
SYZYGYIES SPRING 2018 A. KUSTIN CLASS NOTES

1. REGULAR SEQUENCES, THE KOSZUL COMPLEX, “WHAT MAKES A COMPLEX EXACT?”

Let R be a commutative Noetherian ring and M be a finitely generated R-module. We
want to learn the resolution of M by free R-modules. Typically, R is local and we want
the minimal resolution of M ; or R is graded over a field kkk, M is graded, and we want the
minimal homogeneous resolution of M .

In any case, the resolution looks like a complex

F : · · · → F2
d2−→ F1

d1−→ F0 → 0,

with each Fi a finitely generated free R-module, di an R-module homomorphism, and

Hi(F) ∼=

{
M, if i = 0, and
0, if 1 ≤ i,

where Hi(F) = ker di/ im di+1.
If (R,m) is local, then F is minimal if im di ⊆ mFi−1 for all i.
If R is graded, then F is homogeneous if

• di(θ) is homogeneous for each homogeneous element θ in Fi, and
• deg(di(θ)) = deg(θ) for each homogeneous element θ in Fi.

The homogeneous resolution F is minimal if di(Fi) ⊆ mFi−1, where m is the maximal
homogeneous ideal of R.

1.A. Regular sequences. The easiest ideals to resolve are ideals generated by regular
sequences.

Definition 1.1. LetR be a commutative Noetherian ring,M be anR-module, and f1, . . . , fn
be elements of R. The sequence f1, . . . , fn is a regular sequence on M if

• (f1, . . . fn)M (M ,
• f1 is regular on M ,
• f2 is regular on M/(f1)M ,

• ...
• fn is regular on M/(f1, . . . , fn−1)M .

Example 1.2. The elements x1, . . . , xn are a regular sequence on R = kkk[x1, . . . , xn].

Definition 1.3. If f1, . . . , fn are elements of the ringR, then the Koszul complex on f1, . . . , fn
is the complex

0→
∧n F

dn−→
∧n−1 F

dn−1−−−→
∧n−2 F

dn−2−−−→ · · · d2−→
∧1 F

d1−→
∧0 F −→ 0,

1
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where F =
⊕n

i=1Rei and

dj(ei1 ∧ . . . ∧ eij) =

j∑
k=1

(−1)k+1fikei1 ∧ . . . ∧ êik ∧ . . . ∧ eij .

Theorem 1.4. If f1, . . . , fn is a regular sequence in the ring R, then the Koszul complex on
f1, . . . , fn is a resolution of R/(f1, . . . , fn). This resolution is minimal if (R,m) is local and
f1, . . . , fn are in m. This resolution is homogeneous and minimal if R is graded and the f ’s
are homogeneous of positive degree.

Examples 1.5. If f1, f2, f3 is a regular sequence in R on R, then

0→ R
f1−→ R→ 0

is a resolution of R/(f1);

0→ R

−f2

f1


−−−−→ R2

[
f1 f2

]
−−−−−−→ R→ 0

is a resolution of R/(f1, f2); and

0→ Re1 ∧ e2 ∧ e3


f1

f2

f3


−−−→

Re2 ∧ e3

⊕
Re3 ∧ e1

⊕
Re1 ∧ e2


0 f3 −f2

−f3 0 f1

f2 −f1 0


−−−−−−−−−−−−−→

Re1

⊕
Re2

⊕
Re3

[
f1 f2 f3

]
−−−−−−−−−→ R→ 0

is a resolution of R/(f1, f2, f3).

Outline of a proof of Theorem 1.4. The proof is by induction. We have already seen that
the assertion holds for small values of n. Suppose the assertion holds for n − 1. Write
F = F ′ ⊕Ren, where F ′ =

⊕n−1
i=1 Rei. Observe that

∧i F =
∧i(F ′ ⊕Ren) = (

∧i F ′)⊕ (
∧i−1 F ′ ⊗Ren)

and that the commutative diagram
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(1.5.1) 0

��
T : · · · t3 // F ′2

t2 //

fn
��

F ′1
t1 //

fn
��

F ′0 //

fn
��

R/(f1, . . . , fn−1) //

fn
��

0

B : · · · b3 // F ′2
b2 // F ′1

b1 // F ′0 // R/(f1, . . . , fn−1) //

��

0

R/(f1, . . . , fn)

��
0

has exact rows and the right column is exact.
One can calculate by hand that the mapping cone of (1.5.1) is exact and that this map-

ping cone is isomorphic to the Koszul complex on f1, . . . , fn OR one can use the long exact
sequence of homology that corresponds to a short exact sequence of complexes. (One gets
a little more information from the long exact sequence; but we do not need that informa-
tion here.)

At any rate, the mapping cone of the map of complexes

T : · · · t3 // T2
t2 //

c2
��

T1
t1 //

c1
��

T0
//

c0
��

0

B : · · · b3 // B2
b2 // B1

b1 // B0
// 0

is

M : · · ·
m3=

t2 0
c2 −b3


−−−−−−−−−−→

T1

⊕
B2︸︷︷︸
M2

m2=

t1 0
c1 −b2


−−−−−−−−−−→

T0

⊕
B1︸︷︷︸
M1

m1=
[
c0 −b1

]
−−−−−−−−−→ B0︸︷︷︸

M0

.

The long exact sequence of homology that corresponds to a mapping cone is

· · · → H1(T )→ H1(B)→ H1(M)→ H0(T )→ H0(B)→ H0(M)→ 0.

One can prove that this long sequence is exact by hand, or by using the long exact sequence
of homology that corresponds to the short exact sequence of complexes:
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0

��
B

��

· · · −b3 // B2

0
1


��

−b2 // B1

0
1


��

−b1 // B0

0
1


��

M

��

· · ·
m3=

t2 0
c2 −b3


//
T1

⊕
B2

[
1 0

]

��

m2=

t1 0
c1 −b2


//
T0

⊕
B1

[
1 0

]

��

m1=

 0 0
c0 −b1


//
T−1

⊕
B0

[
1 0

]

��
T [−1]

��

· · · t2 // T1
t1 // T0

0 // T−1

0.

�

1.B. Use Hom (and Ext) to detect regular sequences. The next goal is “What makes a
complex exact?”, which is a theorem by Buchsbaum and Eisenbud. The theorem says: the
complex F is exact if and only if

• a linear algebra condition and
• a condition about regular sequences.

We need to learn a little more about each of these topics before we are able to appreciate
this theorem.

We start with the regular sequences.

Observation 1.6. Let M be a non-zero finitely generated module over the Noetherian ring R,
and let I be an ideal in R. Then HomR(R/I,M) = 0 if and only if there is an element x ∈ I
with x regular on M .

Proof. (⇐) Assume x is an element of I with x regular on M . Prove HomR(R/I,M) = 0.
Apply HomR(R/I,−) to the exact sequence

0→M
x−→M →M/(x)M → 0

to get the exact sequence

0→ HomR(R/I,M)
x−→︸︷︷︸
0

HomR(R/I,M)→ HomR(R/I,M/(x)M).

Conclude HomR(R/I,M) = 0.
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(⇒) Assume I is contained in the zero divisors on M . Prove HomR(R/I,M) 6= 0.

• We will use some facts from commutative algebra. If M is a non-zero finitely generated
module over a Notherian ring, then there is a finite set of prime ideals of R (called the set
of associated primes of M , denoted AssM) such that the following statements hold.

Fact 1.7. The set of zero divisors on M is equal to ∪P∈AssMP .

Fact 1.8. If P is a prime ideal of R, then P is an associated prime of M if and only if
P = annR(m) for some element m of M .

Fact 1.9. Every prime ideal in R which is minimal over the annihilator of M is an associated
prime of M .

Fact 1.10. If I is an ideal of R and every element of I is a zero divisor on M , then I is
contained in an associated prime of M .

Facts 1.7, 1.8, and 1.9 are about “Primary Decomposition”; this is the work of Emmy
Noether. Fact 1.10 is usually called the “Prime Avoidance Lemma”; the Prime Avoidance
Lemma is true more generally than recorded above.

Return to the proof. The ideal I is contained in the set of zero divisors on M ; hence there
is an associated prime ideal P of M with I ⊆ P ; this associated prime is equal to ann(m)

for some m in M . Observe that 1 7→ m is a non-zero element of HomR(R/I,M). �

Definition 1.11. Let R be a ring, I be an ideal in R, and M be an R-module with IM 6= M .
The grade in I on M (denoted grade(I,M)) is the length of the longest regular sequence
in I on M . We write grade(I) to mean grade(I, R). If (R,m) is Noetherian and local and
M is a non-zero finitely generated R module, then grade(m,M) is also denoted depthM .

Remark 1.12. If R is Noetherian, M is finitely generated, and IM 6= M , then grade(I,M)

is finite. Indeed, if x1, x2, . . . is a regular sequence in I on M , then

(x1)M ( (x1, x2)M ( · · ·

If equality occurred at spot i, then xiM would be contained in (x1, . . . , xi−1)M with xi
regular on M/(x1, . . . , xi−1)M . This would force M ⊆ (x1, . . . , xi−1)M which has been
ruled out.

Theorem 1.13. Let M be a finitely generated module over the Noetherian ring R, and let I
be an ideal in R with IM 6= M . The following statements hold.

(a) grade(I,M) = min{i | ExtiR(R/I,M) 6= 0},
(b) every maximal regular sequence in I on M has the same length, and
(c) grade(I,M) ≤ pdRR/I.

Lemma 1.14. Let M be a finitely generated module over the Noetherian ring R, and let I be
an ideal in R. If x1, . . . xn is a regular sequence on M in I, then

ExtiR(R/I,M) ∼=

{
0, if 0 ≤ i ≤ n− 1, and
HomR(R/I,M/(x1, . . . , xn)M), if i = n.
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Proof. The proof is by induction on n. We start with n = 1. Apply HomR(R/I,−) to the
short exact sequence of R-modules

0→M
x1−→M →M/x1M → 0

to obtain the long exact sequence

0→ HomR(R/I,M)
x1−→︸︷︷︸
0

HomR(R/I,M)→ HomR(R/I,M/x1M)

→ Ext1
R(R/I,M)

x1−→︸︷︷︸
0

Ext1
R(R/I,M)→ Ext1

R(R/I,M/x1M) · · · .

Conclude that HomR(R/I,M) = 0 and

(1.14.1) 0→ ExtiR(R/I,M)→ ExtiR(R/I,M/x1M)→ Exti+1
R (R/I,M)→ 0

is exact for 0 ≤ i. In particular, when i = 0 in (1.14.1) one obtains

HomR(R/I,M/x1M) ∼= Ext1
R(R/I,M).

We have established the case n = 1.
Suppose, by induction, that the assertion holds for n−1. Apply the induction hypothesis

to the regular sequence x2 . . . , xn on the module M/x1M to conclude that

ExtiR(R/I,M/x1M) ∼=


0, if 0 ≤ i ≤ n− 2, and
HomR(R/I, (M/x1)/(x2, . . . , xn)(M/x1)︸ ︷︷ ︸

M/(x1,...,xn)M

), if i = n− 1.

Plug ExtiR(R/I,M/x1M) = 0 for 0 ≤ i ≤ n − 2 into (1.14.1) to see ExtiR(R/I,M) = 0 for
0 ≤ i ≤ n− 1. At i = n− 1, (1.14.1) gives

0→ Extn−1
R (R/I,M)︸ ︷︷ ︸

0

→ Extn−1
R (R/I,M/x1M)︸ ︷︷ ︸

HomR(R/I,M/(x1,...,xn)M)

→ ExtnR(R/I,M)→ 0,

and this concludes the proof of the Lemma. �

The proof of Theorem 1.13. Let x1, . . . xn be a maximal regular sequence in I on M . We
have shown that

Exti(R/I,M) =

{
0, if 0 ≤ i ≤ n− 1

HomR(R/I,M/(x1, . . . , xn)M), if i = 0.

The regular sequence is maximal; so, Observation 1.6 yields that

HomR(R/I,M/(x1, . . . , xn)M) 6= 0.

This completes the proof of (a) and (b).

(c) Let F be a projective resolution of R/I of length pdRR/I. Use

ExtiR(R/I,M) = Hi(Hom(F,M))

is to compute
ExtiR(R/I,M) = 0 for pdRR/I + 1 ≤ i.



SYZYGIES 7

We know grade(I,M) is finite and

Ext
grade(I,M)
R (R/I,M) 6= 0.

Conclude grade(I,M) ≤ pdRR/I.

Doodle 1.15. Let R be a Noetherian ring, I ⊆ R be an ideal, and

0→ A→ B → C → 0

be a short exact sequence of finitely generated R-modules. The following statements hold.

(a) min{grade(I, A), grade(I, C)} ≤ grade(I, B)

(b) min{grade(I, B), grade(I, C) + 1} ≤ grade(I, A)

(c) min{grade(I, A)− 1, grade(I, B)} ≤ grade(I, C)

Proof. (a) If i < min{grade(I, A), grade(I, C)}, then the exact sequence

ExtiR(R/I,A)→ ExtiR(R/I,B)→ ExtiR(R/I, C)

yields ExtiR(R/I,B) = 0; hence,

min{grade(I, A), grade(I, C)} ≤ grade(I, B).

(b) If i < min{grade(I, B), grade(I, C) + 1}, then

i < grade(I, B) and i− 1 < grade(I, C);

hence the exact sequence

Exti−1
R (R/I, C)→ ExtiR(R/I,A)→ ExtiR(R/I,B)

yields ExtiR(R/I,A) = 0 and

min{grade(I, B), grade(I, C) + 1} ≤ grade(I, A).

(c) If i < min{grade(I, A)− 1, grade(I, B)}, then

i+ 1 < grade(I, A) and i < grade(I, B)

and the exact sequence

ExtiR(R/I,B)→ ExtiR(R/I, C)→ Exti+1
R (R/I,A)

yields ExtiR(R/I, C) = 0 and

min{grade(I, A)− 1, grade(I, B)} ≤ grade(I, C).

�
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1.C. The linear algebra aspect of resolutions.

Definition 1.16. Let R be a commutative Noetherian ring and φ : F → G be an R-module
homomorphism between finitely generated free R-modules.

(a) For each integer i, let Ii(φ) be the ideal generated by the i× i minors of (some matrix
representation of) φ. (Of course, Ii(φ) is also equal to the image of the map∧i F ⊗R

∧iG∗ → R

which is induced by φ; hence, Ii(φ) is independent of the choice of bases.)
(b) The rank of φ is the largest index i with Ii(φ) 6= 0.

Folklore 1.17. Let R be a commutative Noetherian ring and M be a finitely generated
R-module. The following statements about M are equivalent; and, if they hold, then M is
called a projective R-module.

(a) If M

��
A // B // 0

is a diagram of R-module homomorphisms with an exact row,

then there is a homomorphism M → A such that the diagram

M
∃

~~}
}

}
}

��
A // B // 0

commutes.
(b) The R-module M is a direct summand of a free R-module.
(c) The localization MP is a free RP -module for all prime ideals P of R.

Remark 1.18. We will be particularly interested in “projective modules of constant rank”.
The R-module M is a projective R-module of constant rank r if MP

∼= Rr
P for all prime

ideals P of R.

Example 1.19. Let R be the ring Z/(6Z). The R-module M = Z/(2Z) is projective but
NOT of constant rank. The ring R has two prime ideals (2) and (3). The localization M(2)

is isomorphic to R(2). The localization M(3) is zero. This example exists only because R has
non-trivial idempotents: 32 = 3 and 42 = 4 in R.

Observation 1.20. Let R be a commutative Noetherian ring, and φ : F → G be a homomor-
phism of finitely generated free R-modules. Then cokerφ is a projective R-module of constant
rank if and only if I(φ) = R. Furthermore, if I(φ) = R, then

(1.20.1) 0→ kerφ
i−→ F

φ−→ G
π−→ cokerφ→ 0

is a split exact sequence with rank cokerφ = rankG−rankφ and rank kerφ = rankF−rankφ.

Proof. Let r = rankφ.
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(⇐) Assume I(φ) = R. Let P be a prime ideal of R. Observe that rankφP is also r and that

some r× r minor of φP is a unit. After a change of bases, φP =

[
Ir 0
0 0

]
, GP = (imφ)P ⊕X

and FP = Y ⊕(kerφ)P where X is a free summand of GP of rank rankG−rankφ, Y is a free
summand of FP of rank rankF − rankφ, and φP : Y → imφP is an isomorphism. Observe
that (cokerφ)P ∼= X. Thus, kerφ and cokerφ are projective R modules with constant rank
and that rank is the anticipated rank. It follows that (1.20.1) is split exact.

