Homework 3

Due Friday February 1, 2008 at the beginning of class.
5. Let the Symmetric group S_{3} act on the vector space $\mathbb{C}^{3}=\mathbb{C} x_{1} \oplus \mathbb{C} x_{2} \oplus \mathbb{C} x_{3}$ by $\sigma\left(x_{i}\right)=x_{\sigma(i)}$ for all $\sigma \in S_{3}$ and $1 \leq i \leq 3$. We noticed that $W_{1}=\mathbb{C}\left(x_{1}+x_{2}+x_{3}\right)$ is an S_{3}-submodule of \mathbb{C}^{3}. Identify a complementary S_{3}-submodule W_{2} of \mathbb{C}^{3} with $W_{1} \oplus W_{2}=\mathbb{C}^{3}$ (as an internal direct sum). Is W_{2} irreducible? What are the characters associated to each of the representations W_{1}, W_{2}, and \mathbb{C}^{3} ? Please write down complete explanations.

Definition. Let V be a finite dimensional vector space over the field K. If V is a representation of the group G, then the character associated to V is the function $\chi: G \rightarrow K$ which is given by $g \mapsto \operatorname{tr}(g: V \rightarrow V)$. In this discussion tr stands for trace. The trace of a square matrix is the sum of the elements on its main diagonal. The function "multiplication by g " corresponds to a linear transformation from V to V; hence, a square matrix.

