
COMMUTATIVE ALGEBRA II, SPRING 2019, A. KUSTIN, CLASS NOTES

1. REGULAR SEQUENCES

This section loosely follows sections 16 and 17 of [6].

Definition 1.1. Let R be a ring and M be a non-zero R-module.

(a) The element r of R is regular on M if rm = 0 =⇒ m = 0, for m ∈M .
(b) The elements r1, . . . , rs (of R) form a regular sequence on M , if

(i) (r1, . . . , rs)M 6= M ,
(ii) r1 is regular on M , r2 is regular on M/(r1)M , . . . , and rs is regular on

M/(r1, . . . , rs−1)M .

Example 1.2. The elements x1, . . . , xn in the polynomial ring R = kkk[x1, . . . , xn] form a
regular sequence on R.

Example 1.3. In general, order matters.
Let R = kkk[x, y, z].
The elements x, y(1− x), z(1− x) of R form a regular sequence on R.
But the elements y(1− x), z(1− x), x do not form a regular sequence on R.

Lemma 1.4. If M is a finitely generated module over a Noetherian local ring R, then every
regular sequence on M is a regular sequence in any order.

Proof. It suffices to show that if x1, x2 is a regular sequence on M , then x2, x1 is a regular
sequence on M .

Assume x1, x2 is a regular sequence on M . We first show that x2 is regular on M . If
x2m = 0, then the hypothesis that x1, x2 is a regular sequence on M guarantees that
m ∈ x1M ; thus m = x1m1 for some m1.

But 0 = x2m = x1x2m1 and x1 is still regular on M ; so x2m1 = 0 and m1 = x1m2.
Proceed in this manner to see that m ∈ ∩ixi1M . Apply the Krull Intersection Theorem

which says that if R is a Noetherian local ring, I is a proper ideal, and M is a finitely
generated R-module, then ∩iI iM = 0. Thus m is zero and x2 is regular on M .

Now we prove that x1 is regular on M/x2M . Suppose x1m1 = x2m2. The sequence x1, x2

is regular on M and x2m2 ∈ x1M ; hence m2 = x1m
′
2 for some m′2 ∈M . Thus,

x1m1 = x1x2m
′
2.

But, x1 is regular on M ; hence m1 = x2m
′
2 ∈ x2M . �

Theorem 1.5. [Krull Intersection Theorem] If R is a Noetherian local ring, I is a proper
ideal, and M is a finitely generated R-module, then ∩iI iM = 0.
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Proof. Let N = ∩iI iM . Recall that the Artin Rees Lemma says that if A ⊆ B are finitely
generated modules over the Noetherian ring R and I is a proper ideal of R, then there
exists an integer c so that

InB ∩ A = In−c(IcB ∩ A),

for c ≤ n. In our situation,

N = InM ∩N = In−c(IcM ∩N) ⊆ IN.

It is clear that IN ⊆ N . Thus N = IN . Apply Nakayama’s Lemma to conclude that N = 0.
(Of course, Nakayama’s Lemma says that if M is a finitely generated module over a local
ring (R,m) and mM = M , then M = 0.) �

Definition 1.6. Let R be a ring, I be an ideal in R, and M be an R-module with IM 6= M .
The grade in I on M (denoted grade(I,M)) is the length of the longest regular sequence
in I on M . We write grade(I) to mean grade(I, R). If (R,m) is Noetherian and local and
M is a non-zero finitely generated R module, then grade(m,M) is also denoted depthM ;
and of course, depthR is grade(m, R) .

Recall that dimM is a geometric measure of the size of M . We will now show that
depthM is a homological measure of the size of M .

Remark 1.7. If R is a Noetherian ring, M is finitely generated R-module, and I is an ideal
of R with IM 6= M , then every regular sequence in I on M is part of a finite maximal
regular sequence. Indeed, if x1, x2, . . . is a regular sequence in I on M , then

(x1)M ( (x1, x2)M ( · · ·

If equality occurred at spot i, then xiM would be contained in (x1, . . . , xi−1)M with xi
regular on M/(x1, . . . , xi−1)M . This would force M ⊆ (x1, . . . , xi−1)M which has been
ruled out.

Observation 1.9 is designed to show that grade I is connected to the functor

HomR(R/I,−).

The proof uses Emmy Noether’s Theory of primary decomposition.

Fact 1.8. If M is a non-zero finitely generated module over a Noetherian ring R, I is an ideal
of R, and every element of I is a zero divisor on M , then Im = 0 for some non-zero m ∈M .

Proof. Observe that
I ⊆ ZeroDivisors(M) =

⋃
p∈AssM

p.

Therefore, I ⊆ p = annm for some p ∈ AssM . �

Observation 1.9. Let M be a non-zero finitely generated module over the Noetherian ring R,
and let I be an ideal in R. Then HomR(R/I,M) = 0 if and only if there is an element x ∈ I
with x regular on M .
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Proof. (⇐) Assume x is an element of I with x regular on M . Prove HomR(R/I,M) = 0.
Apply HomR(R/I,−) to the exact sequence

0→M
x−→M →M/(x)M → 0

to get the exact sequence

0→ HomR(R/I,M)
x−→︸︷︷︸
0

HomR(R/I,M)→ HomR(R/I,M/(x)M).

Conclude HomR(R/I,M) = 0.

(⇒) Assume I is contained in the zero divisors on M . Prove HomR(R/I,M) 6= 0.
The ideal I is contained in the set of zero divisors on M ; hence there is a non-zero ele-

ment m of M with Im = 0. Observe that 1 7→ m is a non-zero element of HomR(R/I,M).
�

Class on Jan. 17. Let M be a finitely generated module over the Noetherian ring R, and
let I be an ideal in R with IM 6= M .

• We proved that every regular sequence in I on M is finite.
• We proved that HomR(R/I,M) 6= 0 if and only if every element of I is a zero

divisor on M .
• We let grade(I,M) denote the length of the longest regular sequence in I on M .

In the next result we show that each maximal regular sequence in I on M has the same
length, and we interpret this length homologically.

Theorem 1.10. Let M be a finitely generated module over the Noetherian ring R, and let I
be an ideal in R with IM 6= M . The following statements hold :

(a) grade(I,M) = min{i | ExtiR(R/I,M) 6= 0},
(b) every maximal regular sequence in I on M has the same length,
(c) grade(I,M) is finite, and
(d) grade(I,M) ≤ pdRR/I.

Recall that the projective dimension (pdRM) of M as an R-module (denoted pdRM) is
the length of the shortest resolution of M by projective R-modules.

Recall also that the R-module P is projective if every picture of R-module homomor-
phisms of the form

P

��
A // // B

gives rise to a commutative diagram of R-module homomorphisms of the form

P

��

∃

��~
~

~
~

A // // B
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Similarly, the R-module E is injective if every picture of R-module homomorphisms of
the form

A �
� //

��

B

E

gives rise to a commutative diagram of R-module homomorphisms of the form

A �
� //

��

B

∃��~
~

~
~

E

Every free R-module is a projective R-module. If R is a domain, the the fraction field Q
of R is an injective R-module. Here is a quick sketch of the proof. Suppose

A �
� //

f
��

B

Q

is a picture of R-module homomorphisms. Let f ′ : A′ → Q be a maximal extension of
f with A ⊆ A′ ⊆ B. (Use Zorn’s Lemma to establish the existence of f ′.) We claim
that A′ = B. Otherwise, there exits b ∈ B \ A′. We will extend f ′ : A′ → Q to be a
homomorphism f ′′ : A′ + Rb → Q, with f ′′|A′ = f ′. (Of course such an extension is not
possible because f ′ is a maximal extension of f .) Consider the ideal I = (A′ :R b). If I = 0,
then define f ′′(b) = 0. If i is a non-zero element of I, then define f ′′(b) = f ′(ib)

i
. Verify that

f ′′ is a well-defined homomorphism.

Background 1.11. Here are a few comments about Ext.

(a) Let L and M be modules over the ring R. I will tell you the first way to compute
ExtiR(L,M). Let

P : · · · → P2
d1−→ P1

d1−→ P0 → 0

be a projective resolution of L. Apply HomR(−,M) to obtain the complex

HomR(P,M) : 0→ HomR(P0,M)
d∗1−→ HomR(P1,M)

d∗2−→ HomR(P2,M)
d∗3−→ · · · .

Then

ExtiP (L,M) = Hi(HomR(P,M)) =
ker d∗i+1

im d∗i
.

In particular, the functor HomR(−,M) is left exact; so,

Ext0
R(L,M) = HomR(L,M).

One should make sure that
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(i) Ext is well-defined, in the sense that if P ′ is another projective resolution of P ,
then Hi(HomR(P,M)) is isomorphic to Hi(HomR(P ′,M)). This is a three step
process. One proves the comparison theorem to exhibit a map of complexes
α : P ′ → P and a map of complexes β : P → P ′. Each of these maps of
complexes extends the identity map on L. Then one proves that β ◦ α : P ′ → P ′

is homotopic to the identity map. Then one proves to two homotopic maps of
complexes induce the same map on homology. I can say more.

Class on Jan. 22, 2019
Let L and M be modules over the ring R. Last time gave two ways to compute ExtiR(L,M):

• Let (P, d) be a projective resolution of L. Then

ExtiR(L,M) = Hi(HomR(P,M)).

We gave some idea of why this object does not depend on the choice of P .
• Let (E, δ) be an injective resolution of M . Then

ExtiR(L,M) = Hi(HomR(N,E)).

The previous explanation does work here to see that the object does not depend
on the choice of E.
• Now I will tell you a second way to compute Exti(L,M). Let

E : 0→ E0
d0−→ E1

d1−→ E2
d2−→ · · ·

be an injective resolution of M . Apply HomR(L,−) to obtain the complex

HomR(L,E) : 0→ Hom(L,E0)
d0∗−→ Hom(L,E1)

d1∗−→ Hom(L,E2)
d2∗−→ · · · .

Then

ExtR(L,M) = Hi(HomR(L,E)) =
ker di∗

im di−1
∗

.

Topic one. Today’s first project is to answer the following question.

Question 1.12. Why is Ext built using (P, d) related to Ext built using (E, δ)?

Answer. One looks at HomR(P,E) which is a double complex (or if you prefer a big com-
mutative picture). There is a natural complex (called Tot(HomR(P,E))) and there are
natural maps

(1.12.1) Hi(Tot(HomR(P,E))→ Hi(Hom(L,E))

and

(1.12.2) Hi(Tot(HomR(P,E))→ Hi(Hom(P,M)).
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One uses the long exact sequence of (co)-homology which is associated to a short exact
sequence of complexes in order to see that the maps (1.12.1) and (1.12.2) both are iso-
morphisms.

Here are some of the details. The double complex HomR(P,E) looks like

...
...

...

Hom(P0, E2)
d∗1 //

δ2∗

OO

Hom(P1, E2)
d∗2 //

δ2∗

OO

Hom(P2, E2)
d∗3 //

δ2∗

OO

· · ·

Hom(P0, E1)
d∗1 //

δ1∗

OO

Hom(P1, E1)
d∗2 //

δ1∗

OO

Hom(P2, E1)
d∗3 //

δ1∗

OO

· · ·

Hom(P0, E0)
d∗1 //

δ0∗

OO

Hom(P1, E0)
d∗2 //

δ0∗

OO

Hom(P2, E0)
d∗3 //

δ0∗

OO

· · ·

The total complex is obtained by adding along the diagonals of slope −1; so the complex
Tot(Hom(P,E)) is

0→ Hom(P0, E0)

δ0∗
d∗1


−−−−→

Hom(P0, E1)
⊕

Hom(P1, E0)


δ1∗ 0
d∗1 −δ0∗
0 d∗2


−−−−−−−−−→

Hom(P0, E2)
⊕

Hom(P1, E1)
⊕

Hom(P2, E0)


δ2∗ 0 0
d∗1 −δ1∗ 0
0 d∗2 δ0∗
0 0 d∗2


−−−−−−−−−−−−→ · · ·

In general, the signs are not mysterious. They follow the following pattern:

Hom(Pi, Ej)

(−1)iδj∗
d∗i+1


−−−−−−−−→

Hom(Pi, Ej+1)
⊕

Hom(Pi+1, Ej)


(−1)iδj+1∗ 0

d∗i+1 (−1)i+1δj∗
0 d∗i+2


−−−−−−−−−−−−−−−−−−−→

Hom(Pi, Ej+2)
⊕

Hom(Pi+1, Ej+1)
⊕

Hom(Pi+2, Ej).

A two cocycle in Tot(Hom(P,E)) looks like

0

x0,2

OO

// same

x1,1

OO

// same

x2,0

OO

// 0
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in Hom(P,E). In particular, x2,0 represents a 2 cocycle in Hom(P,M) and x0,2 represents
a 2 cocycle in Hom(L,E). From this we get homomorphisms

(1.12.3) Hi(Hom(L,E))← Hi(Tot(Hom(P,E)))→ Hi(Hom(P,M)).

To show that the maps of (1.12.3) are isomorphisms one considers two short exact se-
quence of complexes:

0→ Hom(P,E)→ Tot(Hom(P extended, E))→ Hom(L,E0)shifted → 0

and

0→ Hom(P,E)→ Tot(Hom(P,Eextended))→ Hom(P,M)shifted → 0

and uses the long exact sequence of homology which corresponds to a short exact sequence
of complexes. Keep in mind that Tot(Hom(P extended, E)) and Tot(Hom(P,Eextended)) are
exact! Their cohomology is zero. Of course, P extended is

· · ·P1 → P0 → L→ 0

and Eextended is

0→M → E0 → E1 → · · ·

Topic Three. The long exact sequence of homology which corresponds to a short exact
sequence of complexes.

Let

0→ A
f−→ B

g−→ C → 0

be a short exact sequence of complexes:

...

��

...

��

...

��
0 // A2

f2 //

a2
��

B2
g2 //

b2
��

C2
//

c2
��

0

0 // A1
f1 //

a1
��

B1
g1 //

b1
��

C1
//

c1
��

0

0 // A0
f0 //

��

B0
g0 //

��

C0
//

��

0

0 0 0

(The columns are complexes. The rows are exact.)
Then there is a long exact sequence of homology

(1.12.4) · · · → H2(A)
f∗−−→ H2(B)

g∗−−→ H2(C)
∂−→ H1(A)

f∗−−→ H1(B)
g∗−−→ H1(C)

∂−→ H0(A)
f∗−−→ H0(B)

g∗−−→ H0(C)→ 0
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The maps f∗ and g∗ are straightforward. For example, if x is a one cycle in A, then f(x) is
a one cycle in B. One can easily show that

H1(A)→ H1(B),

given by the class of x is sent to the class of f(x) is a well-defined homomorphism.
The “connecting homomorphism” ∂ is a little more complicated. I will describe ∂ :

Hi(C)→ Hi−1(A). Let x be an i-cycle in C. The map bi is onto, so there is a y in Bi which
maps to x. Observe that bi(y) is a cycle. The exactness of row i − 1 guarantees that there
is a z in Ai−1 with z 7→ bi(z). Observe that z is a cycle because fi−2 is one-to-one:

y //

��

x

��
z //

��

b1(y) // 0

? // 0

One must verify that ∂ of the class of x is equal to the class of z is a well-defined function.
Then one must verify that (1.12.4) is an exact sequence.

Class on Jan. 24, 2019
Let L and M be modules over the ring R. Last time:

• We saw that one can compute ExtR(L,M) using either a projective resolution of L
or an injective resolution of M .
• We saw that a short exact sequence of complexes gives rise to a long exact sequence

of homology or cohomology.

Today:

1. Ext is a functor.
2. One long exact sequence of Ext

3. The other long exact sequence of Ext.
4. The Theorem about regular sequences that we want to prove. The statement of the

Lemma about Ext that we will use. The Lemma does indeed establish the Theorem.
5. The proof of the Lemma.

Topic One. We discuss the fact that Exti(−,M) and Exti(L,−) are functors. That is, if
f : L → L′ and g : M → M ′ are an R-module homomorphisms, then there are well-
defined homomorphisms

f ∗ : ExtiR(L′,M)→ ExtiR(L,M)

and
g∗ : ExtiR(L,M)→ ExtiR(L,M ′).
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Resolve L and L′. Use the comparison theorem to find a map of complexes

extended resolution of L→ extended resolution of L′

Apply Hom(−,M). Etc.

Topic Two. If

0→ L′
f−→ L

g−→ L′′ → 0

is a short exact sequence of R-modules, then

0→ Ext0
R(L′′,M)

g∗−→ Ext0
R(L′,M)

f∗−→ Ext0
R(L,M)

δ−→ Ext1
R(L′′,M)

g∗−→ Ext1
R(L′,M)

f∗−→ Ext1
R(L,M)

δ−→ Ext2
R(L′′,M)

g∗−→ Ext2
R(L′,M)

f∗−→ Ext2
R(L,M)→ · · ·

is a long exact sequence of homology. The proof is long but not hard. One first shows that
there is a short exact sequence of complexes

0→ P ′ → P → P ′′ → 0

(with P ′ a projective resolution of L′, P a projective resolution of L, and P ′′ a projective
resolution of L′′ and each row 0 → P ′i → Pi → P ′′i → 0 exact) which extends the original
short exact sequence

0→ L′ → L→ L′′ → 0.

(This is called the Horseshoe Lemma.) One then applies HomP (−,M) and obtains a short
exact sequence of complexes:

(1.12.5) 0→ HomR(P ′′,M)→ HomR(P,M)→ HomR(P ′,M)→ 0.

(The critical point here is that each row 0→ P ′i → Pi → P ′′i → 0 is automatically split exact
because P ′′i is projective; hence each row of (1.12.5) is also split exact; hence exact.) We
have seen that every short exact sequence of complexes gives rise to a long exact sequence
of (co-)homology.

Again, I can do more. My favorite book on Homological Algebra is Rotman [8]; a few
years ago Adela taught a course in Homological Algebra from Weibel [10].

Topic Three. If

0→M ′ α−→M
β−→M ′′ → 0

is a short exact sequence of R-modules, then

0→ Ext0
R(L,M ′)

α∗−→ Ext0
R(L,M)

β∗−→ Ext0
R(L,M ′′)

δ−→ Ext1
R(L,M ′)

α∗−→ Ext1
R(L,M)

β∗−→ Ext1
R(L,M ′′)

δ−→ Ext2
R(L,M ′)

α∗−→ Ext2
R(L,M)

β∗−→ Ext2
R(L,M ′′)→ · · ·

is a long exact sequence of homology.

Topic Four. We want to prove

Theorem (1.10). Let M be a finitely generated module over the Noetherian ring R, and let I
be an ideal in R with IM 6= M . The following statements hold :
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(a) grade(I,M) = min{i | ExtiR(R/I,M) 6= 0},
(b) every maximal regular sequence in I on M has the same length,
(c) grade(I,M) is finite, and
(d) grade(I,M) ≤ pdRR/I.

Recall that grade(I,M) is equal to the length of the longest regular sequence in I on M .
(Before we prove the Theorem, this could be infinity.) We had two warm-up Lemmas:

• Every regular sequence in I on M is finite.
• HomR(R/I,M) 6= 0 ⇐⇒ I ⊆ ZeroDivisors(M).