(⇒) Assume cokerφ is a projective R-module of constant rank s. Let P be a fixed prime
ideal of R. It follows that (1.20.1)P is split exact:

0 // (kerφ)P
iP // FP

φP //
σ2

mm GP
πP //

σ1

kk (cokerφ)P
σ0

ll // 0

with

πP ◦ σ0 = id(cokerφ)P

σ0 ◦ πP + φP ◦ σ1 = idGP

σ1 ◦ φP + ip ◦ σ2 = idFP

σ2 ◦ iP = id(kerφ)P

and

GP = ker πP ⊕ imσ0

FP = kerφP ⊕ imσ1.

When we record φP with respect to this direct sum decomposition, we have

kerφP
⊕

imσ1

0 ∼=
0 0


−−−−−→

kerπP
⊕

imσ0.

The last matrix might need more justification.

The position of the nonzero component in the matrix is correct: because

imφP ◦ σ1 ⊆ imφP = ker πP .

The map imσ1 → kerπP is onto: If x ∈ kerπP , then

x = (σ0 ◦ πP + φP ◦ σ1)(x) = (φP ◦ σ1)(x).

The map imσ1 → kerπP is injective: If x ∈ imσ1 ∩ kerφP = 0, then x is zero.

Thus φP has rank equal to rank ker πP = rankGP − rank imσ0 = rankG−s. In other words,
φ has constant rank and (Irankφ(φ))P = RP . We conclude that I(φ) = R.

We just used a piece of folklore: if M is a module with MP = 0 for all P , then M = 0. �



10 SYZYGIES

Observation 1.21. A complex of free R-modules

(1.21.1) F
φ−→ G

ψ−→ H

with I(φ) = I(ψ) = R is exact if and only if rankφ+ rankψ = rankG.

Proof. We may prove the result locally; consequently, we may assume that (R,m) is a local
ring. Apply Observation 1.20 to write φ in the form

F ′

⊕
F ′′

I 0
0 0


−−−−−→

G′

⊕
G′′.

Of course, ψ is zero on G′. Apply Observation 1.20 to the restriction of ψ to G′′ to see that
(1.21.1) is

F ′

⊕
F ′′


I 0
0 0
0 0


−−−−−→

G′

⊕
G′′′

⊕
G′′′′

0 I 0
0 0 0


−−−−−−−→

H ′

⊕
H ′′.

Thus, (1.21.1) is exact if and only if G′′′′ = 0 if and only if rankφ+ rankψ = rankG. �

1.D. What makes a complex exact? I am taking this from [1, page 207] and/or [3, page
496].

Theorem 1.22. (Due to Buchsbaum and Eisenbud, see [2]) Let R be a Noetherian ring
and

(1.22.1) F : 0→ Fn
fn−→ Fn−1

fn−1−−→ Fn−2 → · · · → F1
f1−→ F0

be a complex of finitely generated free R-modules. The following statements are equivalent.

(a) F is acyclic
(b) rankFk = rank fk+1 + rank fk and either I(φk) = R or I(φk) contains a regular sequence

of length k for 1 ≤ k ≤ n.

Example 1.23. In the syzygies talk I gave a hands-on proof that

(1.23.1) 0→ R(−4)2

φ2=


y 0
−x y
0 −x2


−−−−−−−−−−−−−→

R(−3)2

⊕
R(−2)1

φ1=
[
x3 x2y y2

]
−−−−−−−−−−−−−−→ R

is a resolution. I might have applied the above Buchsbaum and Eisenbud criteria. We see
that

rankF2 = 2 = rankφ2,

rankF1 = 3 = 2 + 1 = rankφ2 + rankφ1,
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and

I(φ2) = I2(φ2) = (x3, x2y, y2) = I1(φ1) = I(φ1).

This ideal contains x3, y2 which is a regular sequence of length 2. This is an alternate proof
that (1.23.1) is a resolution.

Proof. (b)⇒ (a). Induct on the length of F. Consider

(1.23.2) 0→ F1
f1−→ F0

with rankF1 = rank f1 and the ideal generated by the maximal minors of f1 contains a
regular element. We show that f1 is injective.

Let ri = rankFi for i equal to 0 and 1. View f1 as an r0 × r1 matrix. Notice that r1 ≤ r0.
Pick r1 rows of f1 and consider the projection map proj : F0 = Rr0 → Rr1 which maps
onto the basis elements of F0 which correspond to the chosen rows. Let C be the classical
adjoint of the chosen rows. Thus, the composition

Rf1 = F1
f1−→ F0

proj−−→ Rr1 C−→ Rf1

is multiplication by the relevant maximal minor. If θ, from F1, is in the kernel of f1, then
I(f1) times θ equals zero. Some element of I(f1) is a regular element of R. Thus, θ = 0.
We have shown that f1 is an injection; thus, (1.23.2) is acyclic.

Now we assume that the result has been established for complexes of length n − 1 and
we study the complex F of (1.22.1). It follows from induction that

0→ Fn
fn−→ Fn−1

fn−1−−→ Fn−2 → . . .
f2−→ F1 → coker(f2)→ 0

is exact. We “need only show” that the induced map

coker(f2)
f̄1−→ F0

is an injection. Possibly it helps to write the short exact sequence

0→ ker f̄1︸ ︷︷ ︸
H1(F)=

ker f1
im f2

→ F1

im f2︸ ︷︷ ︸
coker(f2)

f̄1−→ F0 → 0.

The argument is still pretty tricky. Let H1 denote H1(F). We assume H1 6= 0 and we
deduce a contradiction. There are a few steps.

(A) We find a prime ideal Q with grade(QRQ, (H1)Q) = 0, but grade(QRQ) 6= 0.
(B) We use the sliding hypothesis k ≤ grade(I(fk)) or I(fk) = R to split off part of FQ, if

necessary, in order to know that the new FQ stops at position grade(QRQ) or less.
(C) We use 0→ A→ B → C → 0 exact implies

min{grade(QRQ, A)− 1, grade(QRQ, B)} ≤ grade(QRQ, C)

many times to show that

1 ≤ grade(QRQ, (coker f2)Q).
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Once we have established (A), (B), and (C), we will have (H1)Q ⊆ (coker f2)Q with
grade(QRQ, (H1)Q) = 0 but 1 ≤ grade(QRQ, (coker f2)Q). This is not possible because it is
impossible for every element of QRQ to be a zero divisor on some part of (coker f2)Q and
simultaneously to have some element of QRQ to be regular on all of (coker f2)Q.

Note! When (S,m) is a Noetherian local ring and N is a finitely generated S-module,
then one often writes depthN in place of grade(m, N).

The hypothesis that I(fk) always contains a unit or a regular element forces

rank(fk)P = rank fk for all k and I(fk)P = RP for all P ∈ Ass(R).

Thus, FP is split exact for P ∈ Ass(R) by Observation 1.21. It follows that (Hi)P = 0 for
all positive i for P ∈ Ass(R); in particular (H1)P = 0. It follows further that ann H1 6⊆ P

for all P ∈ AssR and by the Prime Avoidance Lemma

ann H1 6⊆ ∪P∈AssRP = the set of zero divisors on R.

In particular, there is an element in the annihilator of H1 which is regular on R. Let Q be
any prime minimal over ann H1. It follows automatically, that Q ∈ Ass H1; in particular
QRQ ∈ Ass(H1)Q and grade(QRQ, (H1)Q) = 0. On the other hand, Q contains an element
which is regular on R. Localization is exact; so, 1 ≤ grade(QRQ).

Let m = grade(QRQ). If m ≤ n, then the hypothesis about I(fk) ensures that

I(fk)Q = RQ

for m+ 1 ≤ k ≤ n; and therefore,

0→ (Fn)Q → · · · → (Fm)Q → (coker fm+1)Q → 0

is split exact and (coker fm+1)Q is a projective (hence free) RQ-module. We now have

0→ (coker fm+1)Q → (Fm−1)Q → · · · → (F1)Q → (coker f2)Q → 0

is exact. In any event we have:

0→ F ′` → . . . F ′1 → (coker f2)Q → 0

an exact sequence of RQ-modules with F ′i a free RQ-module and ` ≤ m. Apply the ABC
result to the short exact sequences

0→ F ′` → F ′`−1 → X`−1 → 0

0→ X`−1 → F ′`−2 → X`−2 → 0

0→ X`−2 → F ′`−3 → X`−3 → 0

...

0→ X2 → F ′1 → (coker f2)Q → 0

to learn
m− 1 ≤ depthX`−1

m− 2 ≤ depthX`−2

m− 3 ≤ depthX`−3
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...

1 ≤ m− `+ 1 ≤ depth(coker f2)Q.

This completes the proof of (C) and therefore the proof of (b)⇒ (a).

(a)⇒ (b).
Suppose F from (1.22.1):

F : 0→ Fn
fn−→ Fn−1

fn−1−−→ Fn−2 → · · · → F1
f1−→ F0

is acyclic. We must show that

rankFk = rank fk + rank fk+1 for 1 ≤ k ≤ n and

k ≤ grade I(fk) or I(fk) = R for 1 ≤ k ≤ n.

We first show that the rank of the matrices fi does not drop when we localize. We do
this by showing that each I(fk) contains either a unit or a regular element. We prove this
by inverting all non-zero divisors and showing that the resulting complex is split exact. We
will use the Auslander-Buchsbaum formula:

Theorem 1.24. Let (R,m) be a local ring and M be a finitely generated R-module of finite
projective dimension, then

depthR = depthM + pdRM.

The proof is given in 3.3.
Let M = H0(F). (So, F is a resolution of M .)
Let S be the set of non-zero divisors of R. Consider the ring S−1(R). Observe that S−1(F)

is a resolution of S−1(M) by free S−1(R)-modules. The maximal ideals of S−1(R) are the
maximal ideals of Ass(R). (Recall that Ass(R) is a finite set of ideals. There could be chains
of such ideals, ordered by inclusion. We are only taking the biggest ideal in such chains.)
Each such maximal ideal consists of zero divisors on S−1(R); that is, depth(S−1(R))P = 0

(Of course, (S−1(R))P = RP .) At any rate, the Auslander-Buchsbaum Theorem yields that
MP is projective (hence free). Thus, (S−1(F))P is split exact for each maximal ideal P of
S−1(R) (This is the property of mapping onto a projective module.) and (S−1(M))P is a
free (S−1(R))P with a rank that does not depend on P (The answer is the alternating sum
of the Betti numbers in the resolution). Apply Observation 1.20 and then Observation 1.21
to see that I(S−1(fk)) = S−1(R) for each k and rankS−1(fk)+rankS−1(fk+1) = rankS−1Fk.
Thus, every I(fk) contains a non-zero divisor – so the rank of fk is equal to the rank of any
localization of fk. We learn in particular, that rank fk + rank fk+1 = rankFk for each k. We
need only show the condition about each I(fk).

Fix k with I(fk) 6= R. Let x be a maximal regular sequence on R in I(fk). Pick P ∈
AssR/(x) with I(fk) ⊆ P . We can do this:

I(fk) ⊆ ZeroDivisors(R/(x)) = ∪P∈AssR/(x)P.

It follows that gradePRP = grade Ik(fk). Localize F at P . The ideal I(fk)P is not equal
to RP ; thus, by Observation 1.20, coker(fk)P is not free. (Keep in mind that coker(fk)P
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is the (k − 1)-st syzygy of MP . If the (k − 1)-st syzygy of some module is not projective,
then k ≤ pd(the module).) It follows that k ≤ pdRP MP and hence, by the Auslander-
Buchsbaum formula, k ≤ depthRP = grade Ik(fk). �

Remarks 1.25. It is often possible to make grade calculations.

(a) grade I = grade
√
I This is immediate from a more general version of Theorem 1.13

where R/I is replaced with any finitely generated R-module N with the property that
NP 6= 0 ⇐⇒ I ⊆ P . The same proof works with virtually no change. See [1, pg 206]
or prove that

grade I = min{depthRP | P ∈ SpecR and I ⊆ P};

see [8, pg. 105].
(b) In a Cohen-Macaulay local ring grade I = height I. Recall that “grade” is a homological

measure of the “size” of I and “height” is a geometric measure of “size”. (See [8, Thm.
31 on pg 108].)

(c) “Often” grade(I + x)/(x) ≤ grade I. 1 The grade on the left is calculated in the ring
R/x, the grade on the right is calculated in the ring R, I is an ideal of R and x is an
element of R. For example, in the “Syzygies” Colloquium, I claimed that

0→ R(−3)2

f2=


x1 x2

x2 x3

x3 x4


−−−−−−−−−−−→ R(−2)3

f1=

[∣∣∣∣x2 x3

x3 x4

∣∣∣∣ , − ∣∣∣∣x1 x2

x3 x4

∣∣∣∣ , ∣∣∣∣x1 x2

x2 x3

∣∣∣∣]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ R

is a resolution when R = kkk[x1, x2, x3, x4]. Of course, I applied the BE-criteria, but how
did I know that

2 ≤ grade I2(f2)?

Well, if I set x1 = 0, then I2(f2) is (x2x4−x2
3, x2x3, x

2
2) and this ideal has radical (x2, x3).

So, we have identified homogeneous elements of positive degree x2x4−x2
3, x1x3−x2

2, x1

in R, with x2x4−x2
3, x1x3−x2

2 in I so that x2x4 − x2
3, x1x3 − x2

2 is a regular sequence in
R̄ = R/(x1). We conclude that 2 ≤ grade I.

1A correct argument would use two facts about regular sequences. See, for example, [9, Thm. 16.1 and
the Corollary on page 127]. These facts are well-known result. They can be found elsewhere, also. Fact 1.
If R is a commutative Noetherian ring, f1, . . . fn is a regular sequence on R, and a1, . . . , an are non-negative
integers, then fa1

1 , . . . fann is a regular sequence on R. One consequence of this fact is that grade I = grade
√
I

for any proper ideal I in R. Fact 2. If R is a local ring then any permutation of a regular sequence is also a
regular sequence. Similarly, if R =

⊕
0≤iRi is a commutative Noetherian ring, then any permutation of a

regular sequence of homogeneous elements of positive degree is also a regular sequence. So the moral is: If

(R,m) is a local ring, x ∈ m, and I is an ideal of R, then grade

√
(I,x)

(x) ≤ grade I. Similarly, if R =
⊕

0≤iRi is a
commutative Noetherian ring, f1, . . . fn, x are homogeneous elements of positive degree in R, with f̄1, . . . f̄n
a regular sequence in R̄ = R/(x), then f1, . . . fn is a regular sequence in R.
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2. THE HILBERT-BURCH THEOREM

Theorem 2.1. Let R be a local ring and I be a non-zero ideal of R so that R/I has free
resolution

0→ F2
φ2−→ Rn φ1−→ R,

then F2 = Rn−1 and there exists a regular element r in R such that

φ1 = r
[
X1 · · · Xn

]
,

where Xi is (−1)i+1 times the determiant of the matrix for φ2 with row i deleted.

The rank of F2 is given by the following more general result. The critical fact in this
Lemma is the statement about annM containing a regular element. This result is originally
due to Auslander-Buchsbaum with a different argument.

Lemma 2.2. Let R be a commutative Noetherian ring, M be a finitely generated R-module,
and

F : 0→ Fn
fn−→ . . .

f1−→ F0

be a finite free resolution of M . If annM 6= 0, then there is an element in annM which is
regular on R and

∑
i(−1)i rankFi = 0.

Proof. WMACE guarantees that there is an element s in I(f1) with s regular on R. (This s
might be a unit; but that does not bother us.) We look at S−1M over the ring S−1R, for
S = {1, s, s2, . . . }. Notice that S−1M has a non-zero annihilator as an S−1R-module. The
ideal of maximal minors of the presentation matrix for S−1M as an S−1R-module contains
a unit; so S−1M is a projective S−1R-module of constant rank by an earlier result.

We claim that S−1M must be zero. Assume not, reach a contradiction. If S−1M 6= 0, then
(S−1M)P = (S−1R)#

P for some # which is independent of P ∈ Spec(S−1R). We have a non-
zero element θ of S−1R which annihilates S−1M . Thus, θ annihilates (S−1M)P = (S−1R)#

P

for all P ∈ Spec(S−1R); hence θ = 0 in (S−1R)P for all P ∈ Spec(S−1R); and therefore,
θ = 0 in S−1R. This is a contradiction. Hence S−1M is zero. We have shown, in particular,
that annM contains a regular element.

