Homework 9

Due Friday April 18, 2008 at the beginning of class.
13. Let $E=\mathbb{C}^{3}, V=\bigwedge^{2} E$, and $\rho: \operatorname{GL}(E) \rightarrow \mathrm{GL}(V)$ be the holomorphic group homomorphism which exhibits V as a representation of $\mathrm{GL}(E)$. Exhibit the $\operatorname{map} d \rho: \mathfrak{g l}(E) \rightarrow \mathfrak{g l}(V)$.

Note.
a. $\mathfrak{g l}(E)$ and $\mathfrak{g l}(V)$ both are equal to the set of 3×3 matrices with complex entries.
b. Your job job is to take an arbitrary matrix in $\mathfrak{g l}(E)$ and show me where it is sent in $\mathfrak{g l}(V)$. (Of course, you'll have to tell me what bases you are using.)
c. Your answer is actually a Lie Algebra homomorphism. Feel free to experiment with that phenomenon if you like - or not, as you wish.
d. Feel free to treat an E of larger dimension and/or a $V=E^{\lambda}$ for a more complicated partition than $\lambda=(1,1)$.

