∞, so
∞∑
n=1

an diverges. �

Theorem: (The Limit Comparison Test) Suppose that
∞∑
n=1

an and
∞∑
n=1

bn are series with positive terms.

If lim
n→∞

an
bn

= c, where c > 0 and c is finite, then either both series converge or both series diverge.

Proof: Let 0 < ε < c. Then by definition of lim
n→∞

an
bn

= c, there exists an N > 0 such that

∣∣∣∣anbn − c
∣∣∣∣ < ε

when n > N . Rewriting this, we have: ∣∣∣∣anbn − c
∣∣∣∣ < ε

−ε < an
bn
− c < ε

c− ε < an
bn

< c+ ε

(c− ε) bn < an < (c+ ε) bn

Let m = c− ε > 0, M = c+ ε > 0. Then we have that mbn < an < Mbn. If
∞∑
n=1

bn converges, then
∞∑
n=1

Mbn

converges, so by the Comparison Test,
∞∑
n=1

an converges. Similarly, if
∞∑
n=1

bn diverges, then
∞∑
n=1

mbn diverges,

so by the Comparison Test,
∞∑
n=1

an diverges.�
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Theorem: (The Alternating Series Test) If the alternating series
∞∑
n=1

(−1)n+1 bn = b1 − b2 + b3 − ...

(bn > 0) satisfies (1) bn+1 ≤ bn for all n (bn decreasing) and (2) lim
n→∞

bn = 0, then the series converges.

Proof: First consider the even partial sums: s2 = b1 − b2 ≥ 0 (since b2 ≤ b1), s4 = s2 + (b3 − b4) ≥ s2
(since b4 ≤ b3), and in general, s2n = s2n−2 + (b2n−1 − b2n) ≥ s2n−2 (since b2n ≤ b2n−1). So, we have that
0 ≤ s2 ≤ s4 ≤ ... ≤ s2n ≤ ..., which tells us that the even partial sums are positive and increasing. Also,
s2n = b1 − (b2 − b3)− (b4 − b5)− ...− (b2n−2 − b2n−1)− b2n. b2n and every term in parentheses is positive,
so s2n ≤ b1 for all n. Thus, the sequence {s2n} of even partial sums is bounded above, so by the Monotone
Convergence Theorem, {s2n} converges. Let lim

n→∞
s2n = s.

Now, looking at the odd partial sums, lim
n→∞

s2n+1 = lim
n→∞

s2n + b2n+1 = lim
n→∞

s2n + lim
n→∞

b2n+1. Now, since

lim
n→∞

bn = 0, lim
n→∞

b2n+1 = 0. Thus, we have that lim
n→∞

s2n+1 = s, so lim
n→∞

sn = s. Finally, by definition,
∞∑
n=1

(−1)n+1 bn converges. �

Theorem: (The Absolute Convergence Test) If
∞∑
n=1

|an| is convergent, then
∞∑
n=1

an is convergent.

Proof: First, note that an ≤ |an| for all n. So, 0 ≤ an + |an| ≤ 2 |an| (|an| is either an or −an, so

an + |an| ≥ 0 for all n). Since
∞∑
n=1

|an| is convergent,
∞∑
n=1

(an + |an|) is convergent by the Comparison Test.

Finally,
∞∑
n=1

an =
∞∑
n=1

(an + |an|)−
∞∑
n=1

|an|, so since both of these converge,
∞∑
n=1

an converges. �

Theorem: (The Ratio Test) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1, then the series
∞∑
n=1

an is absolutely convergent. If

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ > 1, then the series
∞∑
n=1

an is divergent. If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1, then the test is inconclusive,

meaning we cannot determine whether
∞∑
n=1

an converges or diverges using this test.

Proof: Let lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L, and suppose that L < 1. Let r be a value such that L < r < 1 (r is like L+ ε).

Then by the definition of a limit, there is an N > 0 such that for all n ≥ N ,

∣∣∣∣an+1

an

∣∣∣∣ < r. Equivalently,

|an+1| < |an| r. This gives us a few facts:

|aN+1| < |aN | r
|aN+2| < |aN+1| r < |aN | r2

|aN+3| < |aN+2| r < |aN | r3
...

|aN+k| < |aN | rk for all k ≥ 1

So, using the comparison test,
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∞∑
n=1

|an| =
N∑

n=1

|an|+
∞∑

n=N+1

|an|

=
N∑

n=1

|an|+
∞∑
k=1

|aN+k|

≤
N∑

n=1

|an|+
∞∑
k=1

|aN | rk

Since 0 < r < 1,
∞∑
k=1

|aN | rk converges, and hence
N∑

n=1

|an|+
∞∑
k=1

|aN | rk converges. Thus, by the comparison

test,
∞∑
n=1

|an| converges, so
∞∑
n=1

an converges absolutely.

Suppose that L > 1. Then there exists an N > 0 such that for all n ≥ N ,

∣∣∣∣an+1

an

∣∣∣∣ > 1 (follows from letting

L < ε < 1 and using the definition). Thus |an+1| > |an|, so lim
n→∞

an is either infinite or does not exist.

Therefore,
∞∑
n=1

an diverges by the Divergence Test. �

Theorem: (The Root Test) If lim
n→∞

n
√
|an| < 1, then the series

∞∑
n=1

an is absolutely convergent. If

lim
n→∞

n
√
|an| > 1, then the series

∞∑
n=1

an is divergent. If lim
n→∞

n
√
|an| = 1, then the test is inconclusive, meaning

we cannot determine whether
∞∑
n=1

an converges or diverges using this test.

Proof: Let lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L, and suppose that L < 1. Let r be a value such that L < r < 1. Then by the

definition of a limit, there is an N > 0 such that for all n ≥ N , n
√
|an| < r. Equivalently, |an| < rn. So,

using the comparison test,
∞∑
n=1

|an| =
N∑

n=1

|an|+
∞∑

n=N+1

|an|

<

N∑
n=1

|an|+
∞∑

n=N+1

rn

Since 0 < r < 1,
∞∑

n=N+1

rn converges, and hence
N∑

n=1

|an| +
∞∑

n=N+1

rn converges. Thus, by the comparison

test,
∞∑
n=1

|an| converges, so
∞∑
n=1

an converges absolutely.

Suppose that L > 1. Then there exists an N > 0 such that for all n ≥ N , n
√
|an| > 1. Thus |an| > 1, so

lim
n→∞

an 6= 0 or does not exist. Therefore,
∞∑
n=1

an diverges by the Divergence Test. �
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