Now take any prime P missing s. Observe Mp = 0 and (f1)P = [I|0]. In particular,
rank f1 (which is independent of P ) is equal to rankF0. Now we are finished:

rank fn = rankFn
rank fn + rank fn−1 = rankFn−1

...
rank f2 + rank f1 = rankF1

rank f1 = rankF0

So, the sum with alternating signs is indeed zero. �

Proof of the Hilbert-Burch Theorem. We know from Lemma 2.2 that F2 = Rn−1. It follows
that f2 is a n × (n − 1) matrix. Let

[
X1 · · · Xn

]
be the row vector of signed maximal
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minors of f2. We want to compare the two complexes

0→ Rn−1 f2−→ Rn f1−→ R

and

0→ Rn−1 f2−→ Rn

[
X1 · · · Xn

]
−−−−−−−−−−→ R.

I do not know how to do that. So, I turn the complexes around and look at

0 // R
fT
1 //

���
�
�
�
�
� Rn

fT
2 //

=

��

Rn−1 //

=

��

coker fT
2

=

��

// 0

0 // R


X1
...
Xn


// Rn

fT
2 // Rn−1 // coker fT

2
// 0

The bottom complex is exact. The top complex is exact. There is a comparison map. The
map at the far right is multiplication by some element r. We have shown that

fT
1 = r

X1
...
Xn

 .
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3. THE AUSLANDER-BUCHSBAUM FORMULA

The proof of the final direction of the WMACE result heavily uses the Auslander-Buchsbaum
formula. So, lets prove this formula.

Theorem 3.1. Let (R,m, kkk) be a local ring and M be a finitely generate R-module of finite
projective dimension. Then

depthR = depthM + pdRM.

Remarks 3.2. (a) If the ambient ring is local with maximal ideal m, then depthX =

grade(m, X).
(b) If M is a non-zero finitely generated module over a local ring then mM 6= M happens

automatically because of Nakyama’s Lemma. (Nakayama’s Lemma is cool. We prove
it in 3.4.)

(c) Projective dimension is a well-defined notion. If some projective resolution of M has
length n, then every other resolution of M by projective R-modules can be modified
to have length less than or equal to n. This is due to Schanuel’s Lemma: If

0→ K → P →M → 0 and 0→ K ′ → P ′ →M → 0

are exact with P and P ′ projective, then

P ⊕K ′ ∼= P ′ ⊕K;

and similarly, if

0→ K → Pn−1 → · · · → P1 → P0 →M → 0 and 0→ K ′ → P ′n−1 → · · · → P ′1 → P ′0 →M → 0

are exact with Pi and P ′i projective, then

K ⊕ P ′n−1 ⊕ Pn−2 ⊕ · · · ⊕ 0
∼= K ′ ⊕ Pn−1 ⊕ P ′n−2 ⊕ · · · ⊕ 0;

hence, if one of K or K ′ is projective, then both are projective. We prove Schanuel’s
Lemma in 3.6.

(d) If (R,m, kkk) is a local ring, M is a finitely generated R-module, and F is a resolution
of M by free R-modules, then F is minimal if every entry of each matrix in F is in
m. A minimal resolution always has length equal to pdRM . (It also has many other
minimality properties.) One can always build a minimal resolution – just take take a
minimal generating set for each syzygy. (One can use Nakayama’s Lemma to find a
minimal generating set for a given syzygy.)

(e) My proof of the Auslander-Buchsbaum formula will use Tor. The functor Tor is “just
like” the functor Ext; except Tor is easier. One only uses projective resolutions (and
never any injective resolutions) and the functors M ⊗− and −⊗N are both covariant
(neither is contravariant). But the basic idea is still the same. Once one makes sense
out of either one; it becomes easier to make sense of the other.
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How to compute Tor. Let M and N be R-modules; P be a projective resolution of M
and Q be a projective resolution of N . Then

Hi(P ⊗R N) and Hi(M ⊗R Q)

are isomorphic and both are called TorRi (M,N).

The long exact sequence of homology. If 0 → A → B → C → 0 is a short exact se-
quence of R-modules and M is an R-module, then apply M ⊗R − to the short exact
sequence to obtain the long exact sequence of homology:

· · · → Tor2(M,C)→ Tor1(M,A)→ Tor1(M,B)→ Tor1(M,C)→M⊗RA→M⊗RB →M⊗RC → 0

3.3. Prove the Auslander-Buchsbaum Formula. The proof is by induction on depthR.
First assume that depthR = 0. We will prove that M is projective (and hence free). This

will make both depthM and pdRM both be 0. The hypothesis depthR = 0 guarantees
that every element of m is a zero-divisor on R; hence m ⊆ ∪P∈AssRP . The prime avoidance
lemma then forces m to be an associated prime of R. In other words, there is an embedding
of kkk into R. Let C be the cokernel. We have produced a short exact sequence:

(3.3.1) 0→ kkk → R→ C → 0.

Let p = pdRM . Keep in mind that

Tori(M,kkk) = kkki-th Betti number of M 6= 0 for 0 ≤ i ≤ p

(Apply − ⊗ kkk to a minimal resolution of M ; the differentials become zero; so the kernels
are everything and the images are zero.) and

Tori(M,−) = 0 for p+ 1 ≤ i.

On the other hand when M ⊗R − is applied to (3.3.1), one obtains

Tori+1(M,C) ∼= Tori(M,kkk) for 1 ≤ i

(because TorRi (R,−) = 0 for positive i). We know that Torp+1(M,C) is not isomorphic to
Torp(M,kkk). It follows that p = 0, as desired!

Now assume that 1 ≤ depthR. We treat two cases separately. Either 1 ≤ depthM or
0 = depthM .

Assume depthR and depthM are both positive. This means that there is an element x
in m which is regular on both R and m. (This assertion requires a moments thought. The
assumption guarantees that m is not an associated prime of R or M . The prime avoidance
lemma guarantees that

m 6⊆

( ⋃
P∈AssR

P

)⋃( ⋃
P∈AssM

P

)
.

Take x from m but not from any of the associated primes.) It is clear that depthR/(x) =

depthR − 1 and depthM/(x)M = depthM − 1. We finish the argument by showing that
pdRM = pdR/xM/(x)M . Of course, this is easy. Let F be a minimal resolution of M



SYZYGIES 19

by free R-modules. We want to show that F ⊗ R/(x) is a resolution of M/(x)M by free-
R/(x) modules. (This resolution will automatically be minimal.) That is, we want to
show that TorRi (M,R/(x)) = 0 for 1 ≤ i. The fact that pdRR/(x) = 1 guarantees that
TorRi (M,R/(x)) = 0 for 2 ≤ i. The fact that x is regular on M takes care of Tor1.

Assume 1 ≤ depthR and 0 = depthM . Let K be the first syzygy of M . Observe that
depthK = 1. (We could do the ABC Lemma twice, once for each inequality.) Instead, we
just do the argument directly. Apply HomR(kkk,−) to the short exact sequence

0→ K → Rt →M → 0

to obtain the long exact sequence

0→ HomR(kkk,K)→ HomR(kkk,Rt)︸ ︷︷ ︸
0

→ HomR(kkk,M)︸ ︷︷ ︸
6=0

→ Ext1
R(kkk,K)→ Ext1

R(kkk,Rt)→ Ext1
R(kkk,M)

Thus, HomR(kkk,K) = 0 and Ext1
R(kkk,K) 6= 0. It follows that depthK = 1. We may apply the

earlier case of the present argument to see that

depthR = pdRK + depthK = (pdRM − 1) + (depthM + 1). �

I am not sure that it is essential that we prove Nakyama’s Lemma; but it is such an
empowering result and I promised to prove it.

Lemma 3.4. (Nakyama’s Lemma) Let M be a finitely generated module over the local ring
(R,m) and let m1, . . . ,mn be elements of M . Then

m1, . . . ,mn generate M ⇐⇒ m̄1, . . . , m̄n generate M/mM,

where ¯ represents the image in M/mM .

Remark 3.5. The result is really cool because M/mM is a finite dimensional vector space;
hence, there is a well-defined notion of basis for M/mM . As a consequence, there is a
well-defined notion of “the minimal number of generators for M”. Any set of elements
m1, . . . ,mi in M with m̄1, . . . , m̄i linearly independent can be extended to a minimal gen-
erating set for M . Any generating set for M contains a minimal generating set.

Proof of Nakyama’s Lemma. One direction is obvious. We prove the other direction. We
assume m̄1, . . . , m̄n generate M/mM . It follows that (m1, . . . ,mn)R + mM = M ; hence,

M/(m1, . . . ,mn)R

is killed by m. It suffices to show that if N is a finitely generated R module with N = mN ,
then N = 0.

Let θ1, . . . , θs generate N . Identify a matrix A with entries in m andθ1
...
θs

 = A

θ1
...
θs

 .
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So,

0 = (I − A)

θ1
...
θs

 .
Multiply both sides of the equation on the left by the classical adjoint of I−A to learn that

0 = det(I − A)

θ1
...
θs

 .
Observe det(I −A) = 1 + an element of m and this is a unit of R; hence each generator θi
of N is zero. It follows that N = 0. �

3.6. Proof of Schanuel’s Lemma If

0→ K → P
π−→M → 0 and 0→ K ′ → P ′

π′−→M → 0

are exact with P and P ′ projective, then

P ⊕K ′ ∼= P ′ ⊕K.

Proof. Let X = {(p, p′) ∈ P ⊕ P ′ | π(p) = π(p′)}. Observe that

0→ K ′ → X → P → 0 and 0→ K → X → P ′ → 0

are both split exact sequences. �

If

0→ K → Pn−1 → · · · → P1 → P0
π−→M → 0 and 0→ K ′ → P ′n−1 → · · · → P ′1 → P ′0

π′−→M → 0

are exact with Pi and P ′i projective, then

K ⊕ P ′n−1 ⊕ Pn−2 ⊕ · · · ⊕ 0
∼= K ′ ⊕ Pn−1 ⊕ P ′n−2 ⊕ · · · ⊕ 0;

Proof. The first case shows that

kerπ ⊕ P ′0 ∼= kerπ′ ⊕ P0.

Thus,
0→ K → Pn−1 → · · · → P1 ⊕ P ′0 → kerπ ⊕ P ′0 → 0

and
0→ K ′ → P ′n−1 → · · · → P ′1 ⊕ P0 → kerπ′ ⊕ P0 → 0

are exact with kerπ ⊕ P ′0 ∼= kerπ′ ⊕ P0. The argument is finished by induction. �

3.7. Finish the proof of WMACE. Let R be a commutative Noetherian ring and

F : 0→ Fn
fn−→ Fn−1

fn−1−−→ · · · f1−→ F0

be an acyclic complex of finitely generated free R-modules. We prove that

rankFk = rank fk + rank fk+1 for 1 ≤ k ≤ n and

k ≤ grade I(fk) or I(fk) = R for 1 ≤ k ≤ n.
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We first show that the rank of the matrices fi does not drop when we localize. We do
this by showing that each I(fk) contains either a unit or a regular element. We prove this
by inverting all non-zero divisors and showing that the resulting complex is split exact. Let
M = H0(F). (So, F is a resolution of M .)

Let S be the set of non-zero divisors of R. Consider the ring S−1(R). Observe that S−1(F)

is a resolution of S−1(M) by free S−1(R)-modules. The maximal ideals of S−1(R) are the
maximal ideals of Ass(R). (Recall that Ass(R) is a finite set of ideals. There could be chains
of such ideals, ordered by inclusion. We are only taking the biggest ideal in such chains.)
Each such maximal ideal consists of zero divisors on S−1(R); that is, depth(S−1(R))P = 0

(Of course, (S−1(R))P = RP .) At any rate, the Auslander-Buchsbaum Theorem yields that
MP is projective (hence free). Thus, (S−1(F))P is split exact for each maximal ideal P
of S−1(R) (This is the property of mapping onto a projective module.) and (S−1(M))P is
a free (S−1(R))P with a rank that does not depend on P (The rank of (S−1(M))P is the
alternating sum of the ranks of the Fi.) Apply Observation 1.20 and then Observation 1.21
to see that I(S−1(fk)) = S−1(R) for each k and rankS−1(fk)+rankS−1(fk+1) = rankS−1Fk.
Thus, every I(fk) contains a non-zero divisor – so the rank of fk is equal to the rank of any
localization of fk. We learn in particular, that rank fk + rank fk+1 = rankFk for each k. We
need only show the grade condition about each I(fk).

Fix k with I(fk) 6= R. Let x be a maximal regular sequence on R in I(fk). Pick P ∈
AssR/(x) with I(fk) ⊆ P . We can do this:

I(fk) ⊆ ZeroDivisors(R/(x)) = ∪P∈AssR/(x)P.

It follows that gradePRP = grade Ik(fk). Localize F at P . The ideal I(fk)P is not equal
to RP ; thus, by Observation 1.20, coker(fk)P is not free. (Keep in mind that coker(fk)P
is the (k − 1)-st syzygy of MP . If the (k − 1)-st syzygy of some module is not projective,
then k ≤ pd(the module).) It follows that k ≤ pdRP MP and hence, by the Auslander-
Buchsbaum theorem, k ≤ depthRP = grade Ik(fk).
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4. THE EAGON-NORTHCOTT COMPLEX AND GENERALIZATIONS OF THE EAGON-NORTHCOTT

COMPLEX.

Goal 4.1. Let R be a commutative Noetherian ring, F and G be free R-modules of ranks f
and g, respectively, with g ≤ f , and φ : F → G be an R-module homomorphism. We want to
record a family of complexes {Cq | q ∈ Z} such that

(a) H0(C0) = R/Ig(φ), and if grade Ig(φ) is large enough, then C0 is a resolution,
(b) H0(C1) = cokerφ, and if grade Ig(φ) is large enough, then C1 is a resolution,
(c) the dual of each complex in {Cq} is also in {Cq},
(d) if Cq has the same length as C0 and grade Ig(φ) is large enough, then Cq and (Cq)∗ are

both acyclic,
(e) if −1 ≤ q and appropriate grade condtions are satisfied by the Fitting ideals of φ (these

are the ideals Ii(φ) with 1 ≤ i ≤ g), then Cq is acyclic.

Here is some history and some references. The complex C0 is the Eagon-Northcott
complex. The complex C1 is the Buchsbaum-Rim complex. I refer to the family {Cq} as
the family of generalized Eagon-Northcott complexes. (I think that when I was younger,
I did not say “generalized”; but my friend and collaborator Bernd Ulrich convinced me
that me that “generalized Eagon-Northcott complexes” is the correct name.) A very pretty
presentation of these complexes may be found in [3, Appendix A2.6, especially page 595].
Bernd and I wrote a paper [6] that described a family of complexes (which we called
{Dq}) with properties similar to the properties of {Cq}. A preliminary draft of [6] included
a section on the family {Cq}. That section did not make it into print; nonetheless, it is
available on the class website under the name “MemoirWithBerndExpandedVersion.pdf”.
(See section 2.) Recently [5], I considered yet another family of complexes with similar
properties; once again this paper recalls the properties of {Cq}.

Remarks 4.2. (a) One considers a family of complexes, rather than one complex because
it is easier to figure out the pattern of how to build the complex if one has a bunch of
complexes to consider, rather than only one complex.

(b) One can prove acyclicity by induction when one has a family. (There is a decent chance
that the mapping cone of two adjacent members of a family give rise to one member
of the family built with larger data.)

(c) If the family includes the duals of the complexes of interest, then one can work from
the front and back simultaneously!

(d) I can tell you H0(Cq) for −1 ≤ q. Indeed,

H0(Cq) = Symq(cokerφ), for 1 ≤ q.

Definition 4.3. Let R be a commutative ring and M be an R-module. The symmetric
algebra of M is a commutative R-algebra Sym(M) together with and R-module ho-
momorphism M

i−→ Sym(M) which satisfies the following universal mapping property:

Whenever S is a commutative R-algebra and M
f−→ S is an R-module homomorphism,
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then there exits a unique R-algebra homomorphism f̃ such that

Sym(M)
∃!f̃

##H
H

H
H

H

M

i

OO

f // S

commutes.

