Quiz for June 21, 2005

Let $K=\{0\} \cup\left\{\left.\frac{1}{n} \right\rvert\, n=1,2,3, \ldots\right\}$. Prove directly (using the definition) that K is compact.

Let $\mathcal{U}=\left\{U_{a} \mid a \in A\right\}$ be an open cover of K. The number 0 is in K; so, 0 is in $U_{a_{0}}$, for some $a_{0} \in A$. The set $U_{a_{0}}$ is open; so there exists a positive ε with $N_{\varepsilon}(0) \subseteq U_{a_{0}}$. If n_{0} is a large enough integer, then $\frac{1}{n_{0}}<\varepsilon$. It follows that for all integers n, with $n \geq n_{0}, \frac{1}{n} \in U_{a_{0}}$. Only finitely many elements of K are outside $U_{a_{0}}$; these elements are some subset of $\left\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n_{0}-1}\right\}$. If $1 \leq i \leq n_{0}-1$, then there exists $a_{i} \in A$ with $\frac{1}{i} \in U_{a_{i}}$. Thus, the finite subset $\left\{U_{a_{0}}, U_{a_{1}}, U_{a_{2}}, \ldots, U_{a_{n_{0}-1}}\right\}$ of \mathcal{U}, covers K.

