Math 142: Series Test Proofs

Theorem: (The Monotone Convergence Theorem) If a,, is a decreasing sequence that is bounded
below, then it converges. Similarly, is a,, is increasing and bounded above, then it converges.

Proof: Suppose a, is decreasing and bounded below. Let € > 0, and consider the greatest lower bound L
of the sequence (this exists by the completeness axiom). Then by definition of greatest lower bound, L + €
is not a lower bound of a,,. Let N be the smallest value such that ay < L+ €. Then since a,, is decreasing,
we know that a, < L + € for all n > N. Finally, this says that a, — L < € for all n > N, and since L is a
lower bound of a,, we know that a,, — L > 0. Thus, |a, — L| < €, so nli_}r{)loan = L by definition.

Suppose a,, is increasing and bounded below. The proof is identical, except this time we let L be the
least upper bound of the sequence, note that L — € is not an upper bound of a,, and find an N such that
a, > L —efor all n > N. Since L — a,, > 0, we get that |a, — L| <e. B

o0

Theorem: (Geometric Series) The geometric series Zar”’l converges to ]

Y Wwhen |r] < 1 and
n=1 - T
diverges when |r| > 1.

Proof: First, we’ll get an expression for s,:

sp=a+ar+ar’+ard+ ... +ar"?

r$,=  ar+ar*+ard+ .. +ar"t 4+ ar”

Subtracting these two equations, we get that s, —rs, = a—ar™, so s, (1 —r) = a (1 —r"), and finally, we
a(l—r")
1—r

a(l—r" a(l—0 a
If |r| <1, lim ( ) = ( ) = , 80 it converges to
n—oo 1 —r 1—r 1—r —r
If |#| > 1, lim r" diverges, so s, diverges and hence the series diverges.
n—00

get an expression for s,,: . We now proceed to take the limit of s,.

If r =1, then the series is simply Za =a+a+ a+ ..., which diverges.

n=1

If r = —1, then the series is simply Za (—1)"_1 =a—a+a—a+ ..., which diverges. I

n=1

Theorem: (The Divergence Test) If lim a,, # 0 or does not exist, then Zan diverges.
n—o0

n=1

o
Proof: We'll prove the contrapositive: If the series Zan is convergent, then lim a, = 0.

n—oo
n=1
0. 0] [o.¢]
Notice that a, = s, — s,_1, where s,, is the n'" partial sum of g a,. Since E a, converges, s, — S.
n=1 n=1
Clearly, this means that s, 1 — s as well. So, lim a,, = lim (s, —s,-1) = lims,, — lim s, 1 =s—s=0.
n—oo n—oo n—oo n—oo



o0 [e.9]

Theorem: (Constant Multiples of Series) If Zan converges, then ZC% converges to cZan. If

n=1 n=1 n=1
o0 o0
E a, diverges, then E ca,, diverges.
n=1 n=1

o0 o0
Proof: Let s, be the partial sums of Zan. If Zan converges, then say s, — s. The n'® partial sum of
n=1 n=1

o)
lim s, = cs. If Zan diverges,

n—oo
n=1 n=1

(o]
E cay is cay + cag + ...+ ca, = c(ay + as + ... + a,) = ¢s,. So, limes, =c
n—oo

o)
then lim s,, diverges. Thus, lim cs,, diverges, so E ca, diverges. ll
n—00 n—00 1
n—=

Theorem: (Sum of Series) If Zan and an converge, then Z (a, + b,) converges to Zan + an.

n=1 n=1 n=1 n=1 n=1

If one of Zan or an diverges, then Z (an + by,) diverges. Finally, if Zan or an both diverge to oo

n=1 n=1 n=1 n=1 n=1

or both diverge to —oo, then Z (a, + by,) diverges to the same value.

n=1

Proof: Let s, be the partial sums of Zan and t, be the partial sums of an. If Zan and an
n=1 n=1

n=1 n=1
converge, then say s, — s and t,, — t. The n'® partial sum of Z (an +by) is (@ +b1) + (ag + be) + ... +
n=1

(an +bp) =(a1+as+ ...+ a,)+ (b1 + b+ ... + b,) = s, +1t,. So lim (s, +t,) = lims,+ limt, = s+t
n—o0 n—o0 n—00

If one of Zan or an diverges, say without loss of generality that s, diverges and ¢, — t. Then
n=1 n=1
lim (s, +t,) = lim s, + ¢. This limit diverges, so Z (an + by,) diverges. Finally, if Zan or an both

n—oo n—oo
n=1 n=1 n=1

diverge to oo, then lim (s, +t,) = lim s, + lim ¢, = co. Thus, Z (a, + by,) diverges to 0o, and the —oo

n—oo n—oo n—oo

n=1
case is identical. H
(o] [o¢]
Note 1: Z (an — by) = Z (an + (—by)), so we can treat differences in the same manner as the theorem
n=1 n=1
o0 (o] (o]
above. In particular, if both series converge, then Z (an, — by) = Zan — an.
n=1 n=1 n=1

Note 2: All other cases not covered in this theorem must be treated with further analysis, and they cannot
be split easily.