The symmetric module always exists. It is the tensor algebra

T (M) = R⊕M ⊕ (M ⊗M)⊕ (M ⊗M ⊗M)⊕ . . .

modded out by the two-sided ideal generated by {m⊗m′ −m′ ⊗m | m,m′ ∈M}.
Notice that Sym(M) is automatically a graded R-module; because T (M) is a graded

R-algebra and one is modding out by a homogeneous ideal.
In practice, Sym(M) is easy to deal with. If R is Noetherian, M is finitely generated,

and
Rs A−→ Rt →M → 0

is exact, then
Sym(M) = R[T1, . . . , Tt]/([T1, . . . , Tt]A).

Of course, if M is a free module of rank t, then Sym(M) is the polynomial ring in t

variables with coefficients from R and Symq(M) is the free R-module on the monomi-
als of degree q in t variables.
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The generalized Eagon-Northcott complexes associated to the R-module homomorphism φ : F → G,
where F and G are free R-modules of finite rank f and g respectively and g ≤ f .

position f − g + 1 position f − g position 1 position 0
...

C−1
φ : 0→

∧f F ⊗∧g G∗ ⊗Df−g+1(G∗)
ηφ−−→

∧f−1 F ⊗
∧g G∗ ⊗Df−g(G∗)

ηφ−−→ . . .
ηφ−−→

∧g F ⊗∧g G∗ ⊗D1(G∗)
ηφ−−→

∧g−1 F ⊗
∧g G∗ ⊗D0(G∗)→ 0

C0
φ : 0→

∧f F ⊗∧g G∗ ⊗Df−g(G∗)
ηφ−−→

∧f−1 F ⊗
∧g G∗ ⊗Df−g−1(G∗)

ηφ−−→ . . .
ηφ−−→

∧g F ⊗∧g G∗ ⊗D0(G∗)
∧g φ−−−→

∧0 F ⊗ Sym0G→ 0

C1
φ : 0→

∧f F ⊗∧g G∗ ⊗Df−g−1(G∗)
ηφ−−→

∧f−1 F ⊗
∧g G∗ ⊗Df−g−2(G∗)

ηφ−−→ . . .
∧g φ−−−→

∧1 F ⊗ Sym0 G
Kosφ−−−−→

∧0 F ⊗ Sym1G→ 0

C2
φ : 0→

∧f F ⊗∧g G∗ ⊗Df−g−2(G∗)
ηφ−−→

∧f−1 F ⊗
∧g G∗ ⊗Df−g−3(G∗)

ηφ−−→ . . .
Kosφ−−−−→

∧1 F ⊗ Sym1G
Kosφ−−−−→

∧0 F ⊗ Sym2G→ 0

...

Cf−g−1
φ : 0→

∧f F ⊗∧g G∗ ⊗D1(G∗)
ηφ−−→

∧f−1 F ⊗
∧g G∗ ⊗D0(G∗)

∧g φ−−−→ . . .
Kosφ−−−−→

∧1 F ⊗ Symf−g−2G
Kosφ−−−−→

∧0 F ⊗ Symf−g−1G→ 0

Cf−gφ : 0→
∧f F ⊗∧g G∗ ⊗D0(G∗)

∧g φ−−−→
∧f−g F ⊗ Sym0G

Kosφ−−−−→ . . .
Kosφ−−−−→

∧1 F ⊗ Symf−g−1G
Kosφ−−−−→

∧0 F ⊗ Symf−g G→ 0

Cf−g+1
φ : 0→

∧g−1 F ⊗ Sym0 G
Kosφ−−−−→

∧g F ⊗ Sym1G
Kosφ−−−−→ . . .

Kosφ−−−−→
∧1 F ⊗ Symf−g G

Kosφ−−−−→
∧0 F ⊗ Symf−g+1G→ 0

...

In particular, if f = g + 1, then

position 3 position 2 position 1 position 0 position −1
...
C−2 : 0→

∧f F ⊗∧g G∗ ⊗D3G∗ →
∧f−1 F ⊗

∧g G∗ ⊗D2G∗ →
∧f−2 F ⊗

∧g G∗ ⊗D1G∗ →
∧f−3 F ⊗

∧g G∗ ⊗D0G∗ → 0

C−1 : 0→
∧f F ⊗∧g G∗ ⊗D2G∗ →

∧f−1 F ⊗
∧g G∗ ⊗D1G∗ →

∧f−2 F ⊗
∧g G∗ ⊗D0G∗ → 0

C0 : 0→
∧f F ⊗∧g G∗ ⊗D1G∗︸ ︷︷ ︸

∼=G∗

→
∧g F ⊗∧g G∗︸ ︷︷ ︸

∼=F∗

→
∧0 F ⊗ Sym0G︸ ︷︷ ︸

=R

→ 0

C1 : 0→
∧f F ⊗∧g G∗ ⊗D0G∗︸ ︷︷ ︸

∼=R

→
∧1 F ⊗ Sym0 G︸ ︷︷ ︸

=F

→
∧0 F ⊗ Sym1G︸ ︷︷ ︸

=G

→ 0

C2 : 0→
∧2 F ⊗ Sym0 G →

∧1 F ⊗ Sym1 G →
∧0 F ⊗ Sym2G → 0

C3 : 0→
∧3 F ⊗ Sym0G →

∧2 F ⊗ Sym1G →
∧1 F ⊗ Sym2G →

∧0 F ⊗ Sym3G → 0
...

Do notice that when f = g+ 1, then C0 has a chance of being the complex in the Hilbert-Burch Theorem (It is.); and C1 has
a chance of being the dual of the complex in the Hilbert-Burch Theorem (It is.).
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4.A. A brief discussion of the Divisor Class Group. Divisor Class Group makes sense for
a Krull Domain.

In this discussion, let A be a Noetherian domain and ff(A) be the fraction field of
A. Then A is a Krull domain if and only if A is normal. The domain A is normal if A is
integrally closed in its fraction field. (That is, if f(x) is a monic polynomial in A[x] and α

is in the fraction field of A with f(α) = 0, then α ∈ A.)
A finitely generated A-submodule of ff(A) is called a fractional ideal of A. A fractional

ideal I of A is divisorial if (I−1)−1, where I−1 = A :ff(A) I. One can notice that

I−1 ∼= HomA(I, A).

If I is a fractional ideal of A, then (I−1)−1 is divisorial. Every principal ideal is divisorial.
A Noetherian domain is a UFD if and only if every divisorial ideal is principal.

For example,
kkk[x, y, u, v]

(xu− yv)

is not a UFD. The ideal (u, v) is divisorial but not principal. I think (u, v)−1 is (1, x
v
). (You

might want to check that claim and fix it, if necessary.) Similarly, Z[
√
−5] is not a UFD. The

ideal (2, 1+
√
−5) is divisorial but not principal. I think (2, 1+

√
−5)−1 is (1, 1−

√
−5

2
). (Again,

you might want to check this claim, and fix it if necessary.) In each of these examples the
inverse is isomorphic to the original ideal (because the DCG is Z/(2)).

If A is a Noetherian normal domain, then the set of divisorial ideals forms a group under
I times J equals ((IJ)−1)−1 and −1 is the inverse operation. The divisor class group of A is
the group of divisorial ideals modded out by the group of principal ideals.

Go back to the usual setup of Section 4, in the generic case. In other words, let φ : F → G

be a homomorphism of free R = R0[{xi,j}] modules with rankG = g ≤ f = rankF

and φ equal to the matrix with variable entries φ = (xi,j). Let A = R/Ig(φ). Then the
divisor class group of A is equal to C`(R0) ⊕ Z and the summand Z is generated by I

with I ∼= H0(C1). Furthermore, H0(Cq) is isomorphic to the divisorial ideal Iq for −1 ≤ q.
Furthermore, (ifR0 is Cohen-Macaulay, then) Iq is a Cohen-MacaulayA-module if and only
if −1 ≤ q ≤ f−g+1. One direction of the most recent claim is easy to see (because we see
that an R-module M is Cohen-Macaulay by seeing that grade annRM = pdRM (since R is
Cohen-Macaulay and M has a homogeneous resolution.)) But I am also asserting that [I]q

is not Cohen-Macaulay for q ≤ −2 (and we do not know the free resolution of such [I]q). I
used [I] to mean the class of I in the Divisor Class Group.

4.B. The Generalized Eagon-Northcott complexes include the complexes from the
Hilbert-Burch Theorem when φ is almost square. Recall the generalized Eagon-Northcott
complexes:
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position f − g + 1 position f − g position 1 position 0
...

C−1
φ : 0→

∧f F ⊗∧g G∗ ⊗Df−g+1(G∗)
ηφ−−→

∧f−1 F ⊗
∧g G∗ ⊗Df−g(G∗)

ηφ−−→ . . .
ηφ−−→

∧g F ⊗∧g G∗ ⊗D1(G∗)
ηφ−−→

∧g−1 F ⊗
∧g G∗ ⊗D0(G∗)→ 0

C0
φ : 0→

∧f F ⊗∧g G∗ ⊗Df−g(G∗)
ηφ−−→

∧f−1 F ⊗
∧g G∗ ⊗Df−g−1(G∗)

ηφ−−→ . . .
ηφ−−→

∧g F ⊗∧g G∗ ⊗D0(G∗)
∧g φ−−−→

∧0 F ⊗ Sym0 G→ 0

C1
φ : 0→

∧f F ⊗∧g G∗ ⊗Df−g−1(G∗)
ηφ−−→

∧f−1 F ⊗
∧g G∗ ⊗Df−g−2(G∗)

ηφ−−→ . . .
∧g φ−−−→

∧1 F ⊗ Sym0G
Kosφ−−−−→

∧0 F ⊗ Sym1 G→ 0

C2
φ : 0→

∧f F ⊗∧g G∗ ⊗Df−g−2(G∗)
ηφ−−→

∧f−1 F ⊗
∧g G∗ ⊗Df−g−3(G∗)

ηφ−−→ . . .
Kosφ−−−−→

∧1 F ⊗ Sym1G
Kosφ−−−−→

∧0 F ⊗ Sym2 G→ 0

...

When f = g + 1, then the generalized Eagon-Northcott complexes become:

position 3 position 2 position 1 position 0 position −1
...
C−2 : 0→

∧f F ⊗∧g G∗ ⊗D3G∗ →
∧f−1 F ⊗

∧g G∗ ⊗D2G∗ →
∧f−2 F ⊗

∧g G∗ ⊗D1G∗ →
∧f−3 F ⊗

∧g G∗ ⊗D0G∗ → 0

C−1 : 0→
∧f F ⊗∧g G∗ ⊗D2G∗ →

∧f−1 F ⊗
∧g G∗ ⊗D1G∗ →

∧f−2 F ⊗
∧g G∗ ⊗D0G∗ → 0

C0 : 0→
∧f F ⊗∧g G∗ ⊗D1G∗︸ ︷︷ ︸

∼=G∗

→
∧g F ⊗∧g G∗︸ ︷︷ ︸

∼=F∗

→
∧0 F ⊗ Sym0G︸ ︷︷ ︸

=R

→ 0

C1 : 0→
∧f F ⊗∧g G∗ ⊗D0G∗︸ ︷︷ ︸

∼=R

→
∧1 F ⊗ Sym0 G︸ ︷︷ ︸

=F

→
∧0 F ⊗ Sym1G︸ ︷︷ ︸

=G

→ 0

C2 : 0→
∧2 F ⊗ Sym0 G →

∧1 F ⊗ Sym1 G →
∧0 F ⊗ Sym2G → 0

C3 : 0→
∧3 F ⊗ Sym0G →

∧2 F ⊗ Sym1G →
∧1 F ⊗ Sym2G →

∧0 F ⊗ Sym3G → 0
...

Do notice that when f = g+ 1, then C0 has a chance of being the complex in the Hilbert-Burch Theorem (It is.); and C1 has
a chance of being the dual of the complex in the Hilbert-Burch Theorem (It is.).
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4.C. Symmetric Algebras, Exterior Algebras, and Divided Power modules.

Definition 4.4. Let R be a commutative ring and M be an R-module. The symmetric
algebra of M is a commutative R-algebra Sym(M) together with and R-module homomor-
phism M

i−→ Sym(M) which satisfies the following universal mapping property: Whenever

S is a commutative R-algebra and M
f−→ S is an R-module homomorphism, then there

exits a unique R-algebra homomorphism f̃ such that

Sym(M)
∃!f̃

##H
H

H
H

H

M

i

OO

f // S

commutes.

Remarks. The symmetric algebra always exists. It is the tensor algebra

T (M) = R⊕M ⊕ (M ⊗M)⊕ (M ⊗M ⊗M)⊕ . . .

modded out by the two-sided ideal generated by {m⊗m′ −m′ ⊗m | m,m′ ∈M}.
Notice that Sym(M) is automatically a graded R-module; because T (M) is a graded

R-algebra and one is modding out by a homogeneous ideal.
In practice, Sym(M) is easy to deal with. If R is Noetherian, M is finitely generated, and

Rs A−→ Rt →M → 0

is exact, then
Sym(M) = R[T1, . . . , Tt]/([T1, . . . , Tt]A).

Of course, if M is a free module of rank t, then Sym(M) is the polynomial ring in t

variables with coefficients from R and Symq(M) is the free R-module on the monomials of
degree q in t variables.

Definition 4.5. Let R be a commutative ring and M be an R-module. The exterior alge-
bra of M is an associative R-algebra

∧•(M) together with and R-module homomorphism
M

i−→
∧•(M) which satisfies the following universal mapping property: Whenever A is an

associative R-algebra and M
f−→ A is an R-module homomorphism with the property that

(f(m))2 = 0 for all m ∈ M , then there exits a unique R-algebra homomorphism f̃ such
that ∧•(M)

∃!f̃

##F
F

F
F

F

M

i

OO

f // A
commutes.

Remarks. The exterior algebra always exists. It is the tensor algebra

T (M) = R⊕M ⊕ (M ⊗M)⊕ (M ⊗M ⊗M)⊕ . . .

modded out by the two-sided ideal generated by {m⊗m | m ∈M}.
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Notice that
∧•(M) is automatically a graded R-module; because T (M) is a graded R-

algebra and one is modding out by a homogeneous ideal.

4.6. If F is a finitely generated free R-module, then∧• F is a
∧• F ∗ −module and

∧• F ∗ is a
∧• F −module.

Both actions are induced by evaluation

v1(w1) = w1(v1) ∈ R,

for v1 ∈ F and w1 ∈ F ∗. Furthermore, all module actions and multiplications are graded-
commutative and associative:

v1(w1 ∧ w′1 ∧ w′′1) = v1(w1) · w′1 ∧ w′′1 − v1(w′1) · w1 ∧ w′′1 + v1(w′′1) · w1 ∧ w′1
and

(v1 ∧ v′1 ∧ v′′1)(wr) = v1(v′1(v′′1(wr))).

In particular,

(v1 ∧ v′1)(w1 ∧ w′1) = v′1(w1) · v1(w′1)− v1(w1) · v′1(w′1) = −
∣∣∣∣v1(w1) v′1(w1)
v1(w′1) v′1(w′1)

∣∣∣∣ .
Let φ : F → G be a homomorphism of free R-modules, a1, . . . , af be a basis for F and
b1, . . . , bg be a basis for G with dual basis b∗1, . . . , b

∗
g then∧2 F ⊗

∧2G∗
∧2 φ⊗1−−−−→

∧2G⊗
∧2G∗

module action−−−−−−−→ R

sends (ac1 ∧ ac2)⊗ (b∗r1 ∧ b
∗
r2

) to

[φ(ac1)∧φ(ac2)](b∗r1∧b
∗
r2

) = −
∣∣∣∣[φ(ac1)](b∗r1) [φ(ac2)](b∗r1)
[φ(ac1)](b∗r2) [φ(ac2)](b∗r2)

∣∣∣∣ = −

∣∣∣∣∣∣∣∣
f∑̀
=1

φ`,c1b`(b
∗
r1

)
f∑̀
=1

φ`,c2b`(b
∗
r1

)

f∑̀
=1

φ`,c1b`(b
∗
r2

)
f∑̀
=1

φ`,c2b`(b
∗
r2

)

∣∣∣∣∣∣∣∣
= −

∣∣∣∣φr1,c1 φr1,c2
φr2,c1 φr2,c2

∣∣∣∣ ,
where φ(ac) =

g∑̀
=1

φ`,cb`.