Lemma 1.13. Let L and M be finitely generated modules over the Noetherian ring R. If
x1, . . . xn is a regular sequence on M in annL, then

ExtiR(L,M) ∼=

{
0, if 0 ≤ i ≤ n− 1, and
HomR(L,M/(x1, . . . , xn)M), if i = n.

Assume Lemma 1.13. Prove Theorem 1.10. Let x1, . . . xn be a maximal regular sequence in I
on M . (Such a sequence exists because every regular sequence in I on M is finite.) Apply
Lemma 1.13 to see that

ExtiR(R/I,M) =

{
0, if 0 ≤ i ≤ n− 1

HomR(R/I,M/(x1, . . . , xn)M), if i = n.

The regular sequence is maximal; so, Observation 1.9 yields that

HomR(R/I,M/(x1, . . . , xn)M) 6= 0.

This completes the proof of (a) and (b).

(c) We know that there exists a maximal regular sequence. This maximal regular sequence
has finite length. Therefore, every maximal regular sequence has the same finite length by
(b). Thus grade(I,M) is finite.

(d) Let F be a projective resolution of R/I of length pdRR/I. Use

ExtiR(R/I,M) = Hi(Hom(F,M))

to compute
ExtiR(R/I,M) = 0 for pdRR/I + 1 ≤ i.

We know from (c) that grade(I,M) is finite and from (a) and (b) that

Ext
grade(I,M)
R (R/I,M) 6= 0.

Conclude grade(I,M) ≤ pdRR/I. �

Proof of Lemma 1.13. The proof is by induction on n. We start with n = 1. Apply
HomR(L,−) to the short exact sequence of R-modules

0→M
x1−→M →M/x1M → 0
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to obtain the long exact sequence

0→ HomR(L,M)
x1−→︸︷︷︸
0

HomR(L,M)→ HomR(L,M/x1M)

→ Ext1
R(L,M)

x1−→︸︷︷︸
0

Ext1
R(L,M)→ Ext1

R(L,M/x1M) · · · .

Conclude that HomR(L,M) = 0 and

(1.13.1) 0→ ExtiR(L,M)→ ExtiR(L,M/x1M)→ Exti+1
R (L,M)→ 0

is exact for 0 ≤ i. In particular, when i = 0 in (1.13.1) one obtains

HomR(L,M/x1M) ∼= Ext1
R(L,M).

We have established the case n = 1.
Suppose, by induction, that the assertion holds for n−1. Apply the induction hypothesis

to the regular sequence x2 . . . , xn on the module M/x1M to conclude that

ExtiR(L,M/x1M) ∼=


0, if 0 ≤ i ≤ n− 2, and
HomR(L, (M/x1)/(x2, . . . , xn)(M/x1)︸ ︷︷ ︸

M/(x1,...,xn)M

), if i = n− 1.

Plug ExtiR(L,M/x1M) = 0 for 0 ≤ i ≤ n − 2 into (1.13.1) to see ExtiR(L,M) = 0 for
0 ≤ i ≤ n− 1. At i = n− 1, (1.13.1) gives

0→ Extn−1
R (L,M)︸ ︷︷ ︸

0

→ Extn−1
R (L,M/x1M)︸ ︷︷ ︸

HomR(L,M/(x1,...,xn)M)

→ ExtnR(L,M)→ 0,

and this concludes the proof of the Lemma.

We prove the next Generalization for two reasons. First of all, it uses many of the
technical ideas from the first semester. It is fun to see them used. Secondly, it leads to a
quick proof of

grade annL ≤ pdR L

(for any finitely generated module L over a Noetherian ring R) which is a very important
inequality to me. (In my world, the module L is called perfect when equality holds.)

Corollary 1.14. If L and M are finitely generated modules over the Noetherian ring R, with
(annL)M 6= M and annL 6= 0, then

(a) grade(annL,M) = min{i | ExtiR(L,M) 6= 0}, and
(b) grade(annL) ≤ pdR L.

Proof. (a) We already saw, in Lemma 1.13, that if x1, . . . , xn are elements in annL which
form a regular sequence on M , then

ExtiR(L,M) =

{
0 if i ≤ n− 1

HomR(L,M) if i = n,
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with M = M/(x1, . . . , xn)M . We only need to prove that

HomR(L,M) 6= 0 ⇐⇒ every element of annL is a zero divisor on M.

(⇒) Let f be a non-zero element of HomR(L,M). In this case f(L) contains a non-zero
element of M . On the other hand

0 = f((annL)L) = (annL) · f(L).

Thus every element of annL is a zero divisor on M .

(⇐) We prove that

annL ⊆ ZeroDivisorsM =⇒ HomR(L,M) 6= 0.

If

annL ⊆ ZeroDivisorsM,

then there exists p ∈ AssM with annL ⊆ p.
We proved

HomR(L,M)p ∼= HomRp(Lp,M p)

last semester. (The proof uses a finite presentation of M , the exactness properties of
localization and Hom, and the fact that the result is obvious if M is a free R-module.) The
map Lp → Lp

pLp
is non-zero by Nakayama’s Lemma. Here is a non-zero map in

HomRp(Lp,M p) :

Lp →
Lp

pLp

=
⊕ Rp

pRp

→ Rp

pRp

⊆M p.

For the last map, recall that p ∈ AssM =⇒ pRp ∈ AssM p. It follows that HomR(L,M) is
also non-zero.

(b) The proof is the same as the proof of Theorem 1.10.(d). The ideal annL has a non-
negative finite grade. This grade is equal to min{i | ExtiR(L,R) 6= 0} and ExtiR(L,R) = 0

for pdR L < i. Thus, gradeL ≤ pdR L. �

If L is a perfect R-module of projective dimension g, and P is a projective resolution of
L of length g, then the dual of P (that is, HomR(P,R)) is a resolution of ExtgR(L,R). If R is
a “Gorenstein ring” and L = R/I, then ExtgR(L,R) is called the canonical module of R/I.

Example 1.15. Let R = kkk[x, y](x,y) and I = (x2, xy, y2). Then

P : 0→ R2


−y 0
x −y
0 x


−−−−−−−−→ R3

[
x2 xy y2

]
−−−−−−−−−→ R
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is a projective resolution of R/I of length 2. The grade of I is 2 and pdRR/I = 2. It follows
that R/I is a perfect R-module and the dual of P

P ∗ : 0→ R1


x2

xy
y2


−−−→ R3

−y x 0
0 −y x


−−−−−−−−−−→ R2

is also a resolution. The module
R2([

−y
0

]
,

[
x
−y

]
,

[
0
x

])
is the canonical module of R/I.

January 31, 2019
Today we do many little things. Some of the highlights are:

• If R is a Noetherian local and M finitely generated R-module, then

depthM ≤ dimM.

• The definition of Cohen-Macaulay module in the local setting.
• If R is a Noetherian ring, then grade I ≤ ht I.
• The first hint of “unmixedness”.

Observation 1.16. Let R be a Noetherian ring, I an ideal of R, and M a finitely generated
R-module with IM 6= M . Then

grade(I,M) = grade(
√
I,M).

Proof. Notice that
√
IM 6= M . Indeed, there exists N with (

√
I)N ⊆ I. If

√
IM = M , then

(
√
I)2M =

√
IM = M and by iterating, (

√
I)NM = M . In this case,

(
√
I)NM ⊆ IM ⊆M ⊆ (

√
I)NM ;

hence IM = M , and this is a contradiction.
Let x1, . . . , xr be a maximal regular sequence in I on M . So, x1, . . . , xr is a regular

sequence in
√
I on M and I ⊆ ZeroDivisors

(
M

(x1,...,xr)M

)
. Thus,

I ⊆ p ∈ Ass
M

(x1, . . . , xr)M
.

It follows that √
I ⊆ p ∈ Ass

M

(x1, . . . , xr)M
.

Therefore, x1, . . . , xr is a maximal regular sequence in
√
I on M . �

I think that I forgot to define “system of parameters” last semester.
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Definition 1.17. If (R,m) is a local Noetherian ring, M is a finitely generated R-module
of dimension d, and x1, . . . , xd is a set of d elements of m with dimM/(x1, . . . , xd)M = 0,
then x1, . . . , xd is a system of parameters for M .

Recall from last semester that if (R,m) is a local ring, M is a finitely generatedR-module,
and x ∈ m, then

(1.17.1) dimM − 1 ≤ dimM/(x) ≤ dimM.

The only interesting inequality is the one on the left. The proof is to take y1, . . . , ys in
M with ȳ1, . . . , ȳs a system of parameters for M/(x)M . So, M/(x, y1, . . . , ys)M has finite
length and

dimM = δ(M) ≤ s+ 1 = dimM/(x)M + 1,

In other words, dimM − 1 ≤ dimM/(x)M .

Observation 1.18. Let (R,m) be a local ring, M be a finitely generated R-module, and x be
an element of m, If x is regular on M , then dimM/(x)M = dimM − 1.

Proof. The element x is not in any associated primes of M ; so, x is not in any of the prime
ideals which are minimal in the support of M . It follows that dimM/(x)M < dimM . This
is enough by (1.17.1). �

Corollary 1.19. If (R,m) is a local ring and M is a finitely generated R-module, then
depthM ≤ dimM .

Proof. If x1, . . . , xr is a regular sequence in m on M , then

0 ≤ dim

(
M

(x1, . . . , xr)M

)
= dimM − r.

Thus, r ≤ dimM . �

Corollary 1.20. If I is an ideal in a Noetherian ring R, then grade I ≤ ht I.

Proof. Let p be a prime ideal in R with I ⊆ p and ht I = ht p. A regular sequence in I on R
remains a regular sequence in Ip on Rp. Thus,

grade I ≤ grade Ip ≤ depthRp ≤ dimRp = ht p = ht I. �

Definition 1.21. If (R,m) is a local ring and M is a finitely generated R-module, then M

is a Cohen-Macaulay R-module if either

(a) M is not zero and dimM = depthM , or
(b) M = 0.

If R is a Cohen-Macaulay R-module, then R is called a Cohen-Macaulay ring.

Theorem 1.22. Let (R,m) be a local Noetherian ring and M be a finitely generated Cohen-
Macaulay R-module. Then the following statements hold.

(a) The module M does not have any embedded primes.
(b) If p is in AssM , then dimR/p = dimM .
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Lemma 1.23. If (R,m) is a local Noetherian ring and N and M are finitely generated R-
modules, then

ExtiR(N,M) = 0, whenever i < depthM − dimN.

Remarks 1.24.

• Item 1.22.(a) is the point of this discussion. Geometers hate embedded primes!
Macaulay (1916) [5] proved the unmixedness theorem for polynomial rings. Co-
hen (1946) [3] proved the unmixedness theorem for formal power series rings.
• An ideal I of a Noetherian ring R is called unmixed if the height of I is equal to

the height of every associated prime p of R/I.
• The unmixedness theorem is said to hold for the ring R if every ideal I generated

by a number of elements equal to its height is unmixed.
• A Noetherian ring is Cohen-Macaulay if and only if the unmixedness theorem holds

for it. (We will prove this. First we have to define Cohen-Macaulay ring for non-
local rings.)
• Item 1.22.(b) gives a quick proof of 1.22.(a).
• The Lemma gives a quick proof of 1.22.(b). The Lemma is called Ischebeck’s

Lemma.

February 5, 2019
Last time we defined Cohen-Macaulay modules. Today we collect properties of Cohen-

Macaulay modules.
Old Business:

• Last time we proved that if I is an ideal in a Noetherian ring then grade I =

grade
√
I. For example, if x, y, z is a regular sequence in the Noetherian ring R, and

I is an ideal of R which contains xn, yn, zn + f , with f ∈ (x, y), then 3 ≤ grade I.
• Did I say enough about embedded primes? An embedded prime of the module M

is a prime ideal p which is in AssM but is not minimal in the support of M . A
geometer feels the embedded prime because there are more zero-divisors on M

than was expected, but has difficulty seeing the embedded prime because it does
not correspond to an irreducible component of SuppM .

Algebraists are also wary of embedded primes. The “standard theorem” is I ⊆ J

are ideals ofR. One wants to prove I = J . Maybe one collects evidence by showing
that Ixi = Jxi for various xi in R. (That is, for each i one shows that there exists
Ni with xNii J ⊆ I.) If ({xi}) is not contained in any associated prime of R/I, then
some xi is regular on R/I and J ⊆ I. The algebraist wants some way of knowing
that R/I does not have any big associated prime ideals.

The quick example of associated primes is (x) and (x, y) are both in Ass kkk[x,y]
(x2,xy)

.
The ideal (x) is the annihilator of y and the ideal (x, y) is the annihilator of (x).
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(I think we proved this in enormous detail last semester.) Geometrically, V (x) is
the y-axis and V (x, y) is the origin. So, we are looking at a line together with a
distinguished point. A geometer would not study such a thing in the normal course
of events. But, many serious calculations (like intersection multiplicity) are made
by calculating the length of some module. The geometer would then be looking at
a module where his or her geometric intuition is not helpful.

New Business. First Goal: Let (R,m) be a local Noetherian ring.

(a) If M is a finitely generated Cohen-Macaulay module, then M does not have any em-
bedded primes.

(b) If M is a finitely generated Cohen-Macaulay module, and p is in AssM , then

dimR/p = dimM.

(1.23) If M and N are finitely generated R-modules, then

ExtiR(N,M) = 0, whenever i < depthM − dimN.

We prove that 1.22.(b) implies 1.22.(a). If p1 ( p2 are both in AssM , then

dimR/p2 < dimR/p1.

�

We prove that Lemma 1.23 implies 1.22.(b). Let p ∈ AssM . It follows that

Ext0(R/p,M) (which equals Hom(R/p,M)) 6= 0.

The hypothesis says that

ExtiR(R/P,M) = 0, whenever i < depthM − dimR/p.

So,
0 is NOT less than depthM − dimR/p;

thus
depthM − dimR/p ≤ 0.

Thus
depthM ≤ dimR/p.

On the other hand, M is a Cohen-Macaulay module; so,

dimM = depthM ≤ dimR/p ≤ dimM.

The last inequality holds because p is in AssM ; so, in particular, p ∈ SuppM . Equality
holds across the board and dimR/p = dimM . �

We prove Lemma 1.23. Induct on dimN .
Base case If dimN = 0, then annN is m-primary; so,

grade(annN,M) =∗ grade(m,M) = depthM.

For (*) use the result about grade(I,M) and grade(
√
I,M).
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Thus, Exti(N,M) = 0 for

i < grade(annN,M) = depthM = depthM − dimN.

The inductive step. Suppose the assertion holds for all modules N ′ with dimN ′ < dimN .
We prove the assertion for N .

Special case. Assume N = R/p for some prime ideal p. Let x be an element of m \ p.
Consider the exact sequence:

(1.24.1) 0→ R/p
x−→ R/p→ R/(p, x)→ 0.

We have dimR/(p, x) < dimR/p; so induction applies to dimR/(p, x) and

depthM − dimR/p < depthM − dimR/(p, x).

In particular, if i < depthM − dimR/p, then i + 1 < depthM − dimR/(p, x). Apply
HomR(−,M) to (1.24.1) to obtain

Exti(R/(p, x),M)︸ ︷︷ ︸
0

→ Exti(R/p,M)
x−→ Exti(R/p,M)→ Exti+1(R/(p, x),M)︸ ︷︷ ︸

0

.

The R-module Exti(R/p,M) is finitely generated. The map

Exti(R/p,M)
x−→ Exti(R/p,M)

is surjective. Apply Nakayama’s Lemma to conclude that Exti(R/p,M) = 0.

The general case. We have seen that there exists a filtration of N of the form

0 = N0 ( N1 ( N2 ( · · · ( Ns = N

with Nj/Nj−1 isomorphic to R/pj for some prime ideal pj of R. (Here is a quick sketch of
the proof: If N 6= 0, then N has an associated prime p1. Thus, R/p1 may be embedded in
N . Now look at N modded out by the image of R/p1. etc.) Recall, also, that

dimN = max{dimR/pj}.

(Here is a quick sketch of the proof: We proved that if

0→ N ′ → N → N ′′ → 0

is exact, then
SuppN = SuppN ′ ∪ SuppN ′′;

hence, dimN = max{dimN ′, dimN ′′}. etc.) Thus, for each j, we have an exact sequence

0→ Nj−1 → Nj → R/pj → 0,

with
Exti(Nj−1,M) = 0, for i < depthM − dimN

by induction on j and

Exti(R/pj,M) = 0, for i < depthM − dimN
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by the special case (or the fact that for this value of j, dimR/pj is less than dimN . Hence,
Exti(Nj,M) = 0 for for i < depthM − dimN . Conclude that Exti(N,M) = 0 for
i < depthM − dimN . �

Observation 1.25. If (R,m) is a Noetherian local ring, M is a finitely generated R-module,
and x1, · · · , xn is a regular sequence on M , then

M/(x1, · · · , xn)M is Cohen-Macaulay ⇐⇒ M is Cohen-Macaulay.

Proof. Recall that
dimM/(x1, · · · , xn)M = dimM − n

and
depthM/(x1, · · · , xn)M = depthM − n.

�

Observation 1.26. If R is a Noetherian local ring and M is a finitely generated R-module,
then

• M Cohen-Macaulay =⇒ Mp is Cohen-Macaulay, for all prime ideals p, and
• if Mp 6= 0, then grade(p,M) = depthRP Mp.

Proof. We need only deal with Mp 6= 0. In this case, we have

grade(p,M) ≤ depthRp
Mp ≤ dimMp.

The first inequality holds because grade can only go up when you localize.
We prove dimMp ≤ grade(p,M).
If grade(p,M) = 0, then p ∈ AssM . But Mp 6= 0; hence

annM ⊆ some minimal prime ⊆ p ⊆ some associated prime.

The module M is Cohen-Macaulay; so M does not have any embedded prime ideals. Thus,
p is minimal in the support of M ; hence, dimMp = 0.

February 7, 2019. Properties of Cohen-Macaulay modules.
Last time we proved that if M is a finitely generated module over the local Noetherian

ring (R,m), then the following statements hold.

• If M is Cohen-Macaulay, then M does not have any embedded primes.
• If x1, . . . xn is a regular sequence on M in m, then M is Cohen-Macaulay if and only

if M/(x1, . . . , xn)M is Cohen-Macaulay.

We are in the process of proving that if M is Cohen-Macaulay and p is a prime of R with
Mp 6= 0, then Mp is Cohen-Macaulay and grade(p,M) = depthRp

Mp.
We saw that

grade(p,M) ≤ depthRp
Mp ≤ dimMp
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always holds (provided Mp 6= 0). We also saw that if grade(p,M) = 0, then dimMp = 0.
(This was a cute argument that took advantage of the fact that Cohen-Macaulay modules
do not have embedded primes.)

We finish the proof by induction on grade(p,M).
If 1 ≤ grade(p,M), then there exists x in p with x regular on M . Thus,

0→M
x−→M →M/xM → 0

is exact. Apply −⊗R Rp to get the exact sequence

0→Mp
x−→Mp → (M/xM)p → 0.

The module (M/xM)p is not zero by Nakayama’s Lemma. We apply induction to M/xM .
We know

grade(p,M/xM) = grade(p,M)− 1.

So, induction gives (M/xM)p is Cohen-Macaulay with

dim(M/xM)p = depth(M/xM)p = grade(p,M/xM).

