PRINT Your Name: \qquad

Quiz for June 8, 2004

Prove that if the sequence $\left\{a_{n}\right\}$ converges to a, then the sequence $\left\{\left|a_{n}\right|\right\}$ converges to $|a|$. Is the converse true? Prove or give a counter example.

ANSWER: Given $\varepsilon>0$, there exists n_{0} such that whenever $n_{0} \leq n$, then $\left|a_{n}-a\right| \leq \varepsilon$. Notice that $\left|\left|a_{n}\right|-|a|\right| \leq\left|a_{n}-a\right|$; therefore, the very same n_{0} has the property that whenever $n_{0} \leq n$, then $\left|\left|a_{n}\right|-|a|\right| \leq \varepsilon$. We have established that the sequence $\left\{\left|a_{n}\right|\right\}$ converges to $|a|$.

The converse is false. For example the sequence if $a_{n}=(-1)^{n}$, then the sequence $\left\{\left|a_{n}\right|\right\}$ converges to 1 ; but the sequence $\left\{a_{n}\right\}$ diverges.