4.7. Now that we know that
∧• F is a

∧• F ∗-algebra, we have a very clean way to say
Koszul complex. Let F be a finitely generated free R-module of rank f and σ be an element
of F ∗. Then the Koszul complex associated to σ is

0→
∧f F

σ−→
∧f−1 F

σ−→ · · · σ−→
∧1 F

σ−→
∧0 F → 0.

4.8. Two comments added before the lecture on March 20, 2018.

(a) Last time I used the action of
∧• F ∗ on

∧• F to give a coordinate-free description of a
Koszul complex; BUT I forgot to point out why the construction yields a complex. If F
is a free R-module of rank n and σ ∈ F ∗, then the Koszul complex associated to σ is

0→
∧f F

σ−→
∧f−1 F

σ−→ · · · σ−→
∧1 F

σ−→
∧0 F → 0.
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This collection of homomorphisms is a complex because

σ(σ(θr)) = (σ ∧ σ)(θr) because
∧• F is a

∧• F ∗ module

= 0 because σ ∈
∧1 F ∗ and

∧∗ F ∗ is an alternating graded algebra.

(b) At some point I used the phrase “anti-canonical module”. I did not define it and what
I said about it was mainly wrong. I can do better. Let R be a normal domain; so R has
a divisor class group. The canonical module of R is usually an ideal of R. (Recall that
if R = P/I where P is a polynomial ring over a field and I is a homogeneous ideal,
and R is a perfect R-module (that is pdP R ≤ grade I), then the canonical module of
R is ExtpdP R(R,P ).) Indeed, the canonical module of R is usually a divisorial ideal
of R. Anyhow, if the canonical module of R is a divisorial ideal ω of R, then the
anticanonical module of R is ω−1.

In the context of the generic Eagon-Northcott complexes, then Cf−g resolves ω. If J is
H0(C), then we know the resolution of q[J ] for −1 ≤ q. We do not know the resolution
of q[J ] for q < −2. In particular, we know the resolution of the anticanonical module
only when f = g+ 1. In this case C−1 resolves −[J ]. (This is exactly what I heard Jesse
say. I generalized his statement recklessly.)

4.9. If G is a finitely generated free R-module, then D•G is the graded dual of the R-
module Sym•G. In other words,

D•G =
∞⊕
i=0

DiG
∗

and DiG
∗ = HomR(SymiG,R). The R-module D•G is a Sym•G-module under the action

polyi ∈ SymiG sends wj ∈ DjG
∗ to the element polyi(wj) inDj−iG

∗, where polyi(wj) sends
polyj−i to (polyj−i polyi)(wj). If x1, . . . , xg is basis for G, then(

x1, . . . , xg
i

)
= the set of monomials of degree i in x1, . . . , xg

is a basis for SymiG and {m∗ | m ∈
(
x1,...,xg

i

)
} is a basis for DiG

∗. Observe that

x`(m
∗) =

{
0 if x` 6 |m
(m
x`

)∗ if x`|m

4.D. Every homomorphism of finitely generated free R-modules gives rise to a family
of Koszul complexes. Let φ : F → G be a homomorphism of finitely generated free
R-modules. Let φ̃ : F ⊗R SymR

• G→ SymR
• G be the composition

F ⊗R SymR
• G

φ⊗1−−→ G⊗R SymR
• G

mult−−→ SymR
• G.
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Notice that F ⊗R SymR
• G is a free SymR

• G-module of rank f . This is the usual set-up to
make the Koszul complex

(
∧•

SymR
• G

(F ⊗R SymR
• G), φ̃) :

(†) 0→
∧f

SymR
• G

(F ⊗R SymR
• G)

φ̃−→ . . .
φ̃−→
∧1

SymR
• G

(F ⊗R SymR
• G)

φ̃−→
∧0

SymR
• G

(F ⊗R SymR
• G)→ 0.

Notice that ∧•
SymR

• G
(F ⊗R SymR

• G) ∼=
∧•
R F ⊗R SymR

• G;

and therefore, (†) decomposes into a direct sum of complexes of finitely generated free
R-modules:

0 →
∧0 F ⊗ Sym0G → 0

0 →
∧1 F ⊗ Sym0G

φ̃−→
∧0 F ⊗ Sym1G → 0

0 →
∧2 F ⊗ Sym0G

φ̃−→
∧1 F ⊗ Sym1G

φ̃−→
∧0 F ⊗ Sym2G → 0

...

These maps φ̃ are very understandable:

φ̃ :
∧i F ⊗ Symj G→

∧i−1 F ⊗ Symj+1G

is

φ̃(a1 ∧ . . . ∧ ai ⊗ polyj) =
i∑

`=1

(−1)`+1(a1 ∧ . . . ∧ â` ∧ . . . ∧ ai)⊗ φ(ai) polyj .

4.E. The “Eagon-Northcott maps”. The Eagon-Northcott map

ENφ :
∧i F ⊗DjG

∗ →
∧i−1 F ⊗Dj−1G

∗

is

ENφ(a1 ∧ . . . ∧ ai ⊗ wj) =
i∑

`=1

(−1)i+1(a1 ∧ . . . ∧ â` ∧ . . . ∧ ai)⊗ [φ(ai)](wj),

with the a’s in F and wj ∈ DjG
∗. We can express this as

ENφ(θi ⊗ wj) =

f∑
`=1

x∗i (θi)⊗ [φ(xi)](wj)

where θi ∈
∧i F , and x1, . . . , xf and x∗1, . . . , x

∗
f is a pair of dual bases for F and F ∗, respec-

tively.

The element
∑̀
x` ⊗ x∗` ∈ F ⊗ F ∗ is canonical; that is, it is independent of bases!

Indeed, the evaluation map
ev : F ∗ ⊗ F → R

is canonical; the dual
ev∗ : R→ F ⊗ F ∗
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is canonical; the element 1 in R is canonical; and

ev∗(1) =
∑
`

x` ⊗ x∗`

is canonical.

Claim.
The complexes

· · · →
∧i F ⊗DjG

∗ ⊗
∧f F ∗

ENφ−−→
∧i−1 F ⊗Dj−1G

∗ ⊗
∧f F ∗ → · · ·

and

· · · → HomR(
∧f−i F ⊗ Symj G,R)

Kos∗φ−−−→ HomR(
∧f−i+1 F ⊗ Symj−1G,R)→ · · ·

are canonically isomorphic (up to sign). Define

〈−,−〉 :
(∧i F ⊗DjG

∗ ⊗
∧f F ∗

)
⊗
(∧f−i F ⊗ Symj G

)
→ R

by
〈(θi ⊗ wj ⊗Θf )⊗ (θf−i ⊗ polyj)〉 = (θi ∧ θf−i)(Θf ) · wj(polyj).

It suffices to show that

〈(θi ⊗ wj ⊗Θf )⊗Kosφ(θf−i+1 ⊗ polyj−1)〉 = 〈(ENφ(θi ⊗ wj)⊗Θf )⊗ (θf−i+1 ⊗ polyj−1)〉

(up to sign). The left side is

〈(θi ⊗ wj ⊗Θf )⊗Kosφ(θf−i+1 ⊗ polyj−1)〉

=
∑
`

〈(θi ⊗ wj ⊗Θf )⊗ [x∗`(θf−i+1)⊗ [φ(x`)] · polyj−1]〉

=
∑
`

[θi ∧ x∗`(θf−i+1)](Θf ) · wj([φ(x`)] · polyj−1)

Keep in mind that θi ∧ θf−i+1 ∈
∧f+1 F = 0; so

0 = x∗`(θi ∧ θf−i+1) = x∗`(θi) ∧ θf−i+1 + (−1)iθi ∧ x∗`(θf−i+1).

The left side is

(−1)i−1
∑
`

[x∗`(θi) ∧ θf−i+1](Θf ) · wj([φ(x`)](polyj−1)).

The right side

〈(ENφ(θi ⊗ wj)⊗Θf )⊗ (θf−i+1 ⊗ polyj−1)〉

=
∑
`

〈(x∗`(θi)⊗ [φ(x`)](wj))⊗Θf )⊗ (θf−i+1 ⊗ polyj−1)〉

=
∑
`

[(x∗`(θi) ∧ θf−i+1](Θf ) ·
(
[φ(x`)](wj)

)
(polyj−1).

The left side and the right side differ by a factor of (−1)i−1.
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4.F. Co-multiplication in the exterior algebra. I want an algebraic framework for∧3 F →
∧2 F ⊗

∧1 F

with

(4.9.1) a1 ∧ a′1 ∧ a′′1 7→ a′1 ∧ a′′1 ⊗ a1 − a1 ∧ a′′1 ⊗ a′1 + a1 ∧ a′1 ⊗ a′′1,

for a1, a
′
1, a
′′
1 ∈ F .

One can view
∧
F ⊗R

∧
F as an algebra with multiplication

(ai ⊗ bj) · (a′k ⊗ b′`) = (−1)jk(aia
′
k ⊗ bjb′`),

for r ∈
∧r F . This product makes∧•(F ⊕ F ) and

∧• F ⊗∧• F
isomorphic as algebras and it also makes multiplication∧• F ⊗∧• F → ∧• F
be an algebra map.

The algebra map
∆ :

∧• F → ∧• F ⊗∧• F
which extends

∆(a1) = a1 ⊗ 1 + 1⊗ a1

for a1 ∈ F is called co-multiplication. Observe that

∆(a1 ∧ a′1) = (a1 ⊗ 1 + 1⊗ a1) · (a′1 ⊗ 1 + 1⊗ a′1)

= a1a
′
1 ⊗ 1 +

(
a1 ⊗ a′1 − a′1 ⊗ a1

)
+ 1⊗ a1 ∧ a′1,

for a1, a
′
1 ∈ F . Similarly

∆(a1 ∧ a′1 ∧ a′′1) = ∆(a1 ∧ a′1) ·∆(a′′1)

=
[
a1 ∧ a′1 ⊗ 1 +

(
a1 ⊗ a′1 − a′1 ⊗ a1

)
+ 1⊗ a1 ∧ a′1

]
(a′′1 ⊗ 1 + 1⊗ a′′1),

= a1 ∧ a′1 ∧ a′′1 ⊗ 1 +

 a1 ∧ a′1 ⊗ a′′1
−a1 ∧ a′′1 ⊗ a′1
+a′1 ∧ a′′1 ⊗ a1

+

 a1 ⊗ a′1 ∧ a′′1
−a′1 ⊗ a1 ∧ a′′1
+a′′1 ⊗ a1 ∧ a′1

+ 1⊗ a1 ∧ a′1 ∧ a′′1

for a1, a
′
1, a
′′
1 ∈ F . So (4.9.1) is a component of the co-multiplication map

∆ :
∧• F → ∧• F ⊗∧• F.

The map ∧a+g F ⊗
∧g G∗ ⊗D0G

∗ →
∧a F ⊗ Sym0G

in the Generalized Eagon-Northcott complexes is the composition∧a+g F ⊗
∧g G∗ ⊗D0G

∗ =
∧a+g F ⊗

∧g G∗
∆⊗1−−→

∧a F ⊗
∧g F ⊗

∧g G∗

1⊗
∧g φ⊗1−−−−−−→

∧a F ⊗
∧g G⊗

∧g G∗
1⊗module action−−−−−−−−−→

∧a F =
∧a F ⊗ Sym0G.
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In practice this is straightforward. Start with f1 ∧ . . . ∧ fg+a with fi ∈ F . For each choice
of g subscripts write down the corresponding signed g × g minor of φ next to the wedge
product of the remaining a f ’s.

Example 4.10. Take f = g + 1. Record C1:

0→
∧g+1 F ⊗

∧g G∗ ⊗D0G
∗ →

∧1 F ⊗ Sym0G→
∧0 F ⊗ Sym1G︸ ︷︷ ︸

φ:F→G

→ 0

The left-most map sends

f1 ∧ . . . ∧ fg+1 7→
∑
i

(−1)i+1 detφ with col i deletedfi.

There is another way to say the map∧a+g F ⊗
∧g G∗ ⊗D0G

∗ →
∧a F ⊗ Sym0G

in the Generalized Eagon-Northcott complexes:

θa+g ⊗ wg 7→
(

[
∧g φ∗](wg)

)
(θa+g).

4.G. At this point we know all of the maps in the C. Lets make sure that they form
complexes. It suffices to look at

(4.10.1)
∧g+a F ⊗

∧g G∗ ⊗D0G
∗ →

∧a F ⊗ Sym0G→
∧a−1 F ⊗ Sym1G

and

(4.10.2)
∧g+a+1 F ⊗

∧g G∗ ⊗D1G
∗ →

∧g+a F ⊗
∧g G∗ ⊗D0G

∗ →
∧a F ⊗ Sym0G

Fix θg+a ∈
∧g+a F and wg ∈

∧g G∗. The composition (4.10.1) sends

θg+a ⊗ wg 7→ [(
∧g φ∗)(wg)](θg+a) 7→

∑
i e
∗
i

(
[(
∧g φ∗)(wg)](θg+a)

)
⊗ φ(ei)︸ ︷︷ ︸

†

,

where e1, . . . , ef and e∗1, . . . , e
∗
f are a pair of dual bases for F and F ∗ respectively. (As always∑

i ei ⊗ e∗i is a canonical element of F ⊗ F ∗.) We show that (1⊗ w1)(†) = 0. Indeed,

(1⊗ w1)(†) = φ∗(w1)
(

[(
∧g φ∗)(wg)](θg+a)

)
=
(
φ∗(w1) ∧ [(

∧g φ∗)(wg)]
)

(θg+a) module action!!

=
(

[(
∧g+1 φ∗)(w1 ∧ wg)]

)
(θg+a) the definition of

∧• φ
= 0 rankG = g.

Fix θg+a+1 ∈
∧g+a F , w1 ∈ G∗, and wg ∈

∧g G∗. The composition (4.10.2) sends
θg+a+1 ⊗ wg ⊗ w1 7→

∑
i e
∗
i (θg+a+1)⊗ wg ⊗ [φ(ei)](w1) 7→

∑
i[φ(ei)](w1) · [(

∧g φ∗)(ωg)][e
∗
i (θg+a+1)]

= [(
∧g φ∗)(ωg)]

[
[φ∗(w1)](θg+a+1)

]
=
[
[(
∧g φ∗)(ωg)] ∧ [φ∗(w1)]

]
(θg+a+1)

=
[
(
∧g+1 φ∗)(ωg ∧ w1)

]
(θg+a+1) = 0
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4.H. The acyclicity lemma. I think I told you that at the beginning of my career, the
Theorem that I automatically used to prove that a complex is acyclic was WMACE; how-
ever, now-a-days I use the acyclicity lemma; which can be thought of as a consequence of
WMACE. We will use the acyclicity lemma to prove that the generalized Eagon-Northcott
complexes are acyclic.

Lemma 4.11. Let R be a Noetherian ring and

F : 0→ Fn
fn−→ . . .

f1−→ F0 → 0

be a complex of finitely generated free R-modules. If F ⊗R RP is acyclic for all prime ideals P
of R with depthRP < n, then F is acyclic.

Before starting the proof I want to re-write the linear algebra hypothesis of WMACE.
Define

rn = rankFn,

rn−1 = rankFn−1 − rankFn,

rn−2 = rankFn−2 − rankFn−1 + rankFn,

...

r1 = rankF1 − rankF2 + rankF3 − · · ·+ (−1)n+1 rankFn.

Observe that

Fk = rank fk+1 + rank fk for 1 ≤ k ≤ n ⇐⇒ rank fk = rk for 1 ≤ k ≤ n.

If one calls rk the expected rank of fk, then WMACE says F is acyclic if and only if each fk
has the expected rank and Irk(fk) has grade at least k or is equal to R for 1 ≤ k ≤ n.

The proof of the acyclicity lemma. Fix an index k with 1 ≤ k ≤ n. Take P ∈ SpecR

with depthRP < k. WMACE guarantees that k ≤ grade Irk(fk)P or Irk(fk)P = RP . The first
option is not possible; so the second option holds. Thus, Irk(fk) is not contained in P . We
conclude first that Irk(fk) is not zero. (Hence fk has the expected rank.) Secondly, if Irk(fk)
is a proper ideal, then Irk(fk) is contained in some ideal Q with grade Irk(fk) = depthRQ

2

But Irk(fk) does not sit inside any ideal P with depthRP < k; thus k ≤ grade Irk(fk). �

2Let J be an ideal, ` = grade J , x = x1, . . . , x` be a maximal regular sequence in J . Observe that J is
contained in some P which is in Ass(R/(x)). Observe `, gradeP , and depthRP all are equal. We use that

P ∈ Ass(R/(x)) =⇒ PRP ∈ Ass(R/(x))P .
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4.I. Assume f − g + 1 ≤ grade Ig(φ). The acyclicity Lemma tells us how to prove that
Cq is acyclic for −1 ≤ q ≤ f − g + 1. Use the acyclicity lemma. It suffices to prove that

gradeP < f − g + 1 =⇒ (Cq)P is acyclic.