The proof is complete because

(M/xM)p ∼= Mp/xMp

and x is regular on Mp, hence

dimMp/xMp = dimMp − 1 and depthMp/xMp = depthMp − 1.

�

Theorem 1.27. Let (R,m) be a Cohen-Macaulay local ring. If a1, . . . , ar ∈ m, then the
following statements are equivalent:

(a) a1, . . . , ar is a regular sequence on R;
(b) ht(a1, . . . , ai) = i, for 1 ≤ i ≤ r;
(c) ht(a1, . . . , ar) = r;
(d) a1, . . . , ar is part of a system of parameters for R.

Remarks.

• The assertions (a) =⇒ (b) =⇒ (c) =⇒ (d) all hold without assuming that R is
Cohen-Macaulay.
• The assertion (d) =⇒ (a) requires that R be Cohen-Macaulay.
• The most important take away is that in a Cohen-Macaulay local ring “is a regular

sequence” is equivalent to “is part of a system of parameters”.

Proof.
(a) =⇒ (b): On the one hand, ht(a1, · · · , ai) ≤ i by the Krull intersection Theorem. On
the other hand, a1 is not in any associated prime ideal of R; so in particular a1 is not in any
minimal prime of R. Thus, 1 ≤ ht(a1). Similarly, a2 is not in any minimal prime of R/(a1);
hence 2 ≤ ht(a1, a2). etc.
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(b) =⇒ (c): This is obvious.

(c) =⇒ (d): If dimR = r, then you are finished.
Otherwise, m is not a minimal prime over (a1, . . . , ar). Pick ar+1 in

m \
⋃

p minimal over (a1, . . . , ar)

p.

Observe that
r = ht(a1, . . . , ar) < ht(a1, . . . , ar+1) ≤ r + 1.

The final inequality is due to the Krull principal ideal theorem.
Continue until finished.

(d) =⇒ (a):
It suffices to show that every system of parameters in a Cohen-Macaulay ring is a regular

sequence.
Let R be a local Cohen-Macaulay ring of dimension n and a1, . . . , an be a system of

parameters for R.
If p ∈ AssR, then dimR/p = dimR by Theorem 1.22.(b), which is the full version

of a Cohen-Macaulay module does not have any embedded primes. It follows that p is
a minimal prime ideal of R. It also follows that a1 /∈ p. Indeed, if a1 were in p, then
dimR/(a1) = dimR and

1 = dim R̄− (n− 1) ≤ dim R̄/(a2, . . . , an)R̄ = dimR/(a1, . . . , an) = 0,

for R̄ = R/(a1), and this is nonsense.
Thus, a1 is not in any associated prime ideals of R and a1 is regular on R.
At this point R/(a1) is Cohen-Macaulay of dimension less than dimR and a2, . . . , ar is

a system of parameters on R/(a1). By induction we conclude that a2, . . . , an is a regular
sequence on R/(a1); and therefore, a1, . . . , an is a regular sequence on R. �

Corollary 1.28. If I is a proper ideal in the Cohen-Macaulay local ring (R,m), then grade I =

ht I.

Proof. We showed in Corollary 1.20 that grade I ≤ ht I for every proper ideal on a Noe-
therian ring. When the ring is Cohen-Macaulay local, the two quantities are equal for all
ideals. Let r = ht I. Select a1, . . . , ar in I with ht(a1, . . . , ar) = r. Thus, (a1, . . . ar) is a
regular sequence in I on R by Theorem 1.27. It follows that ht I ≤ grade I; and therefore,
the two quantities are equal. �

Proposition. If (R,m) is a local Cohen-Macaulay ring, then

ht I + dimR/I = dimR.

Remark. Some people (and some computer packages, notably Macaulay2) use the word
codimension rather than height. Or, said another way, if you say to Frank, “Consider an
ideal of height 2.” He will immediately ask, “What does height mean?”. If you translate
“height” as “codimension”, he will be satisfied.
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This result justifies the translation of “height” into “codimension”.

February 12, 2019
Last Time: In a Cohen-Macaulay local ring, then

a1, . . . , ar is a regular sequence ⇐⇒ a1, . . . , ar is part of a system of parameters.

Coming attractions:

• In a Cohen-Macaulay local ring, height equals codimension.
• Cohen-Macaulay local rings are catenary.
• The definition of general Cohen-Macaulay rings.
• The characterization of Cohen-Macaulay rings in terms of unmixedness.
• If R is a Cohen-Macaulay ring, then R[x1, . . . , xn] is also Cohen-Macaulay.
• Cohen-Macaulay rings are universally catenary.
• New Chapter: regular local rings.

Proposition 1.29. If (R,m) is a local Cohen-Macaulay ring, then

ht I + dimR/I = dimR.

Proof. It suffices to prove the claim for prime ideals because

ht I = min{ht p | p is minimal in SuppR/I}, and

dimR/I = max{dimR/p | p is minimal in SuppR/I}.
Assume the assertion holds for prime ideals and p1 and p2 are minimal in SuppR/I with
ht I = ht p1 and dimR/I = dimR/p2, then

ht p1 ≤ ht p2 = dimR− dimR/p2 ≤ dimR− dimR/p1 = ht p1.

Thus equality holds everywhere and ht p1 = ht p2 and dimR/p1 = dimR/p2.
We prove the assertion for the prime ideal p. Let r = ht p. Let a1, . . . , ar be a regular

sequence in p. (Keep in mind that height equals grade in a Cohen-Macaulay local ring.)
The prime ideal p is minimal over a1, . . . , ar; so p ∈ Ass(R/(a1, . . . , ar)). Therefore,

dimR/p =† dimR/(a1, . . . , ar) =‡ dimR− r = dimR− ht p.

† Use the full statement of the Theorem that Cohen-Macaulay modules do not have
embedded primes.

‡ The dimension drops by one whenever one mods out by a regular element. �

Definition 1.30. A Noetherian ring R is called catenary if, for all pairs of prime ideals
q ⊆ p in R, all saturated chains of prime ideals from q to p have the same length.
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For example, in a catenary ring, one does not have saturated chains of prime ideals that
look like:

p

>>>>>>>>

��������������

•

•

//////////////

•

�������

q

Nagata found examples of Noetherian rings which are not catenary. There is a recent
paper [2] which gives large families of Noetherian local Unique Factorization Domains
which are not catenary. Furthermore, the failure of the ring to be catenary can be made to
be arbitrarily bad. (Keller and I heard a lecture by Susan Loepp about this paper in April.)

Corollary 1.31. If R is a Cohen-Macaulay local ring, then R is catenary.

Proof. It suffices to show that

(1.31.1) ht p = ht q + ht p/q

for all prime ideals q ⊆ p in R.
Indeed, if

q = q0 ( q1 ( · · · ( qa = p

and
q = q′0 ( q′1 ( · · · ( q′a′ = p

both are saturated chains, then one applies (1.31.1) multiple times to see that ht qi =

ht q + i and ht q′i = ht q + i for all i. Thus

ht q + a = ht qa = ht p = ht q′a′ = ht q + a′;

and a = a′.
It turns out that we know exactly enough to prove (1.31.1). Indeed, we learned in

Proposition 1.29 that
dimRp/qRp︸ ︷︷ ︸

ht p/q

+ ht qRp︸ ︷︷ ︸
ht q

= dimRp︸ ︷︷ ︸
ht p

.

This completes the proof. �

Definition 1.32. A Noetherian ring R is Cohen-Macaulay if Rm is Cohen-Macaulay for all
maximal ideals m of R.

Definition 1.33. If I is a proper ideal in a Noetherian ring R, then I is unmixed if

ht p = ht I, for all p ∈ AssR/I.
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Theorem 1.34. Let R be a Noetherian ring. Then

R is Cohen-Macaulay ⇐⇒

{
Every ideal of height r generated by r elements
is unmixed for all r.

Proof.
(⇒) We assume R is Cohen-Macaulay. Let I be a proper ideal of R of height r generated
by (a1, . . . , ar) and let p be in AssR/I. We must show that ht p = r. If p is minimal over I,
then r = ht I ≤ ht p ≤† r

† This inequality is the Krull principal ideal Theorem.
Now consider p to be an arbitrary element of AssR/I. Localize at p. The ideal

(a1, . . . , ar)Rp

has height r in the Cohen-Macaulay local ring Rp. It follows (from Theorem 1.27) that
a1, . . . , ar is a regular sequence in Rp. Thus,

(R/I)p = Rp/(a1, . . . ar)Rp

is a Cohen-Macaulay local ring. Therefore, there are no embedded primes, and p really is
minimal over (a1, . . . , ar) (and therefore has height r by the first part of the argument).

February 14, 2019
We are proving

Theorem. Let R be a Noetherian ring. Then

R is Cohen-Macaulay ⇐⇒

{
Every ideal of height r generated by r elements
is unmixed for all r.

We proved (⇒) last time.

(⇐) Let p be a prime ideal of R. We prove that Rp is Cohen-Macaulay.
Let r = ht p. We choose a1, . . . , ar in p with ht(a1, . . . , ai) = i, for all i. We use the usual

procedure, but the hypothesis that

ht(a1, . . . , ai) = i =⇒ (a1, . . . , ai) is unmixed

guarantees that a1, . . . , ar is a regular sequence in p on R. (We will do this slowly.)
If ht p = 0, then Rp is automatically Cohen-Macaulay.

(†) The hypothesis applies to ht(0) = 0 so every associated prime of R is a minimal prime.

If 1 ≤ ht p, then take a1 ∈ p, but not in any minimal prime of R. Thus, (a1) has height 1.

(∗) The hypothesis guarantees that every prime of AssR/(a1) has height 1.

Apply (†) to see that a1 is a regular element of R.
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If 2 ≤ ht p, then take a2 ∈ p, but not in any prime minimal over (a1). Thus, ht(a1, a2) = 2.

(∗∗) The hypothesis guarantees that every prime of AssR/(a1, a2) has height 2.

We chose a2 to avoid the minimal primes of R/(a1); but the hypothesis guarantees that
every associated primes of R/(a1) is already a minimal prime; see (∗). Thus our choice of
a2 is not in any prime from AssR/(a1); that is a1, a2 is a regular sequence.

etc. Use (∗∗) to see that a1, a2, a3 is a regular sequence.
Eventually, we have chosen a1, . . . , ar in p, where r = ht p and every prime in

AssR/(a1, . . . , ai)

has height i for each i.
In particular, a1, . . . , ar is a regular sequence in p on R.
It follows that a1, . . . , ar is a regular sequence in pRp on Rp.
Thus,

r ≤ depthRp ≤ dimRp = r;

and Rp is Cohen-Macaulay. �

Theorem 1.35. If R is a Cohen-Macaulay ring, then R[x1, . . . , xn] is also a Cohen-Macaulay
ring.

Proof. It suffices to prove the result when n = 1. Let p be a prime ideal of S = R[x]. Of
course,

Sp = (RR∩p[x])p.

It suffices to prove that if (R,m, kkk) is a local Cohen-Macaulay ring and p is a prime ideal
of S = R[x] with mS ⊆ p, then Sp is a Cohen-Macaulay ring.

There are two options. Either mS = p or mS ( p. It turns out that

dimSp =

{
dimR if mS = p

dimR + 1 if mS ( p.

The direction ≥ is clear. If q0 ( · · · ( qr = m is a chain of primes in R that exhibit
htm = r, then

q0S ( · · · ( qrS = mS

is a chain of prime ideals in S which exhibit ≥. (Keep in mind that qiS is prime because
S/qiS is isomorphic to the domain (R/qi)[x]. Furthermore, the inclusion qi−1S ( qiS is
strict because R ∩ qiS = qi.)

To establish the direction ≤, it suffices to prove

mS ( p =⇒ dimSp ≤ dimR + 1.

Assume mS ( p. Observe that S/mS = kkk[x]. It follows that p/mS = (f̄) for some
monic polynomial f̄ in kkk[x]. Lift f̄ back to a monic polynomial f in S. So, p = (m, f)S.
Let a1, . . . , ar be a system of parameters for R. It follows that a1, . . . , ar, f is a system of
parameters for Sp.
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Here is a brief explanation of the last claim. The R/(a1, . . . , ar)-module S/(a1, . . . , ar, f)

is a free R/(a1, . . . , ar)-module of finite rank because f is a monic polynomial. The ring
R/(a1, . . . , ar) has finite length; so the module S/(a1, . . . , ar, f) has finite length. Thus
S/(a1, . . . , ar, f) is an Artinian ring. Recall from last semester that if A is an Artinian ring,
then A is a direct product of local Artinian rings; in particular, A =

∏
M∈SpecAAM. Thus,

the localization (S/(a1, . . . , ar, f))p is a summand of S/(a1, . . . , ar, f); and this summand
also has finite length.

Now it is easy to finish. Let a1, . . . , ar be a system of parameters for R. We have seen
that the following collection of elements form a system of parameters for p:{

a1, . . . , ar, if mS = p, and
a1, . . . , ar, f, if mS ( p.

The elements a1, . . . , ar form a regular sequence on R. The R-module S is flat. Thus,
a1, . . . , ar is a regular sequence on S. If mS = p the proof is complete. Henceforth, mS ( p.
The polynomial f is monic in R

(a1,...,ar)
[x]. Thus, a1, . . . , ar, f is a regular sequence on S in

p. It follows that a1, . . . , ar, f is a regular sequence on Sp. Some system of parameters of
Sp is a regular sequence. Thus, Sp is Cohen-Macaulay. �

Definition 1.36. A Noetherian ring R is universally catenary if every finitely generated
R-algebra is catenary.

Recall that

• a Noetherian ring R is called catenary if, for all pairs of prime ideals q ⊆ p in R, all
saturated chains of prime ideals from q to p have the same length;
• R is a catenary if and only if Rp is catenary for all p;
• if R is catenary, then R/I is catenary for all I; and
• every Cohen-Macaulay local ring is catenary.

Corollary 1.37. If R is a Cohen-Macaulay ring, then R is universally catenary.

Proof. If R is Cohen-Macaulay, then R[x1, . . . , xn] is Cohen-Macaulay; hence
(
R[x1,...,xn]

I

)
p

is

catenary for all I and all p. Thus, R[x1,...,xn]
I

is catenary for all I. In particular, every finitely
generated R-algebra is catenary. �
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2. REGULAR LOCAL RINGS

This section loosely follows sections 19 and 20 of [6].

Definition 2.1. The Noetherian local ring (R,m, kkk) is a regular local ring if m can be gen-
erated by dimR elements.

Remarks 2.2.

(a) The minimal number of generators of m is often denoted µ(m) and is always called the
embedding dimension of R.

(b) Nakayama’s Lemma guarantees that µ(m) = dimkkkm/m
2.

(c) According to the Krull Principal Ideal Theorem, dimR ≤ µ(m). So, regular local rings
satisfy an extremal condition. The Krull dimension of a regular local ring is as large as
possible once its embedding dimension is known.

Examples 2.3.

(a) A local ring of Krull dimension zero is regular if and only if it is a field.
(b) A local ring of Krull dimension one is regular if and only if it is a local Principal Ideal

Domain and R is not a field. See Observation 2.4. (Local Principal Ideal domains
are usually called Discrete Valuation Rings (DVRs).) Some examples of DVRs are Z(p)

where p is a prime integer, kkk[x](x), kkk[[x]]. If the words are meaningful to you, let D be
any Dedekind domain and p be any non-zero prime ideal of D, then Dp is a DVR. In
particular, if F is any finite field extension of Q and D is the ring of algebraic integers
in F :

D = {α ∈ F | α satisfies a monic polynomial with coefficients in Z},

then D is a Dedekind domain.

Observation 2.4. Let (R,m) be a local Noetherian ring of Krull dimension one. Then R is a
regular local ring if and only if R is a local Principal Ideal Domain and R is not a field.

Proof.
(⇐) This direction is clear.

(⇒) Let m = (x). The dimension of R is one; so xn 6= 0 for any n. On the other hand,
the Krull Intersection Theorem guarantees that ∩imi = 0. If r ∈ R, then there exists i with
r ∈ mi \ mi+1. Thus, every non-zero element of R is equal to uxi for some unit u of R and
some non-negative integer i. It follows that every ideal of R is equal to (xi) for some i. Of
course, R is a domain because u1x

i1 times u2x
i2 is u1u2x

i1+i2, which is not zero. �

Theorem 2.5. Every regular local ring is a domain.

Proof. Let (R,m, kkk) be a regular local ring. We have already seen that if dimR ≤ 1, then R
is a domain. Henceforth, we assume that 1 ≤ dimR. We know that m is not contained in
m2 and m is not contained in any minimal prime of R. Use the Prime Avoidance Lemma to
select x ∈ m; but x /∈ m2 and x not in any minimal prime of R.
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Notice that
dimR− 1 ≤† dimR/(x)R <‡ dimR

† If M is a finitely generated module over a local ring and x is in the maximal ideal of the
local ring, then dimM − 1 ≤ dimM .

‡ x is not in any minimal prime of R.
So dim R/(x)R = dimR − 1. Also the embedding dimension of R/xR is equal to the

embedding dimension of R minus one (because x is a minimal generator of m). Thus,
R/(x)R is a regular local ring. We learn by induction that R/(x)R is a domain. Thus, (x)R

is a prime ideal of R. Of course,

0 <†† ht(x)R ≤‡‡ 1

†† x is not in any minimal prime of R
‡‡ Krull Principal Ideal Theorem.

Let p be a minimal prime ideal inside (x)R. If θ is an element of p, then θ = xr for some
r ∈ R. Recall that p is a prime ideal of R, θ ∈ p and x /∈ p. It follows that r ∈ p. Hence,
p = xp. Apply Nakayama’s Lemma to conclude that p = 0. �

Corollary 2.6. Let (R,m) be a regular local ring and x1, . . . , xn be a minimal generating set
for m. Then

(a) (x1, . . . , xi) is a prime ideal of R for each i,
(b) x1, . . . , xn is a regular sequence on R, and
(c) R is Cohen-Macaulay.

Proof. The element x1 is not in m2 (because x1 is a minimal generator of R) and is not in
any minimal prime of R because (according to the previous theorem) the only minimal
prime of R is (0). The proof of the previous theorem now shows that x1 generates a prime
ideal. Finish by induction. �

Goal 2.7. If R is a regular local ring and p is a prime ideal of R, then Rp is regular local ring.

A little history. This is actually hard. Krull introduced the concept of regular local rings in
1937. In the 1940s, Zariski proved that a regular local ring corresponds to a smooth point
on an algebraic variety. Let Y be an algebraic variety contained in affine n-space over a
perfect field kkk. (The field kkk is perfect if every algebraic extension is separable. In particular,
every field of characteristic zero and every finite field is perfect. Also, if the characteristic
of kkk is the positive prime integer p, then kkk is perfect if and only if kkk is closed under the
taking of pth roots.) Suppose that Y = V (f1, . . . , fm), where each fi is a polynomial in
kkk[x1, . . . , xn]. Then Y is nonsingular at P if Y satisfies the following Jacobian condition. If
Jac = (∂fi/∂xj) is the matrix of partial derivatives of the defining equations of the variety,
then Y is smooth at P if and only if

rank(Jac |P ) = n− dimY.
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Remark 2.8. This notion is intuitively clear.
In this discussion Y = V (f1, . . . , fm), with each fi an element of R = kkk[x1, . . . , xn]. We

focus on the case when Y is a complete intersection; in other words, m is the codimension
of Y ; that is,

m = n− dimY.

