Quiz for June 21, 2005

Let $K = \{0\} \cup \{\frac{1}{n} \mid n = 1, 2, 3, ...\}$. Prove directly (using the definition) that K is compact.

Let $\mathcal{U} = \{U_a \mid a \in A\}$ be an open cover of K. The number 0 is in K; so, 0 is in U_{a_0} , for some $a_0 \in A$. The set U_{a_0} is open; so there exists a positive ε with $N_{\varepsilon}(0) \subseteq U_{a_0}$. If n_0 is a large enough integer, then $\frac{1}{n_0} < \varepsilon$. It follows that for all integers n, with $n \geq n_0$, $\frac{1}{n} \in U_{a_0}$. Only finitely many elements of K are outside U_{a_0} ; these elements are some subset of $\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n_0-1}\}$. If $1 \leq i \leq n_0 - 1$, then there exists $a_i \in A$ with $\frac{1}{i} \in U_{a_i}$. Thus, the finite subset $\{U_{a_0}, U_{a_1}, U_{a_2}, \dots, U_{a_{n_0-1}}\}$ of \mathcal{U} , covers K.