But

gradeP < f − g + 1 ≤ grade Ig(φ) =⇒ [Ig(φ)]P = RP

=⇒ some g × g minor of φP is a unit

=⇒ φP is surjective

4.12. Assume f − g + 1 ≤ grade Ig(φ). To prove that Cq is acyclic for −1 ≤ q ≤ f − g + 1

it suffices to prove that Cqφ is split exact for −1 ≤ q ≤ f − g + 1 whenever R is a local ring
and φ is surjective.

4.J. Assume that R is local and φ : F → G is surjective. Let K = kerφ : F → G. The
fact that φ is surjective and G is free forces K to be a direct summand of F . Let i : K → F

be the inclusion map and π : F → K be the corresponding projection. The diagram

K
i //

1

  AAAAAAAA F

π
��
K

commutes. We prove that the complexes

(a)

0→
∧jK ⊗ Sym0G

∧j i−−→ ∧j F ⊗ Sym0G
Kosφ−−−→ · · ·

Kosφ−−−→
∧0 F ⊗ Symj G→ 0,

(b)

0→
∧f F⊗

∧g G∗⊗DjG
∗ ENφ−−−→ · · ·

ENφ−−−→
∧f−j F⊗

∧g G∗⊗D0G
∗
∧f−j π−−−−→

∧f−jK⊗
∧g G∗⊗D0G

∗ → 0,

and
(c) Cq

are split exact for all integers j and q.
Once we prove (a), then (b) is also true by duality, and (c) is immediate. Indeed, the

complex Cq is obtained by patching together a complex from (a) and a complex from (b).
We only need worry about the patch:

EN //
∧g+a F ⊗

∧g G∗ ⊗D0G ∧a π
** **VVVVVVVVVVVVVVVVVV

∧g φ
//
∧a F ⊗ Sym0G

Kos // . . .

∧aK ⊗
∧g G⊗

∧g G∗ ∼=
//
∧aK

77

∧a i 77pppppppppppp

and everything is fine there.
We prove (a) by induction on f − g.
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Marching orders for Tuesday April 4.

Theorem. Let R be a Noetherian ring, φ : F → G be a homomorphism of free R-modules
with

rankG = g ≤ f = rankF.

If f − g + 1 ≤ grade Ig(φ), then Cq is acyclic for −1 ≤ q ≤ f − g + 1.

Proof. Step 1. Apply the acyclicity lemma. It suffices to prove the result when R is local
and φ surjective.

Step 2. Assume R is local and φ is surjective. Let K = kerφ. It follows that K is a direct
summand of F ; that is, F = K ⊕ L for some submodule L of F . Let i : K → F and
π : F → K be the homomorphisms which correspond to F = K ⊕ L. To complete the
proof it suffices to prove that

0→
∧jK ⊗ Sym0G

∧j i−−→ ∧j F ⊗ Sym0G
Kosφ−−−→ · · ·

Kosφ−−−→
∧0 F ⊗ Symj G→ 0

is split exact for all non-negative integers j.
The proof is by induction on f − g.

• If f = g, then
∧•(F ⊗R Sym•G) is a Sym•G-resolution of R because

F ⊗R Sym•G
φ⊗1−−→ G⊗R Sym•G

mult−−→ Sym•G

ultimately is

[T1, . . . , Tg],

(if one thinks of Sym•G as R[T1, . . . , Tg].) So, every strand of
∧•(F ⊗R Sym•G), except

0→
∧0 F ⊗R Sym0G→ 0,

is split exact. Of course,

0→
∧0K ⊗ Sym0G︸ ︷︷ ︸

R

→
∧0 F ⊗ Sym0G→ 0

is also split exact.

• If g < f , then select a basis element e of K. Write K = K ′ ⊕ Re and F = F ′ ⊕ Re, for
F ′ = K ′ ⊕ kerπ. Observe that∧j F =

∧j F ′ ⊕ (
∧j−1 F ′ ⊗Re)

and

0→
∧j F ′ →

∧j F →
∧j−1 F ′ ⊗Re→ 0

is a short exact sequence of modules. Consider the short exact sequence of complexes:
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0

��

0

��

0

��

0

��
0 // ∧j K′ ⊗ Sym0 G

��

∧j i // ∧j F ′ ⊗ Sym0G
Kosφ //

��

· · ·
Kosφ // ∧1 F ′ ⊗ Symj−1 G

Kosφ //

��

∧0 F ′ ⊗ Symj G
//

��

0

0 // ∧j K ⊗ Sym0G

∧j i //

��

∧j F ⊗ Sym0 G
Kosφ //

��

· · ·
Kosφ // ∧1 F ⊗ Symj−1 G

Kosφ //

��

∧0 F ⊗ Symj G
//

��

0

0 // ∧j−1 K′ ⊗Re⊗ Sym0G

∧j i //

��

∧j−1 F ′ ⊗Re⊗ Sym0 G
Kosφ //

��

· · ·
Kosφ// ∧0 F ⊗Re⊗ Symj−1 G

//

��

0

0 0 0

The top and bottom complexes are split exact by induction. Use the long exact sequence
of homology to conclude that the middle complex is also split exact. �

4.K. Depth Sensitivity and perfection.

Goal 4.13. Suppose that R is a commutative Noetherian ring, M is a finitely generated R-
module of finite projective dimension and

grade annRM = pdRM.

Let F be a free resolution of M of length equal to pdRM and let S be a commutative Noether-
ian R-algebra. We will show that

(4.13.1)

if (annRM)S is a proper ideal of S and

grade annRM ≤ grade(annRM)S,

then F ⊗R S is a free resolution of M ⊗R S.

We will also show that it is always the case that

(4.13.2) the final grade(annRM)S maps from F ⊗R S form an acyclic complex.

Remarks. (a) It is always true that grade annRM ≤ pdRM . It is possible that I only
proved that grade I ≤ pdRR/I. The main step in the proof is

grade I = min{i | Exti(R/I,R) 6= 0}.

The same argument shows

grade annM = min{i | Exti(M,R) 6= 0};

and this yields grade annRM ≤ pdRM .
(b) If grade annRM = pdRM , then M is a perfect R-module.
(c) If x1, . . . , xg is a regular sequence on R, then R/(x1, . . . , xg) is a perfect R-module. In

the context of the generalized Eagon-Northcott complexes, then H0(Cq) is a perfect
R-module for −1 ≤ q ≤ f − g + 1 provided f − g + 1 ≤ grade If−g+1(φ). (This includes
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the Hilbert-Burch situation.) If I is generated by the maximal order Pfaffians of an
odd-sized alternating matrix and 3 ≤ grade I, then R/I is a perfect R-module.

(d) The property (4.13.1) is called the Transfer of perfection [1, chapter 3A] or the persis-
tence of perfection [4, section 6].

(e) If a complex F satisfies property 4.13.2, then one says that F exhibits depth sensitivity.

4.14. Proof of Goal 4.13. In light of WMACE, the only thing to show is that if M is a
finitely generated perfect R-module and F is a free resolution of M of length pdRM , then√

annM =
√
I(fj).

Recall that √
annM =

⋂
annM⊆P

P.

It suffices to prove that if P ∈ SpecR, then

annM ⊆ P ⇐⇒ I(fj) ⊆ P

for all j.

• If annM 6⊆ P , then MP = 0; FP is split exact, I(fj)P = RP and I(fj) 6⊆ P . (We used the
fact that I(fj) contains a regular element (or a unit) of R; hence, the rank of fj is equal to
the rank of (fj)P for all prime ideals P .)

• If annM ⊆ P , then

grade annM ≤ grade(annM)P =∗ grade(ann(MP )) ≤ pdRP MP ≤ pdRM = grade annM.

The last equality is the hypothesis. The equality =∗ holds because (annM)P = ann(MP ).
The inclusion ⊆ holds automatically. The inclusion ⊇ uses the fact that M is finitely gen-
erated: if r ∈ R kills each generator of M in MP , then there exists s ∈ R \ P such that sr
kills each generator of M .

Thus, pdRP MP = pdRM and I(fj) ⊆ P for all j.

4.15. Application of 4.13. Let R be a commutative Noetherian ring, I = (a1, . . . , af ) be an
ideal of I, and K be the Koszul complex on a1, . . . , af . If g is an integer with g ≤ grade I,
then the final g maps of K form an acyclic complex. That is,

Hi(K) = 0 for f − g + 1 ≤ i ≤ f.

I need to see the following picture before I can sign-off on the above claim

Kf 1
// Kf−1 2

// Kf−2 3
// · · ·

g−1
// Kf−g+1 g

// Kf−g.
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5. THE GRADE OF Ig(φ) WHEN φ IS A MATRIX OF VARIABLES; THE RESOLUTION OF

(r1, . . . , r`)
g WHEN r1, . . . , r` IS A REGULAR SEQUENCE; AND HOW TO READ SOCLE

DEGREES FROM A HOMOGENEOUS RESOLUTION.

5.A. The grade of Ig(φ) when φ is a matrix of variables.

Example 5.1. Consider the g × f matrix

(5.1.1) φ =


a1 a2 · · · a` 0 0 0

0 a1 a2 · · · a`
. . . 0

0
. . . . . . . . . . . . 0

0 0 0 a1 a2 · · · a`

 .
• Observe that f = `+ g − 1.

• Observe that (a1, . . . , a`) ⊆
√
Ig(φ). Indeed, ag1 is the determinant of the first g columns;

hence a1 ∈
√
Ig(φ). The determinant of columns 2, . . . , g + 1 is congruent to ag2, mod (a1);

hence a2 ∈
√
Ig(φ). Etc.

• Observe that if R = R0[{xi,j | 1 ≤ i ≤ g and 1 ≤ j ≤ f ], and φ is the g × f matrix (xi,j),
then f − g + 1 ≤ grade Ig(φ). We use the result from the footnote at the end of Chapter 1:
If R =

⊕
0≤iRi is a commutative Noetherian ring, f1, . . . fn, x are homogeneous elements

of positive degree in R, with f̄1, . . . f̄n a regular sequence in R̄ = R/(x), then f1, . . . fn is a
regular sequence in R.

• The second goal in the section is to prove that Ig(φ) = (a1, . . . , a`)
g. I suppose one could

do this directly, but I would much rather use trickery. (The trickery works provided the
ring contains a filed.) Of course, the ultimate point is that the Eagon-Northcott complex
for φ (from 5.1.1) resolves R/(a1, . . . , a`)

g, when a1, . . . , a` is a regular sequence in R.

5.B. The convention for shifting the degree of a graded module. If M =
⊕

Mi is a
graded module and a is an integer, then M(a) is a new graded module with

M(a)i = Ma+i.

For example the element 1 has degree one in R(−1) and therefore

R(−1)
x−→ R

is a homogeneous map of degree zero for all x ∈ R1.
If the entries of φ are linear of degree 1, then the Eagon-Northcott complex looks like:

0→
∧f F ⊗

∧g G∗ ⊗Df−gG
∗︸ ︷︷ ︸

R(−f)(
(f−g)+(g−1)

g−1 )

→ · · · →
∧g F ⊗

∧g G∗ ⊗D0G
∗︸ ︷︷ ︸

R(−g)(
f
g)

→
∧0 F ⊗ Sym0G︸ ︷︷ ︸

R

Theorem. Let R = kkk[x1, . . . , xn] be a standard-graded polynomial ring over a field kkk (that is
each variable has degree one) and M be a homogeneous Artinian R-module. (In particular,
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M is finitely generated, has depth zero and projective dimension n.) If the minimal graded
resolution of M is

0→
⊕
i

R(−bi)→ . . . ,

then the socle of M has a homogeneous basis with elements of degree {bi − n}.
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The lecture of April 10, 2018.
Today’s first goal is to make sense of

Theorem. Let R = kkk[x1, . . . , xn] be a standard-graded polynomial ring over a field kkk (that is
each variable has degree one) and M be a homogeneous Artinian R-module. (In particular,
M is finitely generated, has depth zero and projective dimension n.) If the minimal graded
resolution of M is

0→
⊕
i

R(−bi)→ . . . ,

then the socle of M has a homogeneous basis with elements of degree {bi − n}.

The second goal is to apply the Theorem to show that Ig(φ) = (x1, . . . , x`)
g where φ is

the g × f matrix

φ =


x1 x2 · · · x` 0 0 0

0 x1 x2 · · · x`
. . . 0

0
. . . . . . . . . . . . 0

0 0 0 x1 x2 · · · x`

 ,
f = `+ g − 1, and R is the polynomial ring kkk[x1, . . . , x`].

We start with two examples of the Theorem. Consider the resolution

0→ R(−3)2


x 0
y x
0 y


−−−−−→ R(−2)3

[
y2 −xy x2

]
−−−−−−−−−−−→ R.

Observe that the socle of A = R/(x, y)2 has socle kkkx⊕kkky ∼= kkk(−1)2. The Theorem promises
that the socle of A is kkk(−(3− 2))2.

Consider the resolution

0→ R(−5)



y2

−xz
xy + z2

−yz
x2


−−−−−−−→ R(−3)5



0 y 0 0 z
−y 0 x z 0
0 −x 0 y 0
0 −z −y 0 x
−z 0 0 −x 0


−−−−−−−−−−−−−−−−−−→ R(−2)5

[
y2 −xz xy + z2 −yz x2

]
−−−−−−−−−−−−−−−−−−−−−−→ R.

Observe that A = R/(y2,−xz, xy + z2,−yz, x2) has socle kkkz2 ∼= kkk(−2)1. The Theorem
promises that the socle of A is isomorphic to kkk(−(5− 3))1.

Proof of Theorem. On the one hand TorRn (M,kkk) =
⊕

i kkk(−bi), which has a homogeneous
basis whose degrees are {bi}. On the other hand,

TorRn (M,kkk) = Hn(M⊗RKoszul complex) = ker
(
M(−n)


x1
...
xn


−−−→M(−(n−1))

)
= socleM(−n).

If the socle degrees are {dj} then the generator degress of socleM(−n) are {dj + n}. It
follows that the socle degrees are {bi − n}. �
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Now we apply the Theorem to A = kkk[x1, . . . , x`]/Ig(φ). We know that C0
φ resolves A. The

entries of φ are linear of degree 1, therefore, the Eagon-Northcott complex looks like:

0→
∧f F ⊗

∧g G∗ ⊗Df−gG
∗︸ ︷︷ ︸

R(−f)(
(f−g)+(g−1)

g−1 )

→ · · · →
∧g F ⊗

∧g G∗ ⊗D0G
∗︸ ︷︷ ︸

R(−g)(
f
g)

→
∧0 F ⊗ Sym0G︸ ︷︷ ︸

R

Apply the Theorem to see that the socle of A = kkk[x1, . . . , x`]/Ig(φ) lives in degree f −
` = g − 1 and has vector space dimension

(
(f−g)+(g−1)

g−1

)
. Recall that the dimension of

kkk[x1, . . . , x`]g−1 is
(
`−1+g−1
g−1

)
=
(

(f−g)+(g−1)
g−1

)
. Thus the socle of A is precisely mg−1 and Ig =

mg for m = (x1, . . . , x`).
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6. THE LASCOUX RESOLUTION.

I am taking this discussion from [10, Section 6.1].
Let kkk be a field of characteristic zero, (xi,j) be a g × f matrix of indeterminates, r be

an integer with 0 ≤ r < g ≤ f , and R be the polynomial ring kkk[{xi,j}]. We describe the
resolution of R/Ir+1((xi,j)) by free R-modules.