Let P be a point on Y . Then Y is smooth at P if there is a linear space of dimension dimY

tangent to Y at P .

• The curve C is smooth at the point P if there is a well-defined line tangent to C at
P .

– If C = V (f(x, y)) is a curve in A2 and P is a point on C, then C is smooth at
P if and only if

rank
[
∂f
∂x
|P ∂f

∂y
|P
]

= 1.

– If C = V (f1(x, y, z), f2(x, y, z)) is a curve in A3 and P is a point on C, then C
is smooth at P if and only if

rank

[
∂f1
∂x
|P ∂f1

∂y
|P ∂f1

∂z
|P

∂f2
∂x
|P ∂f2

∂y
|P ∂f2

∂z
|P

]
= 2.

• A surface S is smooth at the point P if S has a well-defined tangent plane at P .
– If S = V (f(x, y, z)) is a surface in A3 and P is a point on S, then S is smooth

at P if and only if

rank
[
∂f
∂x
|P ∂f

∂y
|P ∂f

∂z
|P
]

= 1.

• Here are two further observations.
– In each example, we are using “gradients are perpendicular to level sets”,

which is one of the main thoughts in third semester calculus.
– If Y is smooth at P , then the implicit function theorem may be applied to

express Y near P as a function the points on the tangent plane.

Question: What does rank Jac |P have to do with Rp is regular?

Answer: Everything. If P is the point (a1, . . . , an), then the ideal p is (x1 − a1, . . . , xn − an)

and each fi is a polynomial in x1 − a1, . . . , xn − an with zero constant term. (There are at
least three ways to say this. “Move P to the origin.” “Use Taylor series.” “Replace xi with
(xi − ai) + ai.”)

At any rate, ∂fi
∂xj
|P is the coefficient of xj−aj in fi(x1−a1, . . . , xn−an). If rank Jac |P = m,

then after renumbering and taking kkk-linear combinations, then fi = xi − ai + h. o. t. for
1 ≤ i ≤ m. In other words, f1, . . . , fm is the beginning of a minimal generating set for p.
Thus,

Rp/(f1, . . . , fm)

is a regular local ring.
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Back to the history. Zariski proved that Y is nonsingular at P if and only if the local ring
of Y at P is regular. Mathematicians were not able to claim that “regular local” was exactly
the right concept until Serre [9] proved that regular local localizes in 1955.

Serre used homological algebra to prove that the concept of regular local localizes. He
proved the following theorem.

Theorem 2.9. [Serre] Let (R,m, kkk) be a Noetherian local ring, then R is regular if and only
if every finitely generated R-module has finite projective dimension.

2.10. Here is how the proof goes:

(a) If (R,m, kkk) is a regular local ring, then pdR kkk is finite. (If a1, . . . , ar is a regular se-
quence in a commutative Noetherian ring R, then the Koszul complex on a1, . . . , ar is
a resolution of R/(a1, . . . , ar) by free R-modules.)

(b) If (R,m, kkk) is a local ring, then pdR kkk is finite if and only if pdRM is finite for all
finitely generated R-modules M . (The functors TorRi (M,−) are the left derived func-
tors of M ⊗R −; the functors TorRi (−, N) are the left derived functors of −⊗R N ; and
TorRi (M,N) may be computed using either component.)

(c) The direction (⇐) from Theorem 2.9.
(d) Prove Goal 2.7, which is: If R is a regular local ring and p is a prime ideal of R, then

Rp is regular local ring.

We start with 2.10.(d).
Assume Theorem 2.9 and assertion 2.10.(b). Let R be a regular local ring and let p

be a prime ideal of R. We want to show that pdRp

Rp

pRp
< ∞. The module R/p is a finitely

generatedR-module andR is regular local; thus, R/p has a finite resolution F by projective
R-modules. Apply the exact functor − ⊗R Rp to conclude that Fp is a finite resolution
of Rp

pRp
by projective Rp-modules. Assertion 2.10.(b) yields that every finitely generated

Rp module has finite projective dimension; hence, Theorem 2.9 guarantees that Rp is a
regular local ring.

February 26, 2019

Goal 1: If (R,m, kkk) is a regular local ring and p is a prime ideal of R, then Rp is a regular
local ring.

Goal 2: If R is a local Noetherian ring, then

R is regular ⇐⇒ pdRM <∞ for all finitely generated R-modules.

• We already saw that Goal 2 implies Goal 1.
• To prove Goal 2 we show

– If R is commutative Noetherian ring and x1, . . . , xn a regular sequence on R,
then pdRR/(x1, . . . , xn) <∞. (We called this result 2.10.(a).)
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– If (R,m, kkk) is a local Noetherian ring with pdR kkk < ∞, then pdRM < ∞ for
all finitely generated R-modules M . (We called this result 2.10.(b).)

– The direction (⇐) of Goal 2.

Observe that 2.10.(a) and 2.10.(b) establish the direction (⇒) of Goal 2.

We attack 2.10.(b). We prove: If (R,m, kkk) is a local ring and pdR kkk is finite then pdRM is
finite for all finitely generated R-modules M .

First we do a few warm-up comments.

• If (R,m, kkk) is a local Noetherian ring and P is a finitely generated projective R-
module, then P is a free R-module.
• If R is a ring and M and N are R-modules, then {TorRi (−, N)} and {TorRi (M,−)}

are the left derived functors of −⊗RN and M ⊗R−, respectively; TorRi (M,N) can
be computed in either component; and each short exact sequence of modules gives
rise to a long exact sequence of Tor.
• Let (R,m, kkk) be a local Noetherian ring and M be a finitely generated R-module.

We want a good definition of a minimal surjection of a free R-module onto M .

I am done making lists. It is time to get to work.

Today’s first job. Projective modules over local rings.
Recall that the R-module P is projective if every picture of R-module homomorphisms

of the form
P

��
A // // B

gives rise to a commutative diagram of R-module homomorphisms of the form

P

��

∃

��~
~

~
~

A // // B

(In a Dedekind Domain D every ideal I is a projective D-module but only the principal
ideals are free R-modules.)

Remark 2.11. If (R,m, kkk) is a local Noetherian ring and P is a (finitely generated) projec-
tive R-module, then P is a free R-module.

Proof. Let b be the minimal number of generators of P , F be a free R-module of rank b, and
π : F → P be a surjection. (See (2.13.1), if necessary.) The defining property of projective
modules says that there is a splittingR-module homomorphism σ : P → F with π◦σ = idP .
It follows that F is the internal direct sum imσ ⊕ kerπ. Look at F

mF
= imσ

m(imσ)
⊕ kerπ

m(kerπ)
to

see that kerπ = 0. �

Today’s second job. We discuss Tor.
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Recall that M ⊗R − is a right exact covariant functor. If

(2.11.1) 0→ N ′ → N → N ′′ → 0

is a short exact sequence of R-modules and R-module homomorphisms, then

M ⊗R N ′ →M ⊗R N →M ⊗R N ′′ → 0

is exact. The functors Tori are cooked up to answer the question “But what is the kernel on
the left?” That is, the short exact sequence (2.11.1) gives rise to the long exact sequence

· · · → TorR2 (M,N ′′)→ TorR1 (M,N ′)→ TorR1 (M,N)→ TorR1 (M,N ′′)→M⊗RN ′ →M⊗RN →M⊗RN ′′ → 0.

Similarly, If 0 → M ′ → M → M ′′ → 0 is a short exact sequence of R-modules and
R-module homomorphisms, then

· · · → TorR2 (M
′′, N)→ TorR1 (M

′, N)→ TorR1 (M,N)→ TorR1 (M
′′, N)→M ′⊗RN →M⊗RN →M ′′⊗RN → 0

is exact.
To compute TorRi (M,N), let

P : · · · → P2 → P1 → P0 → 0

be a projective resolution of M . Then TorRi (M,N) = Hi(P ⊗R N). The other way to
compute Tori(M,N) is to let

Q : · · · → Q2 → Q1 → Q0 → 0

be a projective resolution of N . Then TorRi (M,N) = Hi(M ⊗R Q). The R-module

TorRi (M,N)

is independent of the choice of P , the choice of Q, or whether M was resolved or N was
resolved. Of course, Tori(P,−) = Tori(−, P ) = 0 if F is projective and i is positive. Also,
TorR0 (M,N) = M ⊗R N . Of course, TorRi (M,−) and TorRi (−, N) both are functors.

Example 2.12. If I and J are ideals of the ring R, then TorR1 (R/I,R/J) = I∩J
IJ

.

Proof. Start with the exact sequence 0 → J → R → R/J → 0. Apply R/I ⊗R − to obtain
the long exact sequence

· · · → Tor1(R/I,R)︸ ︷︷ ︸
0

→ Tor1(R/I,R/J)→ R/I ⊗R J︸ ︷︷ ︸
J/IJ

→ R/I ⊗R R︸ ︷︷ ︸
R/I

→ R/I ⊗R R/J → 0.

The kernel of the natural map J/IJ → R/I is (I ∩ J)/IJ . �

Today’s third job. Minimal surjections and minimal resolutions.

Observation 2.13. Let (R,m, kkk) be a local ring, M be a finitely generated R-module min-
imally generated by m1, . . . ,mb, F be the free R-module F = Rb, and π : F → M be the
R-module homomorphism

(2.13.1) π

r1
...
rb

 =
∑
i

rimi.

then kerπ ⊆ mF .
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Proof. Observe that
F

kerπ
∼= M.

Thus,
F
mF

kerπ+mF
mF

∼=
F

kerπ + mF
=

F
kerπ

m F
kerπ

∼=
M

mM

The vector space on the left has dimension b− dim kerπ+mF
mF

. The vector space on the right
has dimension b. Thus, dim kerπ+mF

mF
is a vector space of dimension zero. In other words,

kerπ+mF
mF

equals zero and kerπ ⊆ mF . �

Definition 2.14. Let (R,m, kkk) be a local ring, M and F be finitely generated R-modules
with F free. A surjection π : F →M is a minimal surjection if kerπ ⊆ mF .

Definition 2.15. Let (R,m, kkk) be a Noetherian local ring and M be a finitely generated
R-module. A resolution

F : · · · d3−→ F2
d2−→ F1

d1−→ F0

of M by free R-modules is called a minimal resolution if im di ⊆ mFi−1, for 1 ≤ i.

Observation 2.16. Every finitely generated module over a Noetherian local ring has a mini-
mal resolution.

Proof. Let π : F0 → M be a minimal surjection. We know from Observation 2.13 that
kerπ ⊆ mF0. Let d1 : F1 → kerπ be a minimal surjection. Again, we know from Observa-
tion 2.13 that ker d1 ⊆ mF1.

Continue in this manner. �

February 28, 2019

Goal: If R is a local Noetherian ring, then

R is regular ⇐⇒ pdRM <∞ for all finitely generated R-modules M .

We show

(a) If R is commutative Noetherian ring and x1, . . . , xn a regular sequence on R, then
pdRR/(x1, . . . , xn) <∞. (We called this result 2.10.(a).)

(b) If (R,m, kkk) is a local Noetherian ring with pdR kkk <∞, then pdRM <∞ for all finitely
generated R-modules M . (We called this result 2.10.(b).)

(c) The direction (⇐).

We first attack (b).

Observation 2.17. Let (R,m, kkk) be a local Noetherian ring. If pdR kkk = n, then pdRM ≤ n

for all finitely generated R-modules M .
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Proof. Let
F : · · · → Rb1 → Rb0

be a minimal resolution of M . It follows that F ⊗R kkk is

· · · 0−→ kkkb1
0−→ kkkb0 ;

hence, TorRi (M,kkk) = kkkbi. If pdR kkk = n, then TorRi (M,kkk) = 0 for n + 1 ≤ i. Thus, bi = 0 for
n+ 1 ≤ i and pdRM ≤ n. �

We attack 2.10.(c) The direction (⇐) from Theorem 2.9. We prove that if (R,m, kkk) is a
Noetherian local ring and every finitely generated R-module has finite projective dimen-
sion, then R is regular.

We induct on edimR.
If edimR = 0, then R is a field; hence R is regular.
Henceforth, we consider 1 ≤ edimR.

Step 1. There exists x ∈ m \m2 with x regular on R. Otherwise, m ∈ AssR and there exists
an non-zero element y with my = 0. Of course, this is not possible. Look at the end of a
minimal free resolution of kkk:

0→ Lt
dt−→ Lt−1 → . . . .

Observe that 
y
0
...
0

 7→ 0.

The map is injective and y is not zero. We have a contradiction.
So, there really does exist a minimal generator x of m with x regular on R. Notice that

the embedding dimension of R/xR is one less than the embedding dimension of R. Notice
also that the Krull dimension of R/xR is one less than the Krull dimension of R (because
x is regular on R).

It suffices to prove that every finitely generated R/xR module has finite projective di-
mension. (If, so, then R/xR is regular by induction and edimR/xR = dimR/xR. It then
follows that edimR = dimR; that is, R is regular.)

We want to prove that kkk has finite projective dimension as an R/xR module.
The short exact sequence

0→ m

xR
→ R

xR
→ kkk → 0

shows that it suffices to prove that pdR/xR
m
xR

<∞.
Even m

xR
is too hard to consider directly. Instead we prove

(2.17.1) pdR/xR
m

xm
<∞,

(2.17.2)
m

xR
is a summand of

m

xm
as R/xR modules, and
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(2.17.3) pdR/xR
m

xR
<∞.

Assertion (2.17.3) is easy once one has (2.17.1) and (2.17.2). Indeed, if
m

xR
⊕X ∼=

m

xm

as R/xR modules and pdR/xR
m
xm

<∞, then

Tor
R/xR
i

( m

xm
, kkk
)

= 0 for 0� i

=⇒ Tor
R/xR
i

( m

xR
⊕X,kkk

)
= 0 for 0� i

=⇒ Tor
R/xR
i

( m

xR
,kkk
)
⊕ Tor

R/xR
i (X,kkk) = 0 for 0� i

=⇒ Tor
R/xR
i

( m

xR
,kkk
)

= 0 for 0� i

=⇒ pdR/xR

( m

xR

)
<∞.

We prove (2.17.2). We prove that if x is a minimal generator of m, then m
xR

is a summand
of m

xm
as R/xR modules.

Observe that xm ⊆ xR; thus, there is a natural quotient map

π :
m

xm
�

m

xR
.

Of course, π is a map of R/xR modules. On the other hand,

m

xR
=
xR + (x2, . . . , xd)R

xR
=

(x2, . . . , xd)R

xR ∩ (x2, . . . , xd)R
,

where x, x2, . . . , xd is a minimal generating set of m. Furthermore, if

xr ∈ xR ∩ (x2, . . . , xd)R,

then xr ∈ (x2, . . . , xd)R; hence r ∈ m; since x, x2, . . . , xd is a minimal generating set of m.
Thus, xr ∈ xm.

Observe that
m

xm
← (x2, . . . , xd)R

is a well-defined map of R-modules xR ∩ (x2, . . . , xd)R is contained in the kernel. Thus,

m

xm
← (x2, . . . , xd)R

xR ∩ (x2, . . . , xd)R
=

m

xR

is a well-defined map of R-modules; hence also, a well-defined map of R/xR-modules.
Call this map σ. Observe that π ◦ σ is the identity. Take an element of m

xR
. This element is

θ +
(
xR ∩ (x2, . . . , xd)R

)
,

where θ ∈ (x2, . . . , xd)R. Observe that

(π ◦ σ)
(
θ +

(
xR ∩ (x2, . . . , xd)R

))
= π(θ + xm) = θ + xR = θ +

(
xR ∩ (x2, . . . , xd)R

)
,

since θ ∈ (x2, . . . , xd)R.
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We prove 2.17.1. Assume (R,m, kkk) is Noetherian local, pdR kkk < ∞, and x is an element
of m which is regular on R. We prove

pdR/xR
m

xm
<∞.

Lemma 2.18. If R is a ring, M is an R-module, and x is an element of R which is regular on
both R and M , then

TorRi (M,N) = Tor
R/xR
i (M/xM,N)

for all R/xR-modules N and for all integers i.

Assume Lemma 2.18. Prove 2.17.1. Lemma 2.18 yields that

TorRi (m, kkk) = Tor
R/xR
i (m/xm, kkk)

for all i. The module TorRi (m, kkk) = 0 for all i with pdR kkk < i. Thus Tor
R/xR
i (m/xm, kkk) = 0,

for all i with pdR kkk < i, and pdR/xRm/xm ≤ pdR kkk. �

Prove Lemma 2.18. Let L be a resolution of M by free R-modules. Observe that
L⊗R R/(x) is a complex with

Hi(L⊗R R/(x)) =

{
M/xM if 0 = i

TorRi (M,R/(x)) if 0 ≤ i.

On the other hand, x is regular on R and if we apply M ⊗R − to the short exact sequence

0→ R
x−→ R→ R/(x)→ 0,

then we obtain the long exact sequence of homology

· · · →TorR2 (M,R)︸ ︷︷ ︸
0

→ TorR2 (M,R)︸ ︷︷ ︸
0

→ TorR2 (M,R/(x))

→TorR1 (M,R)︸ ︷︷ ︸
0

→ TorR1 (M,R)︸ ︷︷ ︸
0

→ TorR1 (M,R/(x))

→M ⊗R R→M ⊗R R︸ ︷︷ ︸
M

x−→M

→M ⊗R R/(x)→ 0

The element x is also regular on M ; so, TorRi (M,R) = 0 for 1 ≤ i. Thus, L ⊗R R/(x) is a
resolution of M/xM by free R/(x) modules. We conclude that

TorRi (M,N) = Hi(L⊗R N) =† Hi((L⊗R R/(x))⊗R/(x) N) = Tor
R/(x)
i (M/xM,N). �

† This equality holds because N is an R/(x)-module. Indeed, R/(x)⊗R N = N/(x)N = N .

2.A. The Koszul complex. In this subsection we finish the proof of Serre’s Theorem (The-
orem 2.9).

We prove the following statement.

Proposition 2.19. If x1, . . . , xn is a regular sequence in the commutative Noetherian ring R,
then pdRR/(x1, . . . , xn) is finite.
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One associates a Koszul complex K of length n to each sequence x1, . . . , xn of n elements
in a ring R. One proves that if x1, . . . , xn is a regular sequence then K is a resolution.

Examples 2.20. It turns out that K amounts to a list of all of the obvious relations that
one has even if one does not know anything about the elements in the sequence.

If n = 1, K is
0→ R

x1−→ R.

