Homework 4

Due Monday February 11, 2008 at the beginning of class.
6. Let R be the regular representation of S_{3} over \mathbb{C}. Decompose R into irreducible representations.
Remarks.

1. So, R is the vector space

$$
\mathbb{C}(1) \oplus \mathbb{C}(12) \oplus \mathbb{C}(13) \oplus \mathbb{C}(23) \oplus \mathbb{C}(123) \oplus \mathbb{C}(132)
$$

and σ in S_{3} sends τ in R to $\sigma \tau$ in R.
2. Sometime in the next few days we will establish Corollary 2.18 in Fulton-Harris. This corollary says that each irreducible representation V_{i} of S_{3} appears in R exactly $\operatorname{dim} V_{i}$ times.
3. We already know all three irreducible representations of S_{3}. So we already know all of the numerology. I would like to see explicit irreducible submodules of R that add up to R.