Let F and G be free kkk-modules of rank f and g respectively. Recall that Homkkk(F,G) =

F ∗ ⊗kkk G. We think of R as Symkkk
•(F ⊗ G∗). Keep in mind that R is the coordinate ring

for the affine space X = F ∗ ⊗k G in the sense that each element of F ⊗ G∗ represents a
(coordinate) map from X to kkk. Of course, “Ir+1((xi,j))” is the ideal which vanishes on the
subvariety

Yr = {φ ∈ Hom(F,G) | rankφ ≤ r}

of X.
Pick it up here on April 12:

• kkk is a field of characteristic zero.
• F and G are vector spaces over kkk of dimension f and g respectively.
• X = F ∗ ⊗k G ∼= kkkfg

• Let r be an integer with 0 ≤ r ≤ g − 1.
• Yr = {φ ∈ Hom(F,G)︸ ︷︷ ︸

∼=X

| rankφ ≤ r}

• R = Symkkk(F ⊗G∗)
• We resolve R/I(Yr) by free R-modules.
• Of course, R/I(Yr) is a coordinate free way of saying

kkk[(xi,j)g×f ]

Ir+1(xij)
.

The group G = GL(F ) × GL(G∗) acts on the ring R, on the ring R/I(Yr), and on the
resolution of R/I(Yr) by free R-modules. The characteristic of kkk is zero; so every finite
dimensional G-module is the direct sum of modules of the form:

simple GL(F )-module⊗ simple GL(G∗)-module.

The simple GL(F )-modules are in a one-to-one correspondence with the set of partitions

λ : λ1 ≥ λ2 ≥ · · · ≥ λn,

with λ1 ≤ f and the λi are positive integers. The above partition is a partition of |λ| =∑
i λi. One might draw the above partition as the following Young tableaux:
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with λi boxes in the row i. The module L(λ1,λ2,··· ,λn)F is equal∧λ1 F⊗···⊗
∧λn F

complicated submodule .

In particular, L(t)F =
∧t F and L(1, . . . , 1)︸ ︷︷ ︸

t

F = Symt F . One usually writes 1t in place of

(1, . . . , 1)︸ ︷︷ ︸
t

. The vector space L(λ1,λ2,··· ,λn)F has dimension equal to the number of ways to fill

in the Young tableau using the numbers from 1 to f with each row strictly increasing and
each column non-decreasing. In fact, if e1, · · · , ef is a basis for F , then one builds a basis
for LλF using the above recipe.

Example 6.1. If e1, . . . , e4 is a basis for F , then the basis for L(3,1)F is represented by

e1 ∧ e2 ∧ e3 ⊗ e1 e1 ∧ e2 ∧ e3 ⊗ e2 e1 ∧ e2 ∧ e3 ⊗ e3 e1 ∧ e2 ∧ e3 ⊗ e4

e1 ∧ e2 ∧ e4 ⊗ e1 e1 ∧ e2 ∧ e4 ⊗ e2 e1 ∧ e2 ∧ e4 ⊗ e3 e1 ∧ e2 ∧ e4 ⊗ e4

e1 ∧ e3 ∧ e4 ⊗ e1 e1 ∧ e3 ∧ e4 ⊗ e2 e1 ∧ e3 ∧ e4 ⊗ e3 e1 ∧ e3 ∧ e4 ⊗ e4

e2 ∧ e3 ∧ e4 ⊗ e2 e2 ∧ e3 ∧ e4 ⊗ e3 e2 ∧ e3 ∧ e4 ⊗ e4

Theorem. [Lascoux] If the characteristic of kkk is zero then the minimal homogeneous resolu-
tion of R/I(Yr) by free R-modules has the form

0→ F(f−r)(g−r) → · · · → Fi → · · · → F0 → 0,

where

Fi =
⊕


(s,α,β)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s is a non-negative integer
α and β are partitions
i = s2 + |α|+ |β|
α ⊆ (f − r − s)s
β ⊆ (s)g−r−s



LP1(s,α,β)F ⊗kkk LP2(s,α,β)G
∗ ⊗kkk Symkkk

•(F ⊗kkk G∗),

where the pictures for P1(s, α, β) and P2(s, α, β) are given on the next page. In words, the
Young diagram for P1(s, α, β) is obtained by putting the Young diagram for α to the right of
an r × s rectangle and putting the Young diagram for β below the r × s rectangle and the
Young diagram for P2(s, α, β) is obtained by putting βtranspose to the right of an r×s rectangle
and putting αtranspose below the r × s rectangle.

The notation pq represents the partition (p, . . . , p︸ ︷︷ ︸
q

). One writes λ ⊆ µ for partitions

λ = (λ1, . . . , λ`) and µ = (µ1, . . . , µm) to mean that λi ≤ µi for all i. If λ is the partition
(λ1, . . . , λ`), then |λ| =

∑
i λi. If the Young diagram for α has αi boxes in ROW i, then the

Young diagram for αtranspose has αi boxes in COLUMN i. Of course, R = Symkkk
•(F ⊗kkk G∗).
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Example. Let us see what the Lascoux complex is when r = g − 1. (Of course, we expect
to see the Eagon-Northcott complex.)

The parameter s = 0 only contibutes when i = 0 and the contribution is

L(0)F ⊗kkk L(0)G
∗ ⊗kkk R = R.

There is no contribution for 2 ≤ s because if β ⊆ (s)g−(g−1)−2, then β does not exist.
Consider s = 1. Take α ⊆ (f − (g−1)−1)1 = (f −g)1 and β ⊆ (1)g−(g−1)−1 = (1)0. Recall

that
i = s2 + |α|+ |β| = 1 + |α|+ 0

so α = (i − 1), P1(1, (i − 1), α, β) is an s × (r + s) = 1 × g rectangle with an (i − 1) × 1

rectangle on its right:
P1(1, (i− 1), α, β) = (g + i− 1).

Also P2(1, α, β) is a 1× g rectangle above an 1× (i− 1) rectangle. Hence

P2(1, α, β) = (g, 1i−1).

It follows that F0 = R and

Fi = L(g+i−1)F ⊗ L(g,1i−1)G
∗ ⊗R =

∧g+i−1 F ⊗
∧g G∗ ⊗ Symi−1G

∗ ⊗R
=
∧g+i−1 F ⊗

∧g G∗ ⊗Di−1G
∗ ⊗R,

for 1 ≤ i ≤ (f − (g − 1))(g − (g − 1))︸ ︷︷ ︸
f−g+1

. The last equality holds because the characteristic of

kkk is zero. Of course, this IS our old friend

· · · →
∧g+1 F ⊗

∧g G∗ ⊗D1G
∗ →

∧g F ⊗
∧g G∗ ⊗D0G

∗ →
∧0 F ⊗ Sym0G.

Example. Lets see what the Lascoux complex is when r = 0. In this case one is resolving
k[{xi,j}]/(xi,j). The resolution should be the Koszul complex on {xi,j}.

The contribution when s = 0 involves α ⊆ (f − r − s)s = (f)0 and β ⊆ (s)g−r−s = (0)g.
Thus, α = (0), β = (0) and the contribution is F0 = L(0)F ⊗kkk L(0)G

∗ ⊗kkk R = R. For 1 ≤ i,

Fi =
⊕


(s,α,β)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s is a non-negative integer
α and β are partitions
i = s2 + |α|+ |β|
α ⊆ (f − r − s)s
β ⊆ (s)g−r−s



LP1(s,α,β)F ⊗kkk LP2(s,α,β)G
∗ ⊗kkk Symkkk

•(F ⊗kkk G∗).

As (s, α, β) roam over all legal values the pair

(P1(s, α, β), P2(s, α, β))

roams over (λ, λtranspose) with λ a partition of i with at most f columns and λtranspose has at
most g columns. DRAW THE PICTURE. It is obvious. So,

Fi =
∑
|λ|=i

LλF ⊗ LλtransposeG∗
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and this is the Cauchy formula for
∧i(F ⊗ G∗). I posted a link to a Math Stack Exchange

question about an exterior power of a tensor product; it gives a reference to Fulton-Harris,
Representation Theory, exercise 6.11.

Example. Let us record the Lascoux complex for the ring R/Ig−1(M), where M is a g × g
matrix of variables. The ring R/Ig−1(M) is a codimension 4 Gorenstein quotient of R; its
graded Betti numbers are

0→ R(−2g)→ R(−(g + 1))g
2 → R(−g)2g2−2 → R(−(g − 1))g

2 → R→ 0

This resolution was first worked out by Gulliksen-Negård. We take f = g and r = g − 2:

i = s2 + |α|+ |β|
α ⊆ (g − (g − 2)− s)s = (2− s)s
β ⊆ (s)g−(g−2)−s = (s)2−s

•When s = 0, then α ⊆ (2)0 and β ⊆ (0)2; so α = β = (0).

•When s = 1, then α ⊆ (1)1 and β ⊆ (1)1; so

α = (0) or α = (1) and β = (0) or β = (1).

•When s = 2, then α ⊆ (0)2 and β ⊆ (2)0; so α = β = (0).
The resolution has six summands. We tack α, β and their transposes onto an s×(s+g−2)

rectangle

s α β i LP1(s,α,β)F ⊗ LP2(s,α,β)G
∗ other name

0 (0) (0) 0 L(0)F ⊗ L(0)G
∗ = kkk

1 (0) (0) 1 L(g−1)F ⊗ L(g−1)G
∗ =

∧g−1 F ⊗
∧g−1G∗

1 (0) (1) 2 L(g−1,1)F ⊗ L(g)G
∗ = coker(

∧g F
∆−→
∧g−1 F ⊗

∧1 F )⊗
∧g G∗

1 (1) (0) 2 L(g)F ⊗ L(g−1,1)G
∗ =

∧g F ⊗ coker(
∧g G∗

∆−→
∧g−1G∗ ⊗

∧1G∗)
1 (1) (1) 3 L(g,1)F ⊗ L(g,1)G

∗ =
∧g F ⊗ F ⊗

∧g G∗ ⊗G∗
2 (0) (0) 4 L(g)F ⊗ L(g)G

∗ =
∧g F ⊗

∧g G∗

The resolution is
L(g)F ⊗ L(g)G

∗ ⊗R
L(g,1)F ⊗ L(g,1)G

∗ ⊗R L(g−1,1)F ⊗ L(g)G
∗ ⊗R L(g−1)F ⊗ L(g−1)G

∗ ⊗R
⊕

L(g)F ⊗ L(g−1,1)G
∗ ⊗R

L(0)F ⊗ L(0)G
∗ ⊗R

The vertical lines in the above picture represent where the differentials live. When I drew
the modules, I seperated the linear strands. The linear strands are tagged with the different
values of s. The maps in each linear strand are linear. The maps from one linear strand to
another have higher degree.

Example. We describe the end of the resolution. This will give pdR(R/I(Yr)), the minimal
number of generators of the canonical module of R/I(Yr) (once one realizes that R/Ir(Y )

is Cohen-Macaulay) (and also information about the degrees of the generators of this
module if we keep track of degrees), the dimension of the socle of a zero-dimensional
specialization R/I(Yr) (again one should prove that R/I(Yr) is Cohen-Macaulay or is a
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perfect R-module before specializing) and also the degrees of these socle generators if we
keep track of degrees.

At any rate, I do a Math 141 problem to maximize

i = s2 + |α|+ |β|,

for α ⊆ (f − r− s)s and β ⊆ (s)(g−r−s). It is clear that i is maximized when α = (f − r− s)s
and β = (s)(g−r−s). So we maximize

i(s) = s2 + (f − r − s)s+ (s)(g − r − s)

subject to the constraints

0 ≤ f − r − s, 0 ≤ s, 0 ≤ g − r − s.

Maximize
i(s) = s2 + (f − r − s)s+ (s)(g − r − s) with 0 ≤ s ≤ g − r.

Observe that
i(s) = fs− 2rs+ gs− s2;

hence
i′(s) = f + g − 2r − 2s

and i′(s) = 0 when s = (f + g)/2 − r. Of course g − r ≤ (f + g)/2 − r so either i′(s) = 0

at an end point or at a point not in the domain. Thus the max and min of i occur at the
endpoints and i(0) = 0 and

i(g − r) = (g − r)2 + (f − r − (g − r))(g − r) = (f − g)(g − r).

The projective dimension of R/I(Yr) is (f − g)(g − r) and the final module in the Lascoux
resolution has s = g − r, α = (f − g)(g−r) and β = (0). Draw the picture. We see that
P1(s, α, β) = f g−r and P2(s, α, β) = (g(g−r), (g − r)(f−g)).

It is reasonable to ask, “When is dimkkk F(f−r)(g−r) = 1?” (This is equivalent to asking when
is R/Ir(Y ) Gorenstein (since R/Ir(Y ) is Cohen-Macaulay)). Well,

dimkkk F(f−r)(g−r) = dimkkk Lfg−rF · dimL(g(g−r),(g−r)(f−g))G
∗ = dimL(g−r)(f−g)G∗

and this is 1 if and only if f = g or r = 0.

6.A. Define LλF .

Definition. If F is a finite dimensional vector space and λ = (λ1, . . . , λn) is a partition,
then the Schur module LλF is equal to

LλF =

∧λ1 F ⊗ · · · ⊗
∧λn F

n−1∑
a=1

∧λ1 F ⊗ · · · ⊗
∧λa−1 F ⊗Ra,a+1F ⊗

∧λa+2 F ⊗ · · · ⊗
∧λn F

,

where Ra,a+1F is equal to∑
u+v<λa+1

im
(∧u F ⊗∧λa−u+λa+1−v F ⊗

∧v F 1⊗∆⊗1−−−−−→
∧u F ⊗∧λa−u F ⊗∧λa+1−v F ⊗

∧v F mult⊗mult−−−−−−−−→
∧λa F ⊗∧λa+1 F

)
.

Examples. (a) LtF =
∧t F .
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(b) L1tF = Symt F , because

L1tF =
F⊗t

({(f1 ⊗ f2 − f2 ⊗ f1)⊗ F⊗t−2 | f1, f2 ∈ F})
+({F ⊗ (f1 ⊗ f2 − f2 ⊗ f1)⊗ F⊗t−3 | f1, f2 ∈ F})

...
+({F⊗t−2 ⊗ (f1 ⊗ f2 − f2 ⊗ f1) | f1, f2 ∈ F})


= Symt F.

(c) If p+ q 6= 0, then

(6.1.1) · · · →
∧p F ⊗ Symq F

Kosid−−−→
∧p−1 F ⊗ Symq+1 F → · · ·

is split exact. (We proved this when we proved that the Eagon-Northcott complex is
exact. This is the base case of the proof that if φ is surjective, then the right side of the
Eagon-Northcott complex is exact.) Of course, if p+ q = 0, then the complex is

· · · → 0→ 0→
∧0 F ⊗ Sym0 F → 0→ 0→ · · · ,

which is not exact. If p+ q 6= 0, then L(p,1q)F is a syzygy of the complex (6.1.1); hence,
we can describe it as a cokernel, as an image, and as a kernel:

· · · //
∧p F ⊗ Symq F //

''OOOOOOOOOOO

∧p−1 F ⊗ Symq+1 F // · · ·

Lp,1qF

66nnnnnnnnnnnnn

(d) Lf,λF =
∧f F ⊗ LλF .

Proposition 6.2. If e1, . . . , ef is a basis for the vector space F and λ = (λ1, . . . , λs) is a
partition, then the set

{(ea1,1 ∧ . . . ∧ ea1,λ1
)⊗ (ea2,1 ∧ . . . ∧ ea2,λ2

)⊗ · · · ⊗ (eas,1 ∧ . . . ∧ eas,λs )}

is a basis for Lλ(F ) where the rows of the following picture are strictly increasing and the
columns are non-decreasing:

(6.2.1)

a1,1 · · · a1,λs · · · a1,λ2 · · · a1,λ1

a2,1 · · · a2,λs · · · a2,λ2

...
...

as,1 · · · as,λs

Proof. First we show that the indicated elements generate LλF . We deal with two rows.
We may arrange the indices in each row to be strictly increasing because each row corre-
sponds to an element of

∧• F . If some column is wrong, then we have

a1 < · · · < aw < · · · < aλ2 < · · · aλ1

∨
b1 < · · · < bw < · · · < bλ2

The image of

(a1 ∧ · · · ∧ aw−1)⊗ (aw ∧ · · · aλ1 ∧ b1 ∧ · · · ∧ bw)⊗ (bw+1 ∧ · · · ∧ bλ2)
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under ∧w−1 F ⊗
∧λ1−(w−1)+w F ⊗

∧λ2−w F →
∧λ1 F ⊗

∧λ2 F 3

is ± our evil element plus tableaux which are lexicographically SMALLER than our evil
tableaux. That is, these tableaux look like

a′1 < · · · < a′w < · · · < a′λ2
< · · · a′λ1

b′1 < · · · < b′w < · · · < b′λ2

The least index i with a′i 6= ai has a′i < ai. (This least index comes on or before w.)
To deal with an arbitrary number of rows: Put a lexicographic order on all filled-in

tableaux of shape λ. In other words, the tableaux (6.2.1) corresponds to the word:

a1,1a1,2 · · · a1,λ1a2,1a2,2 · · · a2,λ2 · · · · · · · · · as,1as,2 · · · as,λs

If a′1a
′
2 · · · and a1a2 · · · are words (with the same number of letters), then a′1a

′
2 · · · is lexi-

cographically less than a1a2 · · · if the least index i with a′i 6= ai has a′i < ai. Start with an
arbitrary filled-in tableaux of shape λ. Apply the two-row process as many times as are
needed until the original element has been written as a linear combination of elements
from the proposed basis.