Theorem: (The Integral Test) Suppose a, is a positive decreasing sequence and f (z) is a continuous
function such that f (n) = a,. Then,

(1) If / f (z) dx converges, then Zan converges.
1

n=1
(2) If/ f (z) dz diverges, then Zan diverges.
1 n=1
Proof: (1) Consider the following figure:
It is clear from the figure that Zak < / f(z) dz. If/ f(z) dxis
1 1

k=2

YA

—y=flx)

convergent, then Zak < / f(x) doe < / f(x) dx since f(z) > 0.
k=2 1 1

SO,Sn=a1+Zak§a1+/ f(:ﬂ)d:p.LetalJr/ f(z) de =M, 00 1 2 3 4 5-- 0 x
s 1 1
which gives that s, < M for all n. Thus, {s,} is bounded above. Also, $,11 = sp + any1 > S, since

an+1 = f(n+1) > 0. Thus, by the Monotone convergence theorem, {s,} converges, so Zan converges.

n=1

(2) Consider the following figure:

n n—1 00
It is clear from the figure that / f(z) de < Zak. If / f(z) dx
1 P 1

M N\ y=F0)

is divergent, then / f(x) de — oo as n — oo because f(z) > 0.
1

n—1

n
So,/ f(z) de < Zak = 8,,_1 implies that s,_1 — 00 as n — oo. 0
1 k=1

o
Therefore, s,, — 0o as n — 00, so E a, diverges. l

n=1
1
Theorem: (P-Series Test) The series E — converges when p > 1 and diverges with p < 1.
n
n=1

- 1
Proof: When p = 0, we have the series 1, which is obviously divergent. When p < 0, the terms —
P

T
n=1
%)

1
are increasing, so — is again divergent. When p > 0, — is positive and decreasing, so we’ll apply the
g P g g P

n=1
t

>1 1 1
Integral Test. If p =1, then / —dr = lim | —dr= lim lna:]t1 = lim Int = oo. Thus, E — diverges.
1 t—oo t—o0 — n

X t—o0 1 X
| tq g |t P 1
If p> 0 and p # 1, then we have / — dr = lim [ — dz = lim = lim — ——. So, if
1 P t—oo f1 P t—o0 1—p1 t—>ool—p 1—p

oo [ee]
o1 1 e ep s 1 .
lim '~ converges, E — converges, and if limt'? diverges, E — diverges.
t—o0 177,7’ t—o0 1np

n= n=



=1
If 0 <p<1,then 1 —p > 0, and hence tlim t'7P diverges. This completes the proof that g - diverges
—00 n
n=1

= 1
when p < 1. Finally, if p > 1, then 1 —p < 0. So, tlim t177 = 0, and hence, E — converges whenp>1. B
—00 n
n=1

Theorem: (The Comparison Test) Suppose that Zan and an are series with positive terms. Then

n=1 n=1
(1) If an converges and a,, < b, for all n, then Zan converges.
n=1 n=1
(2) If an diverges and a,, > b, for all n, then Zan diverges.
n=1 n=1

Proof: Let s, = iak, ty, = ibk’ t= ibn.
k=1 k=1 n=1

(1) Since both series have positive term;, {sn} and {t,} are increasing. (Sp+1 = Sn + @ni1 > sp). Also,
t, —>tasn — oo, sot, <t for all n. Since a, < b, for all n, we have s, <t, for all n. Thus, s, <t for
o0

all n. So, by the Monotone Convergence Theorem, s, converges, so E a, converges.

n=1
(2) If an is divergent, then ¢, — 0o as n — oo (since {¢,} is increasing). But a, > b, for all n, so
n=1

[e¢]
S, > t,, for all n. Thus, s, = 00 as n — 00, so0 Zan diverges. W

n=1

Theorem: (The Limit Comparison Test) Suppose that E a, and E b, are series with positive terms.
n=1 n=1
an . . . . . .
If lim — = ¢, where ¢ > 0 and c is finite, then either both series converge or both series diverge.

n—o0 n

Proof: Let 0 < € < ¢. Then by definition of lim In _ c, there exists an N > 0 such that In ¢

< €
n—oo n n
when n > N. Rewriting this, we have:
Qn
— —c| <€
bn
a
—e< ——c <ce¢
bn
an
c—e< — <c+e
bn

(c—€)b, < an, <(c+¢€)b,

Let m=c—¢e¢>0, M =c+¢e > 0. Then we have that mb,, < a,, < Mb,,. If an converges, then ZMbn

n=1 n=1

converges, so by the Comparison Test, Zan converges. Similarly, if an diverges, then Zmbn diverges,

n=1 n=1 n=1

so by the Comparison Test, Zan diverges.ll

n=1



Theorem: (The Alternating Series Test) If the alternating series Z (=1)" b, = by — by + bg — ...
n=1