If n = 2, K is

0→ R

−x2

x1


−−−−−→ R2

[
x1 x2

]
−−−−−−→ R

If n = 3, K is

0→ R


x3

−x2

x1


−−−−−→ R3


−x2 −x3 0
x1 0 −x3

0 x1 x2


−−−−−−−−−−−−−−→ R3

[
x1 x2 x3

]
−−−−−−−−−→ R

If n = 4, K is

0→ R


x4

−x3

x2

−x1


−−−−−→ R4



x3 x4 0 0
−x2 0 x4 0
x1 0 0 x4

0 −x2 −x3 0
0 x1 0 −x3

0 0 x1 x2


−−−−−−−−−−−−−−−−−−−−→ R6


−x2 −x3 0 −x4 0 0
x1 0 −x3 0 −x4 0
0 x1 x2 0 0 −x4

0 0 0 x1 x2 x3


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ R4

[
x1 x2 x3 x4

]
−−−−−−−−−−−−−−→ R

Definition 2.21. FIRST DEFINITION. The Koszul complex on x1 is 0 → R
x1−→ R. The

Koszul complex on x1, . . . , xn is K ′ ⊗K ′′, where K ′ is the Koszul complex on x1, . . . , xn−1

and K ′′ is the Koszul complex on xn.
Recall that if (A, dA) and (B, dB) are complexes of R-modules then the tensor product of

these two complexes is the complex (A⊗R B, dA⊗B), where (A⊗R B)n =
∑

p+q=nAp ⊗ Bq

and
dA⊗B(ap ⊗ bq) = dA(ap)⊗ bq + (−1)pap ⊗ dB(bq),

for ap ∈ Ap and bq ∈ Bq.

Definition 2.22. SECOND DEFINITION. The Koszul complex on x1 is 0 → R
x1−→ R. The

Koszul complex on x1, . . . , xn is the total complex of

K ′

xn
��
K ′

,

where K ′ is the Koszul complex on x1, . . . , xn−1. Recall that the total complex of

· · · t3 // T2

α2

��

t2 // T1

α1

��

t1 // T0

α0

��
· · · b3 // B2

b2 // B1
b1 // B0
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is

(2.22.1) · · · →
T2

⊕
B3

−t2 0
α2 b3


−−−−−−−→

T1

⊕
B2

−t1 0
α1 b2


−−−−−−−→

T0

⊕
B1

[
α0 b1

]
−−−−−−→ B0.

The total complex (2.22.1) is also called the mapping cone of the map of complexes

α : T → B.

A little preparation is needed before I can state the third definition of the Koszul com-
plex. In this third definition, one says that K is the exterior algebra on a free R-module
of rank n, . . . . I think that the right way to do this is to define the tensor algebra, the
symmetric algebra, and the exterior algebra of a module.

Definition 2.23. Let R be a commutative ring and M be an R-module. The tensor algebra
T•(M) of the R-module M is the (non-commutative) graded R-algebra

T•(M) = R⊕M ⊕ (M ⊗RM)⊕ (M ⊗RM ⊗RM)︸ ︷︷ ︸
T3(M)

⊕ · · · .

One multiplies in T•M as follows:

(m1 ⊗ · · · ⊗mr)︸ ︷︷ ︸
∈Tr(M)

times (m′1 ⊗ · · · ⊗m′s)︸ ︷︷ ︸
∈Ts(M)

= m1 ⊗ · · · ⊗mr ⊗m′1 ⊗ · · · ⊗m′s︸ ︷︷ ︸
∈Tr+s(M)

.

The symmetric algebra Sym(M) of the R-module M is the (commutative) R-algebra

Sym•(M) =
T•(M)

the two sided ideal generated by {m1 ⊗m2 −m2 ⊗m1 | mi ∈M}
.

The exterior algebra
∧•(M) of the R-module M is the (anti-commutative) R-algebra∧•(M) =

T•(M)

the two sided ideal generated by {m⊗m | m ∈M}
.
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These algebras satisfy the following Universal mapping properties.

Proposition 2.24.

• Let M be an R-module and A a (not necessarily commutative) R-algebra. Then for
any R-module homomorphism φ : M → A there exists unique R-algebra homomor-
phism Φ : T (M)→ A such that Φ|M = φ. That is, the picture

M //

φ

""FFFFFFFFFF T (M)

∃!Φ
���
�
�

A

commutes.
• Let M be an R-module and A a commutative R-algebra. Then for any R-module

homomorphism φ : M → A there exists unique R-algebra homomorphism
Φ : Sym(M)→ A such that Φ|M = φ. That is, the picture

M //

φ

$$IIIIIIIIIII Sym(M)

∃!Φ
���
�
�

A

commutes.
• Let M be an R-module and A a (not necessarily commutative) R-algebra. Then for

any R-module homomorphism φ : M → A with the property that φ(m)2 = 0, for
all m ∈ M , there exists unique R-algebra homomorphism Φ :

∧•M → A such that
Φ|M = φ. That is, the picture

M //

φ

""FFFFFFFFFF
∧•M

∃!Φ
���
�
�

A

commutes.

Example 2.25. Let F be a free R-module of rank n. Then
∧• F =

⊕n
i=0

∧i F , where
∧i F

is free of rank
(
n
i

)
. Indeed, if e1, . . . , en is a basis for F , then

{ej1 ∧ . . . ∧ eji | 1 ≤ j1 < · · · < ji ≤ n}

is a basis for
∧i F . (One can prove this using the Universal mapping property for exterior

algebras.)

If F is free of finite rank, then
∧• F is a

∧• F ∗-module. The R-algebra
∧• F ∗ is gen-

erated by
∧1 F ∗. It suffices to tell how

∧1 F ∗ acts on
∧• F . We know how

∧1 F ∗ acts on∧1 F . We need only decide how
∧1 F ∗ on homogeneous products. If φ1 ∈ F ∗, ui ∈

∧i F ,
and uj ∈

∧j F , then

φ1(ui ∧ uj) = φ1(ui) ∧ uj + (−1)iui ∧ φ1(uj).
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If F is free of finite rank and φ : F → R is a homomorphism, then we define the
Koszul complex (

∧• F, φ). If F is a free R-module of finite rank and φ : F → R is a
homomorphism, then (

∧• F, φ) is the Koszul complex associated to φ.

Example 2.26. If F =
⊕n

i=1Rei and φ : F → R sends
∑
riei to

∑
riai, then the Koszul

complex associated to φ is

0→
∧n F

φ−→
∧n−1 F

φ−→ · · · φ−→
∧2 F

φ−→
∧1 F

φ−→
∧0 F,

where

φ(ej1 ∧ · · · ∧ ejt) =
t∑
i=1

(−1)i+1ajiej1 ∧ . . . ∧ êji ∧ . . . ejn .

We prove Proposition 2.19.

Proposition. [2.19] If x1, . . . , xn is a regular sequence in the commutative Noetherian ring
R, then pdRR/(x1, . . . , xn) is finite.

The Koszul complex on x1, . . . , xn is the total complex (or mapping cone) of

K ′

xn
��
K ′

,

where K ′ is the Koszul complex on x1, . . . , xn−1. Recall that the total complex (or mapping
cone) of

· · · t3 // T2

α2

��

t2 // T1

α1

��

t1 // T0

α0

��
· · · b3 // B2

b2 // B1
b1 // B0

is

· · · →
T2

⊕
B3

−t2 0
α2 b3


−−−−−−−→

T1

⊕
B2

−t1 0
α1 b2


−−−−−−−→

T0

⊕
B1

[
α0 b1

]
−−−−−−→ B0.

Recall also that there is a long exact sequence of homology associated to a mapping cone:

(2.26.1) · · · → H1(T )→ H1(B)→ H1(M)→ H0(T )→ H0(B)→ H0(M)→ 0

For us, the long exact sequence becomes

· · · → 0→ 0→ H2(M)→ 0→ 0→ H1(M)→ R/(x1, . . . , xn−1)
xn−1−−−→ R/(x1, . . . , xn−1)→ H0(M)→ 0.

Thus,

Hi(M) =

{
R/(x1, . . . , xn), if i = 0, and
0, otherwise.
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One could prove the long exact sequence of homology for mapping cones from scratch;
but it would be more clever to observe that a mapping cone gives rise to a short exact
sequence of complexes:

(2.26.2) 0→ B →M → T [−1]→ 0,

as described below:

· · · // B3
b3 //

0
1


��

B2
b2 //

0
1


��

B1
b1 //

0
1


��

B0

1

��
· · · //

T2

⊕
B3

−t2 0
α2 b3


//

[
1 0

]
��

T1

⊕
B2

−t1 0
α1 b2


//

[
1 0

]
��

T0

⊕
B1

[
α0 b1

]
//

[
1 0

]
��

B0

· · · // T2
t2 // T1

t1 // T0

The long exact sequence of homology that corresponds to the short exact sequence of
complexes (2.26.2) is (2.26.1).

2.B. Regular local implies UFD.

Theorem 2.27. [Auslander-Buchsbaum, Serre] If R is a regular local ring, then R is a
Unique Factorization Domain.

Recall that an element r of the domain R is irreducible if r is not a unit and whenever
r = r1r2 in R, then either r1 or r2 is a unit.

The domain R is a Unique Factorization Domain (UFD) if the following two properties
hold.

(a) Every non-unit can be factored into a finite product of irreducible elements.
(b) Whenever r1 · · · rn = r′1 · · · r′n′ are products of irreducible elements, then n = n′ and

after re-numbering, then ri = uir
′
i where ui is a unit in R.

Observation 2.28. Let R be a Noetherian domain. Then

R is a UFD ⇐⇒ every irreducible element of R generates a prime ideal.

Proof.
(⇒) This direction is clear. If r is an irreducible element in R and r1 and r2 are elements
of R with r1r2 is in the ideal (r), then r is one of the irreducible factors of r1r2; hence r is
one of the irreducible factors of r1 or r2; hence r1 or r2 is in (r). Thus, (r) is a prime ideal
of R.

(⇐) We must show that every non-unit of R can be written as a finite product of irreducible
elements. The hypothesis “every irreducible element ofR generates a prime ideal” together
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with the hypothesis that R is a domain guarantees that every factorization into irreducible
elements is necessarily unique.

Claim. If r ∈ R and r is not a unit, then r has an irreducible factor.

If r is not irreducible, then r = r1r
′
1, where neither r1 nor r′1 is a unit. Thus

(r) ( (r1).1

If r1 is not irreducible, then r1 = r2r
′
2, where neither r2 nor r′2 is a unit. Thus,

(r) ( (r1) ( (r2).

The ring R is Noetherian, so the chain eventually stops and an irreducible factor of r has
been identified. This concludes the proof of the claim.

Claim. Every non-unit in R is equal to a finite product of irreducible elements.

Suppose r is a counterexample. Then r is not irreducible. Thus r has an irreducible
factor r1 and the complementary factor r′1 is not a unit and is not equal to a finite product
of irreducible elements. Thus, r′1 = r2r

′
2, where r2 is irreducible and r′2 is not a unit and is

not equal to a finite product of irreducible elements. Observe that

(r) ( (r′1) ( (r′2) ( . . . .

This claim is also established.
The proof is complete. �

Observation 2.29. Let R be a Noetherian domain. Then

R is a UFD ⇐⇒ every height one prime ideal of R is principal.

Proof.
(⇒) Assume R is a UFD. Let p be a height one prime of R. Let r be a non-zero element of p.
Write r =

∏
ri, where each ri is an irreducible element of R. It follows that least one of the

ri is in p. This irreducible element ri generates a prime ideal of R. (See Observation 2.28,
if necessary.) Thus, (0) ( (ri) ⊆ p are prime ideals of R with ht p = 1. It follows that
(ri) = p; hence, p is principal.

(⇐) Assume every height one prime of R is principal. We prove that R is a UFD. We apply
Observation 2.28 and show that every irreducible element of R generates a prime ideal.

Let r be an irreducible element of R. Let p be a prime ideal of R which is minimal over
(r). Thus,

ht p ≤ 1, by the Krull Principal Ideal Theorem, and

0 < ht p, because R is a domain.

Thus, p is a height one prime ideal of R. The hypothesis ensures that p is principal. Thus,
there exists π ∈ R with p = (π). It follows that r ∈ (π) and r = πr′ for some r′ ∈ R. The

1If (r1) = (r), then r1 = rr′′1 = r1r
′
1r
′′
1 . The ring R is a domain; so 1 = r′1r

′′
1 which is not possible because

r′1 is not a unit.
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element r of R is irreducible; therefore, one of the factors π or r′ of r is a unit. The element
π generates a proper ideal of R; so π is not a unit. Thus, r′ is a unit and r generates the
prime ideal (π) = p. �

Observation 2.30. Let R be a Noetherian domain and S be a multiplicatively closed subset
of R which is generated by prime elements of R. (In other words, the generators of S generate
prime ideals in R.) If S−1R is a UFD, then R is a UFD.

Proof. Let p be a height one prime of R. According to Observation 2.29, it suffices to prove
that p is a principal ideal of R. There are two cases.

Either pS−1R is equal to all of S−1R or pS−1R is a proper ideal of S−1R.
In the first case, there is an element s ∈ S∩p. The element s is equal to a finite product of

elements of R each of which generates a prime ideal. Thus, there is an element s′ ∈ S ∩ p,
with (s′) a prime ideal of R. Observe that

(0) ( (s′) ⊆ p

are prime ideals of R and p has height one. We conclude that (s′) = p and therefore p is
principal.

In the second case, pS−1R is a height one prime ideal in the UFD S−1R. Thus, pS−1R is
a principal ideal of S−1R and there exists elements r of p with pS−1R = (r)S−1R. Consider
the set of ideals of R of the form

(2.30.1) {(r)R | r ∈ p and (r)S−1R = pS−1R}.

The ring R is Noetherian; thus, the above set has a maximal element (r)R. We claim that
p = (r)R.

⊇ This direction is clear.

⊆. Let π be an element of p. The hypothesis that pS−1R = (r)S−1R guarantees that there
is an element of S with sπ ∈ (r)R. Write∏

siπ = rr′,

where each si is an element of S which generates a prime ideal in R and r′ is an element of
R. Our choice of r ensures that none of the si can divide r in R. (If r = six, then (r) ( (x)

and both ideals are in (2.30.1).) So, each si, one at a time, divides the complement to r.
Ultimately, we obtain π = rr′′, where r′′

∏
si = r′. In other words, π ∈ (r)R; and the proof

is complete. �

Lemma 2.31. Let R be a ring and M be a finitely presented R-module, then M is a projective
R-module if and only if Rm is a free Rm-module for all maximal ideals m of R.

Proof.
(⇒) We already did this direction. If M is a projective R-module, then Mm is a projective
Rm-module. We proved that every finitely generated projective module over a local ring is
free. Thus Mm is a free Rm-module.
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(⇐) Let π : A → B be a surjection of R-modules. We must prove that R-module homo-
morphisms of the form

M

��
A

π // // B

gives rise to a commutative diagram of R-module homomorphisms of the form

M

��

∃

~~}
}

}
}

A
π // // B.

In other words, we must prove that

HomR(M,A)
π∗−→ HomR(M,B)

is onto. Let C be the cokernel:

(2.31.1) HomR(M,A)
π∗−→ HomR(M,B)→ C → 0

is exact. We prove that Cm = 0 for all maximal ideals m. Localize (2.31.1) at m:

HomR(M,A)m
π∗−→ HomR(M,B)m → Cm → 0

Recall from last semester that

HomR(M,X)m = HomRm(Mm, Xm),

for all R-modules X, because M is finitely presented. Thus,

HomRm(Mm, Am)
π∗−→ HomRm(Mm, Bm)→ Cm → 0

is exact. The hypothesis that Mm is free over Rm guarantees that

HomRm(Mm, Am)
π∗−→ HomRm(Mm, Bm)

is onto. Thus, Cm = 0 for all m and the proof is complete. �

Observation 2.32. If

0
dr+1−−→ Pr

dr−→ Pr−1
dr−1−−→ . . . P1

d1−→ P0
d0−→ 0

is a finite exact sequence of projective modules over some ring T , then there is an isomorphism
of T -modules ⊕

i odd

Pi ∼=
⊕
i even

Pi.

Proof. Let Ki = ker di for each integer i. Notice that Ki = 0 for r ≤ i and for i ≤ −1.
Observe that

0→ Ki → Pi → Ki−1 → 0
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is a short exact sequence of projective modules for each i. Thus Pi ∼= Ki ⊕Ki−1 for each i.
Notice that ⊕

i even

Pi = (K−1︸︷︷︸
0

⊕K0)⊕ (K1 ⊕K2)⊕ · · ·

and ⊕
i odd

Pi = (K0 ⊕K1)⊕ (K2 ⊕K3)⊕ · · · .

�

Theorem. 2.27 [Auslander-Buchsbaum, Serre] If R is a regular local ring, then R is a
Unique Factorization Domain.

Proof. Induct on dimR. If dimR ≤ 1, then the assertion holds. Assume 2 ≤ dimR. Take
x ∈ m \m2. We saw in the proof of Theorem 2.5 (and we stated in Corollary 2.6) that (x)

is a prime ideal of R. In light of Observation 2.30, it suffices to show that Rx is a UFD.
In light of Observation 2.29, it suffices to show that every height one prime ideal of Rx is
principal.

Let P be a height one prime ideal of Rx. The ring Rx has less dimension than the ring
R (because, for example, mRx = Rx). The ideal P is a height one prime of (Rx)q for each
prime ideal q of Rx. Each (Rx)q is a regular local ring of less dimension than dimR; hence,
by induction the regular local ring (Rx)q is a UFD. Thus, Pq is principal for all prime ideals
q of Rx. Thus, P is a projective Rx-module by Lemma 2.31.

Let p = P ∩ R. The R-module p is finitely generated and the ring R is regular local; so
there is a finite resolution F of p by free R-modules. The functor − ⊗R Rx is flat; so Fx is
a finite resolution of px = P by free Rx-modules. Apply Observation 2.32 to see that there
are finitely generated free Rx-modules F and G with

F ∼= G⊕ P.

The rank of a finitely generated projective module X over a domain T is defined to
dimK(X ⊗T K), where K is the field of fractions K = T(0) of T .

Observe that the rank of P is one; hence rankG+ 1 = rankF . The following really cool
trick is due to Kaplansky. Observe that

Rx
∼=
∧rankF
Rx

F ∼=
∧rankF (G⊕ P )

=
(∧rankF

G⊗Rx

∧0
P
)

︸ ︷︷ ︸
0

⊕
(∧rankF−1

G⊗Rx

∧1
P
)

︸ ︷︷ ︸
Rx⊗RxP=P

⊕
(∧rankF−2

G⊗Rx

∧2
P
)
⊕ · · · ⊕

(∧0
G⊗Rx

∧rankF
P
)

︸ ︷︷ ︸
0

.

We conclude that P ∼= Rx. Thus P is a principal ideal and the proof is complete. �
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3. THE RELATIONSHIP BETWEEN TRANSCENDENCE DEGREE AND KRULL DIMENSION.

This section closely follows section 5 of [6]. There are two goals in front of us.

Goal. 6.1 Let kkk be a perfect field, P = kkk[x1, . . . , xn], I = (f1, . . . , fm) be an ideal of P , p be a
prime ideal of P with I ⊆ p, and L be the field Pp

pPp
. Let Jac be the matrix

Jac =


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fm
∂x1

. . . ∂fm
∂xn

 .
Then

rankL Jac |L ≤ dimPp − dim(P/I)p

and
(P/I)p is regular ⇐⇒ rankL Jac |L = dimPp − dim(P/I)p.

Remarks. 6.2

(a) The entries in Jac are polynomials in the polynomial ring kkk[x1, . . . , xn].
(b) We have used the symbol “| Rp

pRp

” to mean: take the image in Rp

pRp
.

(c) Recall that the field kkk is perfect if every algebraic extension is separable. In particular,
every field of characteristic zero and every finite field is perfect. Also, if the character-
istic of kkk is the positive prime integer p, then kkk is perfect if and only if kkk is closed under
the taking of pth roots.