We use three steps to show that the proposed basis for LλF is linearly independent.
Ultimately, we produce a homomorphism from LλF to a vector space V with an ordered

basis {bi} so that each element ξ of our proposed basis for LλF is sent to

1 · bi(ξ) +
∑

i(ξ)+1≤j

coefficientj bj

and

ξ 6= ξ′ =⇒ i(ξ) 6= i(ξ′).

Step 1. We define a map

φλ :
∧λ1 F ⊗ · · · ⊗

∧λs F → Symλ′1
F ⊗ · · · ⊗ Symλ′

s′
F,

where λtranspose = (λ′1, . . . , λ
′
s′). This map is called the Schur map associated to λ.

Step 2. We show that φλ factors through LλF .

Step 3. We show that φλ carries the proposed basis for LλF to a linearly independent set
in Symλ′1

F ⊗ · · · ⊗ Symλ′
s′
F .

Carry out Step 1. If λ = (λ1, . . . , λs) is a partition with λtranspose equal to (λ′1, · · · , λ′s′), then
define

φλ :
∧λ1 F ⊗

∧λ2 F ⊗ · · · ⊗
∧λs F → Symλ′1

F ⊗ · · · ⊗ Symλ′
s′
F

3Notice that “u+ v” equals w − 1 + λ2 − w = λ2 − 1 < λ2.
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to be the composition

∧λ1 F
⊗∧λ2 F
⊗
...
⊗∧λs F

∆
⊗
...
⊗
∆

−−−−−−−−−−−−→

F ⊗ · · · ⊗ F︸ ︷︷ ︸
λ1

⊗
...
⊗

F ⊗ · · · ⊗ F︸ ︷︷ ︸
λs

mult⊗ · · · ⊗mult
−−−−−−−−−−−−−−−−−−−−−−−−→ Symλ′1

F ⊗ · · · ⊗ Symλ′
s′
F

Carry out Step 2. Focus on part of a relation from row a and row a+ 1.

x1 · · · xu • · · · • • · · · • • · · · •
• · · · • • · · · • z1 · · · zv

The black dot spaces are to be filled in with y1, · · · , yλa−u+λa+1−v. The fact that u+v < λa+1

guarantees that at least one column has two dots. Pick the left most such column. Take
two particular y’s: y† and y‡. For each choice of fill in of the rest of the dots, there are two
ways to arrange these two y’s:

∗ · · · ∗ y† ∗ · · · ∗ · · · ∗
∗ · · · ∗ y‡ ∗ · · · ∗ and

∗ · · · ∗ y‡ ∗ · · · ∗ · · · ∗
∗ · · · ∗ y† ∗ · · · ∗

These two tableaux come with opposite sign; hence their sum goes to zero under φλ. The
defining submodule of LλF is generated by such sums.

Carry out Step 3. Each basis element

ea1,1 · · · ea1,µ1
⊗ ea2,1 · · · ea2,µ2

⊗ · · · ⊗ eat,1 · · · eat,µt
in Symµ1

F ⊗ · · · ⊗ Symµt F , with µ1 ≥ · · · ≥ µt and

ai,1 ≤ · · · ≤ ai,µi

corresponds to a word

a1,1 · · · a1,µ1a2,1 · · · a2,µ2 · · · at,1 · · · at,µt .

I can order these words lexicographically if I want. Now I have an ordered basis {b1, . . . , bN}
for Symµ1

F ⊗ · · · ⊗ Symµt F . Any set of elements

bi1 + h. o. t., bi2 + h. o. t., · · · , bi` + h. o. t.

in Symµ1
F ⊗ · · · ⊗ Symµt F , with i1 < i2 < · · · < i`, is linearly independent.

Notice that φλ(proposed basis element 6.2.1) is

1 · bword read from column 1, column 2, . . . column s + h. o. t. .

In other words, the least basis vector from Symλ′1
F ⊗ . . . ⊗ Symλ′

s′
F which appears in

φλ(proposed basis element (6.2.1)) has coefficient 1 and is not repeated as a least basis
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vector as (6.2.1) roams over all of the proposed basis for LλF . It follows that the proposed
basis for LλF is linearly independent. �

Bonus Comment. We showed that the Schur module LλF is isomorphic to the image of
the Schur map φλ.

6.B. Sometimes Representation Theory alone gives a complex. This discussion comes
from a paper I wrote with Weyman.

Let F and G be vector spaces over the field kkk of dimension f and g respectively;

R = Symkkk(F ⊗G∗)

and φ : F ⊗kkk R→ G⊗kkk R be the natural R-module homomorphism:

a 7→
∑
j

gj ⊗ (a⊗ g∗j ),

for a ∈ F and g1, . . . , gg, and g∗1, . . . , g
∗
g a pair of dual bases for G and G∗. (As always,∑

gj ⊗ g∗j is a canonical element of G⊗G∗.)
For each partition ν = (ν1, . . . , νg−1), I will give you a collection tν of free R-modules and

R-module homomorphisms:

· · · → tν,k → tν,k−1 → . . . .

Each tν is a complex, and is acyclic; see [7, Thm. 4.7]. It is easy to see that H0(tν) is a
module over R/Ig(φ). When we look at the complexes we will see that the length of tν
is f − g + 1 when ν1 ≤ f − g + 1; so in these cases H0(tν) is a maximal Cohen Macaulay
R/Ig(φ)-module (and a perfect R-module).

The notation. Given the partition ν = (ν1, . . . , νg−1) and an integer k.

• Find i with νi ≥ k > νi+1. Let

p(ν, k) = (ν1, . . . , νi, k, νi+1 + 1, . . . , νg−1 + 1).

Let

N(ν, k) = |p(ν, k)| − |ν| = k + g − 1− i.

The modules. Let tν,k =
∧N(ν,k) F ⊗kkk Lp(ν,k)′G

∗ ⊗kkk R. (Today I write λ′ for λtranspose.)

Example 6.3. • If g = 4, then t(0,0,0) is

· · · →
∧6 F ⊗ L(3,1,1,1)′G

∗︸ ︷︷ ︸
D2G∗⊗

∧4 G∗

⊗R→
∧5 F ⊗ L(2,1,1,1)′G

∗︸ ︷︷ ︸
D1G∗⊗

∧4G∗

⊗R

→
∧4 F ⊗ L(1,1,1,1)′G

∗︸ ︷︷ ︸∧4G∗

⊗R→
∧0 F ⊗ L(0,0,0,0)′G

∗︸ ︷︷ ︸
kkk

⊗R

(This is the Eagon-Northcott complex which resolves R/I4(φ).)
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• If g = 4, then t(1,1,1) is

· · · →
∧6 F ⊗ L(3,2,2,2)′G

∗︸ ︷︷ ︸
D1G∗⊗

∧4G∗⊗
∧4 G∗

⊗R→
∧5 F ⊗ L(2,2,2,2)′G

∗︸ ︷︷ ︸∧4G∗⊗
∧4G∗

⊗R

→
∧1 F ⊗ L(1,1,1,1)′G

∗︸ ︷︷ ︸∧4G∗

⊗R→
∧0 F ⊗ L(1,1,1,0)′G

∗︸ ︷︷ ︸
Sym1G⊗

∧4G∗

⊗R

(This is the “Buchsbaum-Rim” complex which resolves the cokernel of the generic map
F

φ−→ G.)

• If g = 4, then t(2,1,0) is

· · · →
∧7 F ⊗ L(4,3,2,1)′G

∗ ⊗R→
∧6 F ⊗ L(3,3,2,1)′G

∗ ⊗R→
∧4 F ⊗ L(2,2,2,1)′G

∗ ⊗R

→
∧2 F ⊗ L(2,1,1,1)′G

∗ ⊗R→
∧0 F ⊗ L(2,1,0,0)′G

∗ ⊗R.
I included this example merely to point out that the family of complexes under consid-
eration is much larger than the family of Eagon-Northcott complexes. One can tell the
degree of the differential by looking at the difference in the power of

∧
F . The present

example has three matrices of quadratic maps before linear maps finally appear. An Eagon-
Northcott complex (see for example Appendix A2.6 in Eisenbud) has linear maps in every
position except one.

The differentials. I will tell you the differential

(6.3.1) tν,k → tν,k−1.

The partition ν is (ν1, . . . , νi, k − 1, . . . , k − 1︸ ︷︷ ︸
m

, νj, . . . , νg−1), with νi ≥ k and k − 2 ≥ νj. In

this case,

p(ν, k) = (α, km+1, β) and p(ν, k − 1) = (α, (k − 1)m+1, β)

for α = (ν1, . . . , νi) and β = (νj + 1, . . . , νg−1 + 1). When kkk has characteristic zero, Repre-
sentation Theory establishes the existence of a map

(6.3.2) L(α,km+1,β)′G
∗ RT−→ L(1m+1)′G

∗ ⊗ L(α,(k−1)m+1,β)′G
∗.

Of course, L(1m+1)′G
∗ is a very odd way of writing

∧m+1 G∗. The map (6.3.1) is

tν;k =
∧N(ν;k) F ⊗ L(α,km+1,β)′G

∗ ⊗R RT−→
∧N(ν;k) F ⊗

∧m+1G∗ ⊗ L(α,(k−1)m+1,β)′G
∗

∧m+1 φ∗−−−−−→
∧N(ν,k) F ⊗

∧m+1 F ∗ ⊗ L(α,(k−1)m+1,β)′G
∗ module action−−−−−−−→∧N(ν;k)−(m+1) F ∗ ⊗ L(α,(k−1)m+1,β)′G

∗ = tν,k−1

(In other words, use Representation Theory to pull m + 1 boxes from row k and then do
the “obvious map” involving the m+ 1×m+ 1 minors of φ.)

The picture that goes with (6.3.2) is:
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α1 × 1 . . . α` × 1 k × (m+ 1) β1 × 1 . . . βs × 1

The Representation Theory allows us to move the bottom row from

k × (m+ 1)

and get

1× (m+ 1) ⊗

α1 × 1 . . . α` × 1 (k − 1)× (m+ 1) β1 × 1 . . . βs × 1

The reason that Representation Theory gives the map (6.3.2): The module Lm+1G
∗ ⊗

L(α,(k−1)m+1,β)′G
∗ is a direct sum of irreducible representations of GL(G∗). The Littlewood-

Richardson rule tells us that exactly one copy of L(α,km+1,β)′G
∗ appears in this direct sum

decomposition. So (up to scalar multiple from kkk), there is exactly one coordinate-free map
(6.3.2). It is possible to write down exactly what (6.3.2) does, but it is not a very pretty
answer!

6.C. Each tν is a complex. The Littlewood-Richardson Rule If λ and µ are partitions
then

LλV ⊗ LµV =
⊕

LR(λ, µ; ν)LνV

where the sum is taken over all partitions ν with |ν| = |λ| + |µ|, and the Littlewood-
Richardson coefficient LR(λ, µ; ν) is is calculated according to the following description.
Draw ν, remove µ. Fill in the resulting picture using λ1 ones, λ2 twos, etc. You must have
your rows WEAKLY increasing and your columns STRICTLY increasing. The word that
you form using the Macdonald convention (right to left top to bottom) must be a lattice
permutation meaning w = a1a2 . . . aN in the symbols 1, 2, . . . , n is a lattice permutation if
for 1 ≤ r ≤ N and 1 ≤ i ≤ n − 1, the number of occurrences of the symbol i in a1a2 . . . ar
is not less than the number of occurrences of i+ 1.
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Example 6.4. Let us calculate the LR coefficient for L(α,km+1,β)′G
∗ in

Lm+1G
∗ ⊗ L(α,(k−1)m+1,β)′G

∗.

We draw (α, km+1, β)′ and remove (α, (k − 1)m+1, β)′. This leaves

a one m+ 1 row of boxes .

We must fill these boxes in using m + 1 ones. There is one way to do this. This unique
way is weakly increasing in the rows and the word is okay! Thus, there is exactly one
non-zero GL(V )-module homomorphism

L(α,km+1,β)′G
∗ → Lm+1G

∗ ⊗ L(α,(k−1)m+1,β)′G
∗

(up to multiplication by a scalar).

Calculation. Now we show that each tν is a complex. That is, we show that the composi-
tion

(6.4.1) tν,k → tν,k−1 → tν,k−2

is zero. Write ν = (ν1, . . . , νi, (k− 1)a, (k− 2)b, νj, . . . , νg−1), with νi ≥ k and k− 3 ≥ νj. Let
α = (ν1, . . . , νi) and β = (νj + 1, . . . , νg−1 + 1). We see that

p(ν; k) = (α, ka+1, (k − 1)b, β), p(ν; k − 1) = (α, (k − 1)a+b+1, β)

and

p(ν; k − 2) = (α, (k − 1)a, (k − 2)b+1, β).

The composition (6.4.1) is

tν,k =

N(ν;k)∧
F ⊗ L(α,ka+1,(k−1)b,β)′G

∗ ⊗R RT−→

N(ν;k)∧
F ⊗

a+1∧
G∗ ⊗ L(α,(k−1)a+1,(k−1)b,β)′G

∗ ⊗R φ∗−→

N(ν;k)∧
F ⊗

a+1∧
F ∗ ⊗ L(α,(k−1)a+1,(k−1)b,β)′G

∗ ⊗R MA−−→

N(ν;k)−(a+1)∧
F ⊗ L(α,(k−1)a+1,(k−1)b,β)′G

∗ ⊗R RT−→

N(ν;k)−(a+1)∧
F ⊗

b+1∧
G∗ ⊗ L(α,(k−1)a,(k−2)b+1,β)′G

∗ ⊗R φ∗−→

N(ν;k)−(a+1)∧
F ⊗

b+1∧
F ∗ ⊗ L(α,(k−1)a,(k−2)b+1,β)′G

∗ ⊗R MA−−→

N(ν;k)−(a+1)−(b+1)∧
F ⊗ L(α,(k−1)a,(k−2)b+1,β)′G

∗ ⊗R = tν;k−2
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It is legal to do both representation theory maps first, then do both φ∗ maps, and then do
both module action maps. So we focus on the composition of the Representation Theory
maps:

L(α,ka+1,(k−1)b,β)′G
∗ RT−→

a+1∧
G∗ ⊗ L(α,(k−1)a+1,(k−1)b,β)′G

∗ RT−→
a+1∧

G∗ ⊗
b+1∧

G∗ ⊗ L(α,(k−1)a,(k−2)b+1,β)′G
∗ EM−−→

a+1+b+1∧
G∗ ⊗ L(α,(k−1)a,(k−2)b+1,β)′G

∗

(The maps “φ∗” and “Module action” both commute with “Exterior Multiplication”.) Well,
the Littlewood-Richardson rule tells us that the only GL(G∗)-module map

(6.4.2) L(α,ka+1,(k−1)b,β)′G
∗ → La+b+2G

∗ ⊗ L(α,(k−1)a,(k−2)b+1,β)′G
∗

is ZERO, and (6.4.1) factors through (6.4.2); thus, (6.4.1) is also zero.

To see that the only choice for a GL(G∗)-module map (6.4.2) is zero: We compute the
LR coefficient for L(α,ka+1,(k−1)b,β)′G

∗ in

La+b+2G
∗ ⊗ L(α,(k−1)a,(k−2)b+1,β)′G

∗.

We draw the picture for (α, ka+1, (k − 1)b, β)′, remove the picture for
(α, (k − 1)a, (k − 2)b+1, β)′. We are left with

· · ·
· · ·

with b + 1 boxes in the top row, a + 1 boxes in the bottom row, and an overlap of one
box. There is NO way to fill the picture in using ALL ONES so that the columns are strictly
increasing. Thus, the only coordinate free kkk-vector space map with domain and range
given in (6.4.2) is zero and (6.4.1) is also zero.
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