PRINT Your Name:

Quiz for June 5, 2006

Give a complete proof that the limit of the sequence $\{\frac{n^2+1}{2n^2}\}$ is $\frac{1}{2}$. In other words, given $\varepsilon > 0$, you are required to find a formula for n_0 with the property that:

(*) whenever
$$n > n_0$$
, then: $\left| \frac{n^2 + 1}{2n^2} - \frac{1}{2} \right| < \varepsilon.$

Your formula for n_0 will probably involve ε . I expect a complete, coherent argument that (*) holds. Write in complete sentences.

ANSWER: Let n_0 be any fixed integer with $\sqrt{\frac{1}{2\varepsilon}} < n_0$. (Of course, I did some scratch work to know this good choice for n_0 .) Suppose n is any integer with $n_0 < n$. Both sides of the inequality

$$\sqrt{\frac{1}{2\varepsilon}} < n$$

are positive; so we may square both sides to obtain the inequality:

$$\frac{1}{2\varepsilon} < n^2.$$

Multiply by the positive number $\frac{\varepsilon}{n^2}$ to see that $\frac{1}{2n^2} < \varepsilon$. We are finished because

$$\left|\frac{n^2+1}{2n^2} - \frac{1}{2}\right| = \left|\frac{n^2}{2n^2} + \frac{1}{2n^2} - \frac{1}{2}\right| = \frac{1}{2n^2} < \varepsilon.$$