(b, > 0) satisfies (1) b,41 < b, for all n (b, decreasing) and (2) lim b, = 0, then the series converges.

n—oo
Proof: First consider the even partial sums: sy = by — by > 0 (since by < by), s4 = S9 + (b3 — by) > $9
(since by < b3), and in general, Sa,, = Son_2 + (b2n—1 — bap) > Son—2 (since by, < bo,—1). So, we have that
0 <89 <4 <... <89, < ..., which tells us that the even partial sums are positive and increasing. Also,
Son = by — (bg — b3) — (by — bs) — ... — (bay—2 — bop—1) — bap. ba, and every term in parentheses is positive,
SO S9,, < by for all n. Thus, the sequence {sg,} of even partial sums is bounded above, so by the Monotone
Convergence Theorem, {ss,} converges. Let 7}1_)120 Sop = S.

Now, looking at the odd partial sums, lim s9,,1 = lim s9, + b1 = lim s9, + lim by,11. Now, since
n—oo n—oo n—oo n—oo

%
limb, = 0, limby,,; = 0. Thus, we have that lim sy,,; = s, so lims, = s. Finally, by definition,
n—o0 n—oo n—oo n—roo

[o.¢]

Z (=1)"*' b, converges. W

n=1

o0 o¢]
Theorem: (The Absolute Convergence Test) If Z |a,| is convergent, then Zan is convergent.

n=1 n=1

Proof: First, note that a,, < |a,| for all n. So, 0 < a, + |a,| < 2]a,| (Ja,| is either a, or —a,, so
o0 oo

an + |a,| > 0 for all n). Since Z |a,| is convergent, Z (an + |ay|) is convergent by the Comparison Test.

Finally, Zan = Z (an + |an]) — Z |a,|, so since both of these converge, Zan converges. l
n=1 n=1 n=1 n=1
a (e}
Theorem: (The Ratio Test) If lim "1l < 1, then the series Zan is absolutely convergent. If
n—00 Qp —
a = a "
lim |22 > 1, then the series Zan is divergent. If lim ntll = 1, then the test is inconclusive,
n—oo | Gy, " n—00 | (A

o

meaning we cannot determine whether E a, converges or diverges using this test.

n=1

Qp41
G,

Proof: Let lim

n—o0

= L, and suppose that L < 1. Let r be a value such that L < r < 1 (r is like L +e¢).

An1
Qn

Then by the definition of a limit, there is an N > 0 such that for all n > N,

< r. Equivalently,

|an11| < |ay|r. This gives us a few facts:

lany1] < |an|7T
|an2| < |ansa| 7 < |an]r?

|anys| < lanya| 7 < |ay]

lanix] < ]aN]Tk forall £k >1

So, using the comparison test,



[e's) N 00

D lanl = lanl+ 3 lanl
n=1 n=1 n=N-+1
N 00
S SRS
n=1 k=1
N 00
<2 lanl+ > lavlrt
n=1 k=1

00 N 9]
Since 0 < r < 1, Z lay| ¥ converges, and hence Z || +Z lax| ¥ converges. Thus, by the comparison

k=1 n=1 k=1
o [e.@]
test, E |a,,| converges, so E a, converges absolutely.
n=1 n=1

Suppose that L > 1. Then there exists an N > 0 such that for all n > NV, Il

> 1 (follows from letting

n
L < € < 1 and using the definition). Thus |a,41| > |a,|, so lim a, is either infinite or does not exist.
n—00

o0

Therefore, Zan diverges by the Divergence Test. H

n=1

Theorem: (The Root Test) If lim {/|a,| < 1, then the series Zan is absolutely convergent. If
n—oo

n=1
o
lim {/|a,| > 1, then the series Zan is divergent. If lim {/|a,| = 1, then the test is inconclusive, meaning
n—oo =1 n—oo

o0

we cannot determine whether Zan converges or diverges using this test.

n=1

Proof: Let lim o+l

n—oo

= L, and suppose that L < 1. Let r be a value such that L < r < 1. Then by the

an
definition of a limit, there is an N > 0 such that for all n > N, {/|a,| < r. Equivalently, |a,| < r". So,
using the comparison test,

00 N o0
Z|an| :z:|an|+ Z |an]
n=1 n=1 n=N+1
N %)
< Z |lan| + Z r
n=1 n=N+1
) N [e'S)
Since 0 < r < 1, Z r’ converges, and hence Z la,| + Z r’ converges. Thus, by the comparison
n=N+1 n=1 n=N+1
o o
test, Z la,| converges, so Zan converges absolutely.
n=1 n=1

Suppose that L > 1. Then there exists an N > 0 such that for all n > N, {/|a,| > 1. Thus |a,| > 1, so

oo
lim a,, # 0 or does not exist. Therefore, Zan diverges by the Divergence Test. B
n—oo

n=1