Goal 3.1. If R is a commutative domain which is finitely generated as an algebra over the
field kkk, then the Krull dimension of R is equal to trdegkkk R.

Remarks 3.2. Let kkk ⊆ L be fields.

(a) A set S in L is a transcendence basis for L over kkk if S is algebraically independent and
L is an algebraic extension of kkk(S).

(b) Any two transcendence bases for L over kkk have the same cardinality. The proof uses the
same replacement argument as one uses to prove that vector space dimension makes
sense. (In linear algebra the result is called the Steinitz Replacement Theorem.) See,
for example, [7, Chapt. 9].

(c) The transcendence degree of L over kkk (which is written trdegkkk L) is the cardinality of
a transcendence basis of L over kkk.

(d) If the domain R is a kkk-algebra, then trdegkkk R is the transcendence degree of the quo-
tient field of R over kkk.

March 26, 2019.
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Goal. 3.1 If R is a commutative domain which is finitely generated as an algebra over the
field kkk, then the Krull dimension of R is equal to trdegkkk R.

One small piece of Goal 3.1 is: If R is a commutative domain which is finitely generated
as an algebra over the field kkk, then

1 ≤ trdegkkk R =⇒ R is not a field.

Lets prove this first. (In fact, this is the main thing we have to prove.)
Our thought process goes something like this.

• 1 ≤ trdegkkk R =⇒ there is a polynomial ring inside R. Certainly polynomial
rings have lots of non-units. We have to show that some of these non-units of the
polynomial ring remain non-units in R
• It would be useful to understand the structure of (some approximation of) R over

(some approximation of) the polynomial ring.
• Here is the plan:

– Lets record the structure of Qf(polynomial ring) ⊆ Qf(R). (We know this
because it is a finite dimensional field extension.)

– Then use this information to learn about

Polynomial ring ⊆ R.

(I write Qf(D) to be the quotient field of the domain D.)

Project 3.3. Suppose K ⊆ L are fields, α1, . . . , αn are elements of L which are algebraic over
K, and L is the ring K[α1, . . . , αn].

(a) (Of course, L is a field with dimK L <∞.) What is a good basis for L over K?
(b) Let Φ : K[x1, . . . , xn]→ K[α1, . . . , αn] be the homomorphism which is defined by

Φ(f(x1, . . . , xn)) = f(α1, . . . , αn).

What is the kernel of Φ?

Get to work.

(a) Define

dimK K(α1) = d1

dimK(α1) K(α1, α2) = d2

...

dimK(α1,...,αn−1) K(α1, . . . , αn) = dn

Observe that

(3.3.1)

αe11 · · ·αenn

∣∣∣∣∣∣
0 ≤ e1 ≤ d1 − 1,

...
0 ≤ en ≤ dn − 1


is a basis for K[α1, . . . , αn] over K.
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(b)

Step (i) Identify f1(x1) ∈ K[x1] monic of degree d1 with f1(α1) = 0.
Identify f2(x1, x2) ∈ (K[x1])[x2] monic (in x2) of degree d2 in x2 with

f2(α1, α2) = 0.
Identify f3(x1, x2, x3) ∈ (K[x1, x2])[x3] monic (in x3) of degree d3 in x3 with

f3(α1, α2, α3) = 0.
...
Identify fn(x1, x2, . . . , xn) ∈ (K[x1, . . . xn−1])[xn] monic (in xn) of degree dn in xn
with fn(α1, α2, . . . , αn) = 0.

Step (ii) Let p be an arbitrary element of K[x1, . . . , xn]. Apply the division algorithm
many times to see that

p = an element of (f1, . . . , fn) + p0

where degxi p0 ≤ di − 1, for all i.
Explanation. Apply the division algorithm to fn and p to write

p = qnfn +
dn−1∑
in=0

rinx
in
n ,

with qn ∈ K[x1, . . . , xn] and rin ∈ K[x1, . . . , xn−1].
Apply the division algorithm to fn−1 and each rin to write

p = qnfn + qn−1fn−1 +
dn−1∑
in=0

dn−1−1∑
in−1=0

rin−1,inx
in−1

n−1x
in
n ,

with qn−1 ∈ K[x1, . . . , xn−1] and rin−1,in ∈ K[x1, . . . , xn−2].
Continue in this manner until (ii) is obtained.

Step (iii) If p ∈ ker Φ, then p0 ∈ ker Φ. Degree considerations show that p0 is the zero
polynomial. It follows that p ∈ (f1, . . . , fn).

We conclude that ker Φ = (f1, . . . , fn). �

Lemma 3.4. Let D ⊆ R be domains, with R finitely generated as an algebra over D, and
R an algebraic extension of D. Then there is a non-zero element δ of D with Rδ a finitely
generated free Dδ-module.

Remark. The hypothesis “R is an algebraic extension of D” means that, for each element
r of R, there is a nonzero polynomial p ∈ D[x] with p(r) = 0.

Proof. There are elements α1, . . . , αn in R with R = D[α1, . . . , αn]. Everything is taking
place inside the quotient field Qf(R) of R. Let K = Qf(D) and L = K[α1, . . . , αn]. We
may apply everything we learned in Project 3.3 to K ⊆ L. In particular, define the di-
mensions di as was done in Project 3.3.(a) and the polynomials fi as was done in Project
3.3.(b). A basis for L over K is given in (3.3.1). This basis consists of elements of R. The
polynomials fi ∈ K[x1, . . . , xn] are used to show that each element of L can be written
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in terms of the basis. Recall that K = Qf(D). Let δ in D be a common denominator
for f1, . . . , fn. In other words, f1, . . . , fn all are elements of Dδ[x1, . . . , xn]. The Division
Algorithm may be applied in Dδ[x1, . . . , xn] to write every element of Dδ[x1, . . . , xn] as an
element of (f1, . . . , fn)Dδ[x1, . . . , xn] plus an element of degree less than di in xi for all i.
Thus,

Dδ[α1, . . . , αn] ∼=
Dδ[x1, . . . , xn]

(f1, . . . , fn)Dδ[x1, . . . , xn]

is a free Dδ-module with basis (3.3.1). �

Lemma 3.5. Let R be a commutative domain which is finitely generated as an algebra over
the field kkk. If any element of R is transcendental over kkk, then R is not a field.

Proof. Identify a generating set γ1, . . . , γr, α1, . . . , αn for R over kkk with γ1, . . . , γr alge-
braically independent over kkk and R algebraic over kkk[γ1, . . . , γr]. The hypothesis ensures
that 1 ≤ r. Let D = kkk[γ1, . . . , γr]. Apply Lemma 3.4 and identify a non-zero element δ in D
with the property that Rδ is a free Dδ-module and 1 is one of the basis elements. We will
carry out the following steps.

(a) Observe Dδ is not a field.
(b) Conclude that Rδ is not a field.
(c) Conclude that R is not a field.

(a) This is obvious. The polynomial ring D = kkk[γ1, . . . , γr] is a UFD with infinitely many
irreducible elements. (If there were only a finite number of irreducible elements, then the
product of these irreducible elements plus one is not a unit (for degree reasons) and is
not divisible by any irreducible element.) On the other hand, g has only a finite number of
irreducible factors. Pick h ∈ kkk[γ1, . . . , γr] with h irreducible and h not a factor of δ. Observe
that h is not a unit in Dδ. Indeed, if 1

h
∈ kkk[γ1, . . . , γr]δ, then

1

h
=

polynomial
δN

Thus,
δN = polynomial h,

which contradicts that the fact that h is an irreducible element of of UFD which does not
divide δ.

(b) Now, this is obvious. We already identified an element b in Dδ which is not a unit in
Dδ. The ring Rδ is a free Dδ-module and 1 is one of the generators; say

Rδ = Dδ · 1⊕Dδ · β2 ⊕ · · · .

We show that b is not a unit in Rδ. A typical element of Rδ is equal to

b0 · 1⊕ b1 · β2 ⊕ . . . ,

with bi ∈ Dδ. Observe that b times the typical element is

bb0 · 1⊕ bb1 · β2 ⊕ . . . ,
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and this is equal to 1 only if bb0 = 1 and bbi = 0 for 1 ≤ i. Of course, bb0 = 1 is not possible
since b is not a unit of Dδ.

(c) This is also obvious now. We argue by contradiction. Assume R is a field. It follows
that δ, which is a non-zero element of R, is a unit; hence, 1

δ
is already in R. Thus, Rδ = R

is a field. On the other hand, we saw in (b) that Rδ is not a field. This contradiction
guarantees that R is not a field. �

March 28, 2019

Theorem. 3.1. If R is a commutative domain which is finitely generated as an algebra over
the field kkk, then the Krull dimension of R is equal to trdegkkk R.

Lemma. 3.5. Let R be a commutative domain which is finitely generated as an algebra over
the field kkk. If any element of R is transcendental over kkk, then R is not a field.

Proof. Identify α1, . . . , αr ∈ R so that

(a) α1, . . . , αr are algebraically independent over kkk, and
(b) R is algebraic over kkk[α1, . . . , αr].

Let D = kkk[α1, . . . , αr].

• Observe that there exists δ in D with the property that Rδ is a finitely generated
free Dδ module.
• Observe that Dδ is not a field.
• Observe that Rδ is not a field.
• Conclude that R is not a field. (Indeed, if R were a field, then δ, which is in D ⊆ R,

is a unit in R; hence Rδ = R. This contradicts the fact that Rδ is not a field.) �

Proof of Theorem 3.1. Let P = kkk[x1, . . . , xn] and R = P
p
.

Step 1. dimR ≤ trdegkkk R.
Let

p = p0 ( p1 ( · · · ( pd

be prime ideals in P . We will show that

trdegkkk P/pi+1 < trdegkkk P/pi.

In this case,

0 ≤ trdegkkk P/pd < trdegkkk P/pd−1, · · · < trdegkkk P/p0 = trdegkkk P/p

and
dimP/p ≤ trdegkkk P/p.

The inclusion
pi ⊆ pi+1
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induces a surjection

P/pi � P/pi+1.

A set of algebraically elements of P/pi+1 pulls back to set of algebraically independent
elements in P/pi. Thus,

trdegkkk P/pi+1 ≤ trdegkkk P/pi.

We prove <.
Assume < fails (that is, assume trdegkkk P/pi+1 = trdegkkk P/pi). We will obtain a contra-

diction.
Renumber the variables so that imx1, . . . , imxr is a transcendence basis for P/pi+1 over

kkk.
Let βj = imxj in P/pi+1 for all j.
Let αj = imxj in P/pi for all j.
It follows that α1, . . . , αr are algebraically independent over kkk. We have assumed that

P/pi and P/pi+1 have the same transcendence degree over kkk. It follows that α1, . . . , αr are
a transcendence basis for R/pi.

Let S = kkk[x1, . . . , xr] \ {0} and K = S−1(kkk[x1, . . . , xr]). Notice that pi∩S and pi+1∩S are
both empty because α1, . . . , αr and β1, . . . , βr are both algebraically independent sets over
kkk.

Notice that S−1P = K[xr+1, . . . , xn]. Thus,

S−1P

piS−1P
= S−1

(
P

pi

)
= kkk(α1, . . . , αr)[αr+1, . . . , αn]

and this is a field!
Thus, piS−1P is a maximal ideal of S−1P ; but this makes no sense because,

piS
−1P ( pi+1S

−1P

are proper ideals of S−1P . We have reached our contradiction.
We have established dimR ≤ trdegkkk R.

Step 2. Now we prove that trdegkkk R ≤ dimR.
The proof is by induction on trdegkkk R. If trdegkkk R = 0, then there is nothing to prove.
Henceforth, 1 ≤ trdegkkk R = r. Continue to take P = kkk[x1, . . . , xn] and R = P/p. Let αi

be the image of xi in R. Assume α1 is transcendental over kkk. Let S = kkk[x1] \ {0}. Observe
that S ∩ p = ∅ and that S−1R = kkk(α1)[α2, . . . , αr]. Observe that

trdegkkk(α1) kkk(α1)[α2, . . . , αr] = r − 1.

Thus, by induction, there are prime ideals

p = p0 ( p1 ( · · · ( pr−1

in P which miss S. It is clear that

pR = p0R ( p1R ( · · · ( pr−1R
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are prime ideals of R. Notice that the class of x1 in
P

pr−1

is transcendental over kkk because pr−1 ∩ S is the empty set. Apply Lemma 3.5 to see that
P

pr−1

is not a field. It follows that pr−1 is not a maximal ideal of P and r ≤ dimR. �

Theorem 3.6. Let kkk be a field and m be a maximal ideal of the polynomial ring
P = kkk[x1, . . . , xn]. Then the following statements hold:

(a) P/m is algebraic over kkk;
(b) m can be generated by n elements; and
(c) if kkk is algebraically closed, then m = (x1 − α1, . . . , xn − αn) for some α1, . . . , αn in m.

Proof. (a) Let K = P/m. Observe that K is finitely generated as an algebra over kkk. We
know from Goal 3.1 that the transcendence degree of K over kkk is equal to the Krull dimen-
sion of K, which, of course, is zero. We conclude that K is algebraic over kkk.

(b) We proved in Project 3.3.(b) that the kernel of the natural quotient map P → P/m can
be generated by n elements.

April 2, 2019.
Last time we proved the following result.

Theorem. 3.1. If R is a commutative domain which is finitely generated as an algebra over
the field kkk, then the Krull dimension of R is equal to trdegkkk R.

Corollary. 3.6.(c) If kkk is an algebraically closed field and m is a maximal ideal of the polyno-
mial ring P = kkk[x1, . . . , xn], then m = (x1 − α1, . . . , xn − αn) for some α1, . . . , αn in m.

(c) The field K = P/m is algebraic over kkk; (since trdegkkk P/m = dimP/m = 0), thus there
is a kkk-algebra embedding of K into the algebraic closure, k̄kk, of kkk. The hypothesis kkk = k̄kk

ensures that for each i there exists αi ∈ kkk with xi ≡ αi mod m. In other words, xi−αi ∈ m.
Thus, (x1 − α1, . . . , xn − αn) ⊆ m. Of course, (x1 − α1, . . . , xn − αn) is already a maximal
ideal; thus (x1 − α1, . . . , xn − αn) = m. �

Definition 3.7. Let kkk ⊆ K be fields.

(a) If J is an ideal of kkk[x1, . . . , xn], then

VK(J) = {(α1, . . . , αn) ∈ An
K | f(α1, . . . , αn) = 0, for all f ∈ J}.

(b) If V is a subset of An
K , then

Ikkk(V ) = {f ∈ kkk[x1, . . . , xn] | f(α1, . . . , αn) = 0, for all (α1, . . . , αn) in V }.
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Theorem 3.8. [Hilbert’s Nullstellensatz] Let kkk be a field and k̄kk be the algebraic closure of
kkk.

(a) If J is an ideal of kkk[x1, . . . , xn], with Vk̄kk(J) empty, then J = kkk[x1, . . . , xn].
(b) If J is a proper ideal of kkk[x1, . . . , xn], then Ikkk(Vk̄kk(J)) =

√
J .

Proof. (a) We prove that if J is a proper ideal of kkk[x1, . . . , xn], then Vk̄kk(J) is not empty.
Assume J is a proper ideal of kkk[x1, . . . , xn]. Then J is contained in a maximal ideal m of

kkk[x1, . . . , xn]. We proved in 3.6.(a) that kkk[x1, . . . , xn]/m is algebraic over kkk. Let

θ : kkk[x1, . . . , xn]/m→ k̄kk

be a kkk-algebra homomorphism and let αi in k̄kk be θ of the class of xi. If g(x1, . . . , xn) ∈ m,
then

0 = θg(x1, . . . , xn) = g(α1, . . . , αn).

In particular, each element of J annihilates (α1, . . . , αn) and (α1, . . . , αn)is in Vk̄kk(J).

(b) The inclusion ⊇ is clear. We prove ⊆. Suppose f ∈ Ikkk(Vk̄kk(J)). We must show that
fN ∈ J for some N . Consider the ideal (J, 1 − yf) in the polynomial ring kkk[x1, . . . , xn, y].
Observe that Vk̄kk(J, 1 − yf) is empty. Thus, by (a), (J, 1 − yf) = kkk[x1, . . . , xn, y] and there
are elements ji ∈ J and pi and q in kkk[x1, . . . , xn, y] such that

1 =
∑
i

jipi + q(1− yf).

Apply the kkk[x1, . . . , xn]-algebra homomorphism

kkk[x1, . . . , xn, y]→ kkk[x1, . . . , xn]f ,

which sends y to 1
f
, to obtain

1 =
∑
i

ji(an element of kkk[x1, . . . , xn]f ).

Multiply both sides of the most recent equation by a large power of f to finish the proof.
�

I would next like to prove the Jacobian criterion for regularity.

Goal. 6.1 Let kkk be a perfect field, P = kkk[x1, . . . , xn], I = (f1, . . . , fm) be an ideal of P , p be a
prime ideal of P with I ⊆ p, and L be the field Pp

pPp
. Let Jac be the matrix

Jac =


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fm
∂x1

. . . ∂fm
∂xn

 .
Then

rankL Jac |L ≤ dimPp − dim(P/I)p



COMMUTATIVE ALGEBRA 53

and

(P/I)p is regular ⇐⇒ rankL Jac |L = dimPp − dim(P/I)p.

Remarks. 6.2

(a) The entries in Jac are polynomials in the polynomial ring kkk[x1, . . . , xn].
(b) We have used the symbol “| Rp

pRp

” to mean: take the image in Rp

pRp
.

(c) Recall that the field kkk is perfect if every algebraic extension is separable. In particular,
every field of characteristic zero and every finite field is perfect. Also, if the character-
istic of kkk is the positive prime integer p, then kkk is perfect if and only if kkk is closed under
the taking of pth roots.

We proved that if R is a domain which is finitely generated as an algebra over the field
kkk, then

trdegkkk R = dimR

as a step in proving the Jacobian criterion.
To complete the proof, we also need to know that if

(3.8.1) R is a domain which is finitely generated as an algebra over the field kkk,

then

(3.8.2) ht p + dim R
p

= dimR.

(We proved (3.8.2) if R is local and Cohen-Macaulay in Proposition 1.29.)

Example 3.9. Here is a quick example to show that hypotheses are needed in order to get
(3.8.2). Let R = kkk[x,y,z]

(x)(y,z)
. Geometrically, R is the coordinate ring of the union of the y, z

plane and the x-axis.

• If p = (y, z)R, then ht p = 0, dimR/p = dimkkk[x, y, z]/(y, z) = 1 and dimR = 2. So

ht p + dimR/p = 0 + 1 6= 2 = dimR.

• If p = (x)R, then ht p = 0, dimR/p = dimkkk[x, y, z]/(x) = 2 and dimR = 2. In this
case,

ht p + dimR/p = 0 + 2 = 2 = dimR.

The problem with this ring (or geometric object) is that the irreducible components of the
geometric object have different dimensions.

