\qquad

Quiz for June 5, 2006

Give a complete proof that the limit of the sequence $\left\{\frac{n^{2}+1}{2 n^{2}}\right\}$ is $\frac{1}{2}$. In other words, given $\varepsilon>0$, you are required to find a formula for n_{0} with the property that:
$(*) \quad$ whenever $n>n_{0}$, then: $\quad\left|\frac{n^{2}+1}{2 n^{2}}-\frac{1}{2}\right|<\varepsilon$.

Your formula for n_{0} will probably involve ε. I expect a complete, coherent argument that $(*)$ holds. Write in complete sentences.

ANSWER: Let n_{0} be any fixed integer with $\sqrt{\frac{1}{2 \varepsilon}}<n_{0}$. (Of course, I did some scratch work to know this good choice for n_{0}.) Suppose n is any integer with $n_{0}<n$. Both sides of the inequality

$$
\sqrt{\frac{1}{2 \varepsilon}}<n
$$

are positive; so we may square both sides to obtain the inequality:

$$
\frac{1}{2 \varepsilon}<n^{2} .
$$

Multiply by the positive number $\frac{\varepsilon}{n^{2}}$ to see that $\frac{1}{2 n^{2}}<\varepsilon$. We are finished because

$$
\left|\frac{n^{2}+1}{2 n^{2}}-\frac{1}{2}\right|=\left|\frac{n^{2}}{2 n^{2}}+\frac{1}{2 n^{2}}-\frac{1}{2}\right|=\frac{1}{2 n^{2}}<\varepsilon
$$

