Homework 2

Due Friday January 25, 2008 at the beginning of class.
Let V, V_{1}, V_{2} and W be finite dimensional vector spaces over the field K. (You may make any necessary assumptions on K.)
2. Let G_{1} and G_{2} be groups. Suppose that V_{1} is an irreducible G_{1}-module and V_{2} is an irreducible G_{2}-module. Prove that $V_{1} \otimes_{K} V_{2}$ is an irreducible $G_{1} \times G_{2}$ module. (The direct product $G_{1} \times G_{2}$ acts on the tensor product $V_{1} \otimes_{K} V_{2}$ by $\left(g_{1}, g_{2}\right)$ of $v_{1} \otimes v_{2}$ is $\left.g_{1}\left(v_{1}\right) \otimes g_{2}\left(v_{2}\right).\right)$
3. When is the $m^{\text {th }}$ exterior power $\bigwedge^{m} V$ an irreducible GL (V)-module?
4. Decompose $\operatorname{Sym}_{2}\left(V \otimes_{K} W\right)$ into a direct sum of irreducible GL $(V) \times \mathrm{GL}(W)$ modules.
"Recall" that if V and W are vector spaces over the field K, then the tensor product of V and W over K (written as $V \otimes_{K} W$) is the vector space which is spanned by symbols $v \otimes w$ with $v \in V$ and $w \in W$. (That is, every element of $V \otimes W$ looks like $\sum_{i=1}^{s} \alpha_{i}\left(v_{i} \otimes w_{i}\right)$, with $\alpha_{i} \in K, v_{i} \in V$, and $w_{i} \in W$.) The operation \otimes is linear in each position:

$$
\begin{gathered}
\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right) \otimes w=\alpha_{1}\left(v_{1} \otimes w\right)+\alpha_{2}\left(v_{2} \otimes w\right) \quad \text { and } \\
v \otimes\left(\alpha_{1} w_{1}+\alpha_{2} w_{2}\right)=\alpha_{1}\left(v \otimes w_{1}\right)+\alpha_{2}\left(v \otimes w_{2}\right),
\end{gathered}
$$

for all $\alpha_{i} \in K, v_{i}, v \in V$ and $w_{i}, w \in W$. In particular, if $\left\{v_{i} \mid i \in I\right\}$ is a basis for V and $\left\{w_{j} \mid j \in J\right\}$ is a basis for W, then $\left\{v_{i} \otimes w_{j} \mid i \in I\right.$ and $\left.j \in J\right\}$ is a basis for $V \otimes_{k} W$.

You might find it informative to notice that
$\operatorname{Sym}_{2} V=\frac{V \otimes_{K} V}{\left.\text { (the subspace generated by the set of all } v \otimes v^{\prime}-v^{\prime} \otimes v \text { with } v, v^{\prime} \in V\right)}$,
and

$$
\bigwedge^{2} V=\frac{V \otimes_{K} V}{(\text { the subspace generated by the set of all } v \otimes v \text { with } v \in V)}
$$