It will take some work to prove (3.8.2) under hypothesis (3.8.1). In section 4 we will
prove that if A ⊆ B is an integral extension of domains and A is integrally closed in its
quotient field, then the extension A ⊆ B has the Going Down property, Theorem 4.9. In
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other words, if p1 ( p2 are prime ideals of A and q2 is a prime ideal of B with p2 = q2 ∩A.
Then there is a prime ideal q1 in B with q1 ⊆ q2 and p1 = q1 ∩ A. Here is a picture:

q2

�
�
�
�
�
�
�

p2

}}}}}}}}

?

p1

}
}

}
}

Then, in Section 5 we will prove that under hypothesis (3.8.1), if I is any ideal R, then
there exists a polynomial ring P with P ⊆ R an integral extension and such that I ∩ P
is generated by variables (A polynomial ring is easily seen to be integrally closed in its
quotient field.) The proof of (3.8.2) is given in 5.5.(d).
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4. INTEGRAL EXTENSIONS

Definition 4.1. Let A ⊆ B be rings.

(a) If b ∈ B, then b is integral over A if there exists a monic polynomial p(x) ∈ A[x] such
that p(b) = 0.

(b) If every element of B is integral over A, then A ⊆ B is called an integral extension.

Examples 4.2.
(a) If A is a UFD, then A is integrally closed in Qf(A). Indeed, if θ = α1/α2 is a non-zero
element of Qf(A), with α1, α2 relatively prime elements of A, and θ is integral over A, then
there exist elements ai in A with

(α1/α2)n + a1(α1/α2)n−1 + · · ·+ an(α1/α2)0 = 0.

Multiply both sides by αn2 to obtain and

αn1 + a1α2α
n−1
1 + · · ·+ anα

n
2 = 0.

Thus αn1 ∈ (α2). The elements α1 and α2 of A are relatively prime so α2 is a unit of A and
θ is an element of A.

(b) The ring Z[
√

5] is not integrally closed in its quotient field. Indeed 1+
√

5
2

is a solution of

x2 − x− 1 = 0.

Lemma 4.3. If A ⊆ B are rings and B is finitely generated as an A-module, then A ⊆ B is
an integral extension.

Proof. Suppose B is generated by b1, . . . , bn over A. Let b be an element of B. Write bbi as∑
j ai,jbj. Thus,

b

b1
...
bn

 =

a1,1 . . . a1,n
...

...
an,1 . . . an,n

b1
...
bn

 .
Let M be the name of the n× n matrix. Thus,

(bI −M)

b1
...
bn

 = 0.

Multiply both sides of the equation by the classical adjoint of bI−M to conclude det(bI−M)

annihilates B. But 1 ∈ B; so, det(bI −M) = 0. Thus b satisfies the n-th degree monic
polynomial det(xI −M) = 0. Observe that det(xI −M) ∈ A[x]. �

Lemma 4.4. [This result called Incomparable.] If A ⊆ B is an integral extension of rings
and P1 ( P2 are prime ideals of B, then P1 ∩ A ( P2 ∩B.

Proof. The ring extension A/(P1 ∩ A) ⊆ B/P1 is also an integral extension.
It suffices to show that if A ⊆ B is an integral extension of domains, then (0) is the only

ideal of B contracting to (0). If b ∈ B and b 6= 0, then bn + a1b
n−1 + · · ·+ an = 0 for some n

and for some ai ∈ A with an 6= 0. Thus, an ∈ A ∩ (b)B. �
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Observation 4.5. If A ⊆ B are rings and p is a prime ideal of A with A ∩ (pB) ⊆ p, then
there is a prime ideal q of B with q ∩ A = p.

Proof. Let S = A \ p. Think of S as a multiplicatively closed subset of B. The hypothesis
ensures that pB misses S. Consider the set

{I is an ideal of B | pB ⊆ I and I ∩ S = ∅}.

The set is non-empty because pB is in it! Take an ideal q of B maximal in the set. Such an
ideal q exists (either by Zorn’s Lemma or because B is Noetherian), is a prime ideal of B,
and q ∩ A = p. �

The rest of the section closely follows [1, 5.14, 5.15, 5.16].

Definition 4.6. Let A ⊆ B be rings, and I be an ideal of A. If the element b of B satisfies
a polynomial equation of the form

xn + a1x
n−1 + · · ·+ an = 0,

with all ai ∈ I, then b is integral over I.

Observation 4.7. If A ⊆ B are rings, I is an ideal of A, and C is the integral closure of A in
B, then

the integral closure of I in B =
√
IC.

Remark. The most important consequence of this observation is the fact that the integral
closure of I in B is closed under addition and multiplication.

Proof. (⊆) If b ∈ B is in the integral closure of I in B, then there exists ai ∈ I with

bn + a1b
n−1 + · · ·+ an = 0.

Thus, b ∈ C and bn ∈ IC. It follows that b ∈
√
IC.

(⊇). If the element b of B is in
√
IC, then bn ∈ IC, for some n, and bn =

∑N
j=1 ijcj with

ij ∈ I and cj ∈ C. Let R be the ring A[c1, . . . , cN ]. The ring R is finitely generated as an
A-module. Observe that bnR ⊆ IR. The usual determinant trick argument shows that

det
(
bn identity matrix− (a matrix with entries from I)

)
R = 0.

The ring R contains the element 1 of A. Thus the determinant is zero. The equation
det = 0 demonstrates that bn is integral over I; hence b is integral over I. �
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Goal. 4.9 Let A ⊆ B be an integral extension of domains with A integrally closed in Qf(A).

q2

�
�
�
�
�
�
�

p2

}}}}}}}}

?

p1

}
}

}
}

Observation. 4.5 If A ⊆ B are rings and p is a prime ideal of A with A ∩ (pB) ⊆ p, then
there is a prime ideal q of B with q ∩ A = p.

Observation. 4.7 If A ⊆ B are rings and I is an ideal of A, then

the integral closure of I in B =
√
I(the integral closure of A in B).

Lemma 4.8. Let A ⊆ B be domains with A integrally closed in Qf(A). Let I be an ideal of
A and b be an element of B with b integral over I. (In particular b is algebraic over Qf(A).)
Then the minimal polynomial of b over Qf(A) has the form

xn + a1x
n−1 + · · ·+ anx

n,

with ai ∈
√
I.

Proof. The hypothesis guarantees that there exists a polynomial g(x) = xm+i1x
m−1+· · ·+im

in A[x] with ij ∈ I and g(b) = 0. Let f(x) = Qf(A)[x] be the minimal polynomial of b over
Qf(A) and let L be an extension field of Qf(A) in which f(x) factors into linear factors
f(x) =

∏
j(x − bj) in L[x]. The polynomial f(x) divides g(x) in [Qf(A)][x]; so g(bj) = 0

(in L) for each j. In other words, each bj is integral over I. The coefficients of f are
the elementary symmetric polynomials evaluated at the bj ’s. Thus each coefficient of f is
integral over A. (We use the Remark following Observation 4.7 to conclude the sums and
products of elements in L which are integral over I are also integral over I.) Now we use
Observation 4.7 again. The coefficients of f are elements of Qf(A) which are integral over
I. Thus these coefficients are in√

I(the integral closure of A in Qf(A)) =
√
IA =

√
I.

Thus each coefficient of f is in
√
I. �

Theorem 4.9. [This result is called Going Down.] Let A ⊆ B be an integral extension of
domains with A integrally closed in Qf(A). Let p1 ( p2 be prime ideals of A and q2 be a prime
ideal of B with p2 = q2∩A. Then there is a prime ideal q1 in B with q1 ⊆ q2 and p1 = q1∩A.
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Proof. According to Observation 4.5, it suffices to show that

A ∩ p1Bq2 ⊆ p1.

Let x be an arbitrary element of p1Bq2. So, x = y
s
, with y ∈ p1B and s ∈ B \ q2. Apply

Observation 4.7:

y ∈ p1B ⊆
√

p1B =
√

p1(the integral closure of A in B).

Therefore, y is in the integral closure of p1 in B. The present hypothesis that A is integrally
closed in Qf(A) allows us to apply Lemma 4.8 in order to conclude that the minimal
polynomial of y over Qf(A) is

m(t) = tr + u1t
r−1 + · · ·+ ur ∈ Qf(A)[t],

for some ui ∈ p1.
Now assume that x is in A ∩ p1Bq2. Of course, s = yx−1 and x−1 ∈ Qf(A). Observe that

0 = m(y) = (xs)r + u1(xs)r−1 + · · ·+ ur.

Multiply by x−r to obtain

(4.9.1) 0 = sr + x−1u1s
r−1 + · · ·+ (x−1)rur.

Thus, s satisfies the polynomial

m1(t) = tr + x−1u1t
r−1 + · · ·+ (x−1)rur

and m1(t) is an irreducible polynomial in Qf(A)[t]. It follows that m1(t) is the minimal
polynomial of s over Qf(A).

The element s of B is integral over A (because every element of B is integral over A).
Apply Lemma 4.8 again. This time take I = A. Conclude (x−1)iui ∈ A for all i with
0 ≤ i ≤ r − 1.

The crucial equation is
xi (x−1)iui︸ ︷︷ ︸

∈A

= ui︸︷︷︸
∈p1

.

If x /∈ p1, then (x−1)iui ∈ p1, for 1 ≤ i ≤ r. In this case, (4.9.1) exhibits

sr ∈ p1B ⊆ p2B ⊆ q2.
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In this case, s ∈ q2, which is a contradiction.
Thus, x ∈ p1, and the proof is complete. �
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5. NOETHER NORMALIZATION.

This section closely follows [4, Chapt. II, sect. 3]. We continue to move in the direction
of proving the Jacobian criteria for regular local rings. One critical part of the proof is
the fact (see Corollary 5.5.(d)) that if p is a prime ideal in a domain R, which is finitely
generated as an algebra over a field, then

ht p + dimR/p = dimR.

We already know this conclusion when R is a Cohen-Macaulay local ring. I think that
Noether Normalization provides the best way to get the conclusion when R is a domain
which is finitely generated as an algebra over a field.

Corollary 5.6 is another consequence of Noether Normalization which is used in the
proof of the Jacobian criteria. This result states that if P is a polynomial ring over a field,
then Pp is a regular local ring for all prime ideals p of P .

Theorem 5.1. [Noether Normalization] If R is a ring which is finitely generated as an
algebra over a field kkk and I is a non-zero proper ideal of R, then there exist elements y1, . . . , yd
in R such that

(a) y1, . . . , yd are algebraically independent over kkk,
(b) R is finitely generated as a module over kkk[y1, . . . , yd], and
(c) I ∩ kkk[y1, . . . , yd] = (yδ, . . . , yd), for some δ with δ ≤ d.

Definition 5.2. If R is a ring which is finite generated as an algebra over a field kkk and
y1, . . . , yd are elements of R which are algebraically independent over kkk with R finitely gen-
erated as a module over kkk[y1, . . . , yd], then kkk[y1, . . . , yd] is called a Noether normalization
of R.

Remark 5.3. If R is a domain which is finite generated as an algebra over a field kkk and
N = kkk[y1, . . . , yd] is a Noether normalization of R, then trdegkkk R = trdegkkkN = d; hence
dimR = dimN = d by Theorem 3.1.

We use Lemma 5.4 in our proof of Noether Normalization.

Lemma 5.4. Let f ∈ kkk[x1, . . . , xn] be a non-constant polynomial. Then there exist non-
negative integers r1, . . . , rn−1 with

f = amx
m
n + ρ1x

m−1
n + · · ·+ ρm,

with am 6= 0 in kkk and ρi ∈ kkk[y1, . . . , yr−1], for yi = xi − xrin , with 1 ≤ i ≤ r − 1.

Proof. Write f =
∑
−→v a−→v x

v1
1 . . . xvnn . Replace xi with yi + xrin for 1 ≤ i ≤ n− 1. Observe that

f =
∑
−→v

a−→v (y1 + xr1n )v1 . . . (yn−1 + xrn−1
n )vr−1xvnn

=
∑
−→v

a−→v

(
x
−→v ·(r1,...,rn−1,1)
n + l.o.t. in xn

)



COMMUTATIVE ALGEBRA 61

Pick −→r so that all −→v · −→r are distinct. In particular, if k is an integer which is larger than
all vi, and −→r = (kn−1, . . . , k2, k, 1), then each −→v · −→r is the k-adic expansion of

v1k
n−1 + · · ·+ vn−1k + vn.

Each integer has a unique k-adic expansion. �

The proof of Theorem 5.1. We consider three cases.

Case 1. Suppose I = (f) for some non-zero f ∈ R = kkk[x1, . . . , xn].
We find y1, . . . , yn−1 in R so that

• y1, . . . , yn−1, f are algebraically independent over kkk and
• R is a finitely generated kkk[y1, . . . , yn−1, f ]-module.

Then we let yn denote f .
Apply Lemma 5.4 to find ri so that f = axmn + ρ1x

m−1
n + · · · + ρm for some ρi ∈

kkk[y1, . . . , yn−1], where yi = xi − xrin (for 1 ≤ i ≤ n − 1) and a is a non-zero element of
kkk. Observe that

R =
(
kkk[y1, . . . , yn−1, f ]

)
[xn]

and xn satisfies f(X)− f = 0, and

f(X)− f = aXm + ρ1X
m−1 + · · ·+ ρm − (axmn + ρ1x

m−1
n + · · ·+ ρm)

is a polynomial in X with coefficients in kkk[y1, . . . , yn]. Thus, R is finitely generated as a
module over kkk[y1, . . . , yn−1, f ].

It is clear that (I ∩ kkk[y1, . . . , yn]) ⊇ (yn)kkk[y1, . . . , yn].
It remains to show that ⊆. Take θ ∈ I ∩ kkk[y1, . . . , yn]. It follows that

θ = fg for some g in R and θ ∈ kkk[y1, . . . , yn].

The hypothesis that R is a finitely generated module over kkk[y1, . . . , yn] guarantees that g
satisfies a monic polynomial with coefficients in kkk[y1, . . . , yn] (see Lemma 4.3):

gs + a1g
s−1 + · · ·+ as = 0

for some ai ∈ kkk[y1, . . . , yn]. Multiply both sides by f s to obtain

(fg)s︸ ︷︷ ︸
θs

+ a1f(fg)s−1 + · · ·+ asf
s = 0︸ ︷︷ ︸

∈(f)kkk[y1,...,yn]

.

So θ is in the polynomial ring kkk[y1, . . . , yn] and θs is in the prime ideal (yn)kkk[y1, . . . , yn].
(Remember, f = yn.) Thus, θ ∈ (f)kkk[y1, . . . , yn].

Case 2. Suppose I is a non-zero proper ideal in R = kkk[x1, . . . , xn].
Induct on n. The case n = 1 is trivial (and is covered in case 1). Henceforth, assume

2 ≤ n. Let f be a non-zero element of I. Apply case 1 and identify y1, . . . , yn−1 so that
when yn = f , then

• y1, . . . , yn are algebraically independent over kkk,
• R is a finitely generated module over kkk[y1, . . . , yn], and
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• I ∩ kkk[y1, . . . , yn] = (yn)kkk[y1, . . . , yn].

Apply induction to the ideal I ∩ kkk[y1, . . . , yn−1] in the ring kkk[y1, . . . , yn−1]. There are
elements t1, . . . , td in kkk[y1, . . . , yn−1] which are algebraically independent over kkk with

• kkk[y1, . . . , yn−1] finitely generated as a module over kkk[t1, . . . , td] and
• I ∩ kkk[t1, . . . , td] = (tδ, . . . , td)kkk[t1, . . . , td], for some δ.

Notice that
d = trdegkkk kkk[t1, . . . , td] = trdegkkk kkk[y1, . . . , yn−1] = n− 1.

Notice also that kkk[x1, . . . , xn] is finitely generated as a module over kkk[t1, . . . , tn−1, yn].

Here is a quick proof of the most recent claim. We started with

kkk[y1, . . . , yn] ⊆ kkk[x1, . . . , xn] is a module-finite extension and (∗)

kkk[t1, . . . , td︸︷︷︸
tn−1

] ⊆ kkk[y1, . . . , yn−1] is a module-finite extension

hence,

kkk[t1, . . . , td, yn] ⊆ kkk[y1, . . . , yn−1, yn] is a module-finite extension. (∗∗)

Now combine (*) and (**). This completes this small proof.

We must show that

(5.4.1) I ∩ kkk[t1, . . . , tn−1, yn] = (tδ, . . . , tn−1, yn)kkk[t1, . . . , tn−1, yn].

The inclusion ⊇ is obvious.
We prove ⊆. Every element of kkk[t1, . . . , tn−1, yn] is

A+ ynB,

where A ∈ kkk[t1, . . . , tn−1] and B ∈ kkk[t1, . . . , tn−1, yn]. Observe that ynB is in

(tδ, . . . , tn−1, yn)kkk[t1, . . . , tn−1, yn] ⊆ I ∩ kkk[t1, . . . , tn−1, yn].

Thus A+ ynB is in I ∩ kkk[t1, . . . , tn−1, yn] if and only if

A ∈ I ∩ kkk[t1, . . . , tn−1] = (tδ, . . . , tn−1)kkk[t1, . . . , tn−1].

We have established (5.4.1).
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We are proving

Theorem. 5.1 [Noether Normalization] If R is a ring which is finitely generated as an
algebra over a field kkk and I is a non-zero proper ideal of R, then there exist elements y1, . . . , yd
in R such that

(a) y1, . . . , yd are algebraically independent over kkk,
(b) R is finitely generated as a module over kkk[y1, . . . , yd], and
(c) I ∩ kkk[y1, . . . , yd] = (yδ, . . . , yd), for some δ with δ ≤ d.

So far we have established the theorem completely when R is a polynomial ring over kkk.
In this case each Noether Normalization of R is a polynomial ring in dimR variables.

Case 3. Suppose I is a non-zero proper ideal in R = kkk[x1, . . . , xn]/J , where J is an ideal
of kkk[x1, . . . , xn].

Let P = kkk[x1, . . . , xn]. Apply case 2 to identify a polynomial ring kkk[y1, . . . , yn] which is
contained in P with P finitely generated as as a module over kkk[y1, . . . , yn] and

J ∩ kkk[y1, . . . , yn] = (yd+1, . . . , yn)

for some d. Thus, R = P/J is finitely generated as a module over

kkk[y1, . . . , yn]

J ∩ kkk[y1, . . . , yn]
=

kkk[y1, . . . , yn]

(yd+1, . . . , yn)
= kkk[y1, . . . , yd].

Now apply case 2 to the ideal I ∩ kkk[y1, . . . , yd] to identify t1, . . . , td in kkk[y1, . . . , yd] with

• t1, . . . , td algebraically independent over kkk,
• kkk[y1, . . . , yd] finitely generated as a module over kkk[t1, . . . , td],
• (I ∩ kkk[y1, . . . , yd]) ∩ kkk[t1, . . . , td] = (tδ, . . . , td), for some δ.

Observe that

kkk[t1, . . . , td] ⊆ kkk[y1, . . . , yd] =
kkk[y1, . . . , yn]

J ∩ kkk[y1, . . . , yn]
⊆ P

J
= R

exhibits t1, . . . , td as elements of R. These elements are algebraically independent. The
original ring R is finitely generated as a kkk[t1, . . . , td]-module. The intersection

I ∩ kkk[t1, . . . , td] = (tδ, . . . , td).

The proof is complete. �

Corollary 5.5. Let R be a domain which is finitely generated as an algebra over the field kkk.
The following statements hold.

(a) If m is a maximal ideal of R, then htm = dimR.
(b) Every saturated chain of prime ideals from (0) to a maximal ideal of R has length equal

to dimR.
(c) If p ⊆ q are prime ideals of R, then every saturated chain of prime ideals from p to q has

length equal to dim R
p
− dim R

q
. (In particular, R is a catenary ring.)
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(d) If I is an ideal of R, then
dimR = dim R

I
+ ht I.

Remark. We saw in Proposition 1.29 and Corollary 1.31 that (d) and (c) hold if R is a
Cohen-Macaulay local ring.

5.5.1. The first step in the proof of Corollary 5.5. Let N be a Noether Normalization of
R and

(5.5.2) (0) = q0 ( · · · ( qm

be a saturated chain of prime ideals in R with qm a maximal ideal of R. Then

(5.5.3) (0) = N ∩ q0 ( · · · ( N ∩ qm

is a saturated chain of prime ideals in N and N ∩ qm is a maximal ideal of N .

Proof. We know from INC, Lemma 4.4, that

N ∩ q0 ( · · · ( N ∩ qm.

It is clear that N ∩ q0 = (0). It is not hard to see that N ∩ qm is a maximal ideal of N .
Indeed, N

N∩qm →
R
qm

is an integral extension and if D ⊂ L is an integral extension where L
is a field, then D is also a field. Indeed, if d is a non-zero element of D, then 1

d
is in L and

therefore is integral over D. So,

(5.5.4) (1
d
)n + d1(1

d
)n−1 + · · ·+ dn = 0

for some di in D. It follows that

1 + d1d+ · · ·+ dnd
n︸ ︷︷ ︸

in (d)D

= 0

and d is a unit in D.
It will take some effort to show that (5.5.3) is saturated. Suppose a prime p can be

inserted between N ∩ qi and N ∩ qi+1; that is, suppose that

N ∩ qi ( p ( N ∩ qi+1

are prime ideals in N .
Find a Noether normalization T = kkk[t1, . . . , td] of N with

T ∩N ∩ qi = (tδ+1, . . . , td)

for some δ. At this point,
kkk[t1, . . . , tδ] = T

(tδ+1,...,td)
⊆ R

qi

is a Noether normalization and one has the following diagram of prime ideals in

R
qi

kkk[t1, . . . , tδ]

uuuuuuuuuuu
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qi+1

qi
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qi+1∩T
T∩N∩qi

yyyyyyyy
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p∩T
T∩N∩qi

w
w

w
w

w

(0)

(0)

wwwwwwwww

The polynomial ring kkk[t1, . . . , tδ] is a UFD. Every UFD is integrally closed in its quotient
field. (This is easy to see. Use an argument like (5.5.4).) We may apply the Going Down
Theorem, Theorem 4.9, to see that a prime ideal in R may be inserted between qi

qi
and

qi+1

qi
in R/qi. Thus, there is a prime ideal q of R with qi ( q ( qi+1. Of course this is not

possible because (5.5.2) is a saturated chain of prime ideals. This completes the proof of
(5.5.3). �

5.5.5. The second step in the proof of Corollary 5.5. Let

(5.5.6) (0) = q0 ( · · · ( qm

be a saturated chain of prime ideals in R with qm a maximal ideal of R. We prove that
m = dimR.

Proof. Induct on m. If m = 0, then (0) is a maximal ideal of R, which is a field. (Of course,
every saturated chain of prime ideals in a field has length equal to the Krull dimension of
R.)

Henceforth 1 ≤ m. Consider a Noether Normalization N = kkk[y1, . . . , yd] of R with
N ∩ q1 = (yδ+1, . . . , yd) for some δ. The prime ideal q1 of R height 1 because it properly
contains the prime ideal (0) and the chain (0) ( q1 is saturated. The chain (0) ( q1 ∩N of
prime ideals in N is also saturated (by (5.5.3)); hence, N ∩ q1 = (yδ+1, . . . , yd) has height
one. It follows that N ∩ q1 = (yd) and

kkk[y1, . . . , yd−1] =
N

N ∩ q1

→ R

q1

is a Noether Normalization. The saturated chain of prime ideals
q1

q1

( · · · ( qm
q1

,
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from (0) to a maximal ideal in R/q1 contracts to give a saturated chain of prime ideals

(5.5.7)
q1

q1

∩ kkk[y1, . . . , yd−1] ( · · · ( qm
q1

∩ kkk[y1, . . . , yd−1],

from (0) to a maximal ideal in kkk[y1, . . . , yd−1]. The saturated chain of prime ideals (5.5.7)
has length m− 1; so by induction

m− 1 = dimkkk[y1, . . . , yd−1] = d− 1.

Thus, m = d and the proof of 5.5.5 is complete. �

Remark. Be sure to notice WHY we went to such effort. It is clear that

dimkkk[y1, . . . , yd−1] = d− 1.

It is not clear (until we prove it) that dimR/q1 = d − 1. We proved the Going Down
theorem (Theorem 4.9) and the Noether Normalization theorem (Theorem 5.1) to get
that apparently small fact.

April 18, 2019

Corollary. 5.5 Let R be a domain which is finitely generated as an algebra over the field kkk.
The following statements hold.

(a) If m is a maximal ideal of R, then htm = dimR.
(b) Every saturated chain of prime ideals from (0) to a maximal ideal of R has length equal

to dimR.
(c) If p ⊆ q are prime ideals of R, then every saturated chain of prime ideals from p to q has

length equal to dim R
p
− dim R

q
. (In particular, R is a catenary ring.)

(d) If I is an ideal of R, then
dimR = dim R

I
+ ht I.

We proved Step 1: If N is a Noether Normalization of R, then every saturated chain of
prime ideals in R from (0) to a maximal ideal contracts to become a saturated chain of
prime ideals in N from (0) to a maximal ideal.

The proof used the Going Down Theorem.

We proved Step 2: Every saturated chain of prime ideals in R from (0) to a maximal ideal
has length equal to dimR.

The proof is by induction. Of course, we want to look at R/q1 where q1 is a prime ideal
of R of height 1. At the beginning of the process, it is not obvious what the dimension
of R/q1 is. We used Noether Normalization and step 1 to learn that dimR/q1 is equal
to dimN/(q1 ∩ N) where N = kkk[y1, . . . , yd] is a Noether Normalization of R (so dimR =

dimN) and q1 ∩N = (yd). Now it is obvious that dimN/(q1 ∩N) = dimN − 1 and hence
dimR/q1 = dimR− 1.
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• At this point we have established parts (a) and (b) of Corollary 5.5. That is, if R is a
domain which is finitely generated as an algebra over a field, then every maximal ideal of
R has height equal to dimR and every saturated chain of prime ideals in R, from (0) to a
maximal ideal, has length equal to dimR.

We prove (c). Let R be a domain which is finitely generated as an algebra over the field
kkk. If p ⊆ q are prime ideals of R, then every saturated chain of prime ideals from p to q

has length equal to dim R
p
− dim R

q
.

Let
p = p0 ( p1 ( · · · ( ps = q

be a saturated chain of prime ideals in R from p to q. Let

q = q0 ( q1 ( · · · ( qt

be a saturated of prime ideals in R from q to a maximal ideal of R. Observe that
p

p
=

p0

p
(

p1

p
( · · · ( ps

p
=

q

p
=

q0

p
(

q1

p
( · · · ( qt

p

is a saturated chain of prime ideals in R/p from the zero ideal to a maximal ideal and
q

q
=

q0

q
(

q1

q
( · · · ( qt

q

is a saturated chain of prime ideals in R/q from the zero ideal to a maximal ideal. The
domains R/p and R/q both are finitely generated as algebras over kkk; thus (b) applies to
both of these rings; so

dimR/p = s+ t = s+ dimR/q

and s = dimR/p− dimR/q, as claimed.

We prove (d). Let R be a domain which is finitely generated as an algebra over the field
kkk. If I is an ideal of R, then

dimR = dim R
I

+ ht I.

The argument of Proposition 1.29 continues to show that it suffices to prove the result
when I is a prime ideal because

ht I = min{ht p | p is minimal in SuppR/I}, and

dimR/I = max{dimR/p | p is minimal in SuppR/I}.
Assume the assertion holds for prime ideals and p1 and p2 are minimal in SuppR/I with
ht I = ht p1 and dimR/I = dimR/p2, then

ht p1 ≤ ht p2 = dimR− dimR/p2 ≤ dimR− dimR/p1 = ht p1.

Thus equality holds everywhere and ht p1 = ht p2 and dimR/p1 = dimR/p2.
So, we prove the result when I = p is a prime ideal. Apply (c) to the prime ideals

(0) ⊆ p in R Every saturated chain of prime ideals from (0) to p has length equal to
dimR/(0)− dimR/p. Thus,

ht p = dimR− dimR/p.
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We have finished the proof of Corollary 5.5.

Corollary 5.6. If P = kkk[x1, . . . , xn] is a polynomial ring over the field kkk and p is a prime ideal
of P , then Pp is a regular local ring.

Proof. Apply Goal 2.7, which was established in 2.10.(d) on page 29. It suffices to prove
that Pm for all maximal ideals m of P . Fix a maximal ideal m. We know from Corol-
lary 5.5.(a) that htm = dimP . Of course, dimP = n from Theorem 3.1. We know from
Theorem 3.6.(b) that m can be generated by n elements. The Krull Principal Ideal Theo-
rem guarantees that neither m nor mPm can be generated by fewer than n elements. Thus
mPm can be generated by dimPm elements and Pm is a regular local ring. �
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6. THE JACOBIAN CRITERION FOR REGULAR LOCAL RINGS.

This section closely follows [4, Chapt. 4, Thm. 1.15].

Goal 6.1. Let kkk be a perfect field, P = kkk[x1, . . . , xn], I = (f1, . . . , fm) be an ideal of P , p be a
prime ideal of P with I ⊆ p, and L be the field Pp

pPp
. Let Jac be the matrix

Jac =


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fm
∂x1

. . . ∂fm
∂xn

 .
Then

rankL Jac |L ≤ dimPp − dim(P/I)p

and
(P/I)p is regular ⇐⇒ rankL Jac |L = dimPp − dim(P/I)p.

Remarks 6.2.

(a) The entries in Jac are polynomials in the polynomial ring kkk[x1, . . . , xn].
(b) We have used the symbol “| Rp

pRp

” to mean: take the image in Rp

pRp
.

(c) Recall that the field kkk is perfect if every algebraic extension is separable. In particular,
every field of characteristic zero and every finite field is perfect. Also, if the character-
istic of kkk is the positive prime integer p, then kkk is perfect if and only if kkk is closed under
the taking of pth roots.

Proof. It suffices to prove

(6.2.1) rankL Jac |L = dimPp − edim(P/I)p.

Indeed, once we prove (6.2.1), then

rankL Jac |L
= dimPp − edim(P/I)p

= (dimPp − dim(P/I)p)− (edim(P/I)p − dim(P/I)p︸ ︷︷ ︸
I am non-negative

),

which is at most dimPp − dim(P/I)p; furthermore,

rankL Jac |L = dimPp − dim(P/I)p ⇐⇒ edim(P/I)p − dim(P/I)p = 0

⇐⇒ (P/I)p is a regular local ring.
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April 23, 2019

The situation: kkk is a perfect field, P = kkk[x1, . . . , xn] is a polynomial ring, I = (f1, . . . , fm)

is an ideal of P , p is a prime ideal of P with I ⊆ p, L = Qf(P/p), and Jac = (∂fi/∂xj).

The Goal:

(P/I)p is a regular local ring ⇐⇒ dimPp − dim(P/I)p ≤ rank Jac |L.

It suffices to show:

(6.2.1) rankL Jac |L = dimPp − edim(P/I)p.

Consider the following exact sequence of L-modules:

0→ p2Pp + IPp

p2Pp

→ pPp

p2Pp

→ pPp

p2Pp + IPp

→ 0.

Observe that

dimL
pPp

p2Pp

= edimPp.

Recall from Corollary 5.6 that Pp is a regular local ring. It follows that

dimL
pPp

p2Pp

= dimPp.

Observe that
p
(
P
I

)
p

p2
(
P
I

)
p

=

pPp

IPp

p2Pp+IPp

IPp

=
pPp

p2Pp + IPp

;

thus,

dimL
pPp

p2Pp + IPp

= edim(P/I)p.

Let Λ = p2Pp+IPp

p2Pp
. We have shown that

dimL Λ = dimPp − edim(P/I)p.

Combine the most recent equation with (6.2.1). It suffices to prove that

(6.2.2) rankL Jac |L = dimL Λ.

Let G1, . . . , Gr be elements of pPp with Ḡ1, . . . , Ḡr a basis for pPp

p2Pp
. (We will make a

special choice of {G1, . . . , Gr} later.) Observe that f̄1, . . . , f̄m generates Λ. Identify σi,j in
Pp with

(6.2.3) fi =
r∑

k=1

σi,kGk in Pp.
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In other words,

(6.2.4)

f1
...
fm

 =

σ1,1 . . . σ1,r
...

...
σm,1 . . . σm,r

G1
...
Gr


(The f ’s and the G’s are in pPp; the σ’s are in Pp.) The equation (6.2.4) continues to hold
when the f ’s and G’s are viewed as elements of pPp

p2Pp
and the σ’s continue to be viewed as

elements of Pp:  f̄1
...
f̄m

 =

σ1,1 . . . σ1,r
...

...
σm,1 . . . σm,r

Ḡ1
...
Ḡr

 .
At this point, it does no harm to view the σ’s as elements of Pp/pPp = L: f̄1

...
f̄m

 =

σ1,1 . . . σ1,r
...

...
σm,1 . . . σm,r

∣∣∣∣∣∣
L

Ḡ1
...
Ḡr

 .
The Ḡ’s are a basis for pPp/p

2Pp; the f̄ ’s are a generating set for Λ. It follows that

dimL Λ = rank[σi,j]|L.

Combine the most recent equation with (6.2.2). It suffices to prove that G’s can be chosen
so that

(6.2.5) rankL Jac |L = rank[σi,j]|L.

Take ∂
∂xj

of equation (6.2.3):

∂fi
∂xj

=
r∑

k=1

(
σi,k

∂Gk

∂xj
+
∂σi,k
∂xj

Gk

)
.

When we look at this equation in L = Pp

pPp
, the G’s are zero; hence,

∂fi
∂xj

∣∣∣∣
L

=
r∑

k=1

σi,k|L
∂Gk

∂xj

∣∣∣∣
L

.

In other words,

Jac |L = [σi,j]|L
(
∂Gi

∂xj

)∣∣∣∣
L

.

In Lemma 6.3 we prove that there exist G’s so that

(6.2.6)
(
∂Gi

∂xj

)∣∣∣∣
L

: Ln → Lr
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is surjective. Once we do this, then (6.2.5) happens, (that is rankL Jac |L = rank[σi,j]|L).
Indeed, if (6.2.6) is surjective, then a quick look at

Ln
Jac |L=(

∂fi
∂xj

)|L
//

(
∂Gi
∂xj

)|L
��

Lm

Lr
[σi,j ]|L

77ooooooooooooo

shows that the image of Jac |L is then equal to the image of [σi,j]|L. The proof will then be
complete. �

Lemma 6.3. Let kkk be a perfect field, P be the polynomial ring kkk[x1, . . . , xn], p be a prime
ideal of P , and L be the field Pp/pPp. Then there exist G1, . . . Gr ∈ pPp such that Ḡ1, . . . Ḡr is
a basis for pPp/p

2Pp and 
∂G1

∂x1
. . . ∂G1

∂xn
...

...
∂Gr
∂x1

. . . ∂Gr
∂xn


∣∣∣∣∣∣∣
L

has rank r.

Proof. Let ξi be the image of xi in L. The field kkk is perfect and L = kkk(ξ1, . . . , ξn). Apply
Lemma 6.4 to conclude that some subset Γ of {ξ1, . . . , ξn} has the property that Γ is a
transcendence basis for L over kkk and L is a separable algebraic extension of kkk(Γ). We
renumber the variables, if necessary, in order to have Γ = {ξ1, . . . , ξt}, where t = trdegkkk L.
According to Goal 3.1 and Corollary 5.5.(d),

t = dimP/p = dimP − ht p.

Let S = kkk[x1, . . . , xt]\{0} andK = S−1kkk[x1, . . . , xt]. Of course,K is the field kkk(x1, . . . , xt);
S−1P is the polynomial ring S−1P = K[xt+1, . . . , xn]; and K ⊆ L is a finite dimensional,
separable, algebraic field extension.

Observe that the kernel of the composition

kkk[x1, . . . , xt] ⊆ P → L

is zero since ξ1, . . . , ξt are algebraically independent over kkk; hence S is disjoint from p

and Pp is obtained from S−1P = K[xt+1, . . . , xn] by further localization. (If it is helpful
Pp = T−1P , where T = P \ p and S ⊆ T .) Consider the following picture:

S−1P �
� incl //

Φ
'' ''NNNNNNNNNNNNNN Pp

π mod out by pPp
����
L,

where Φ is the K-algebra homomorphism with Φ(xi) = ξi, for t + 1 ≤ i ≤ n. Notice
that (ker Φ)Pp = ker π. (The containment ⊆ is obvious. We look at ⊇. If θ ∈ kerπ, then
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τθ ∈ S−1P for some τ ∈ P \ p. Thus τθ is in ker Φ and θ ∈ (ker Φ)Pp.) We carefully worked
out

ker
(

Φ : K[xt+1, . . . , xn]→ K(ξt+1, . . . , ξn)
)

in Project 3.3. Indeed,

ker Φ =
(
F1(xt+1), F2(xt+1, xt+2), . . . , Fn−t(xt+1, xt+2, . . . , xn)

)
,

where
Fi(ξt+1, . . . , ξt+i−1, xt+i)

is the minimal polynomial of ξt+i over K(ξt+1, . . . , ξt+i−1). Call this minimal polynomial
gi(xt+i). Notice that ∂Fi

∂xt+i
|L = g′i(ξt+i) 6= 0. (The extension K ⊆ L is algebraic and separa-

ble. It follows that minimal polynomials do not have repeated roots.)
The ideal ker Φ is generated by (F1, . . . , Fn−t). Thus,

(F1, . . . , Fn−t)Pp = kerπ = pPp.

The ring Pp is regular local (by Corollary 5.6) of dimension equal to

ht p = dimP − dimP/p, by Corollary 5.5.(d),

= n− t, by Goal 3.1.

So, F1, . . . , Fn−t is a minimal generating set for pPp. Now consider

(
∂Fi
∂xj

)∣∣∣∣
L

=


∗ . . . ∗ ∂F1

∂xt+1
|L 0 · · · 0

... . . . . . . . . . . . . ...

... . . . . . . . . . 0

∗ ∗ ∂Fn−t
∂xn
|L

 .
This matrix clearly has rank n − t. Multiplication by this matrix is a surjective map from
Ln to Ln−t. This completes the proof. �

Lemma 6.4. If kkk is a perfect field and L = kkk(ξ1, . . . , ξn) is a field extension kkk, then some
subset Γ of {ξ1, . . . , ξn} is a transcendence basis for L over kkk and the field extension kkk(Γ) ⊂ L

is algebraic and separable.

Proof. See Theorems 30 and 31 in [11]. These theorems are in section 13 of Chapter 2 of
Volume 1. The chapter is called “Elements of Field Theory”. �
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