PRINT Your Name:

Quiz for June 15, 2004

Let $\{a_n\}$ and $\{b_n\}$ be Cauchy sequences. Prove that the sequence $\{a_nb_n\}$ is also a Cauchy sequence.

ANSWER: Let $\varepsilon > 0$ be arbitrary, but fixed.

• The sequence $\{a_n\}$ is a Cauchy sequence; so, there exists n_1 such that whenever $n_1 \leq n, m$, then $|a_n - a_m| \leq 1$. In particular, whenever $n_1 \leq n$, then

$$|a_n| - |a_{n_1}| \le ||a_n| - |a_{n_1}|| \le |a_n - a_{n_1}| \le 1;$$

 $\mathbf{so},$

(1)
$$|a_n| \le |a_{n_1}| + 1.$$

• The exact same reasoning produces an integer n_2 with the property that if $n_2 \leq m$, then

(2)
$$|b_m| \le |b_{n_2}| + 1.$$

• The sequence $\{a_n\}$ is a Cauchy sequence; so, there exists n_3 such that whenever $n_3 \leq n, m$, then

(3)
$$|a_n - a_m| \le \frac{\varepsilon}{2(|b_{n_2}| + 1)}.$$

 \bullet The sequence $\{b_n\}$ is a Cauchy sequence; so, there exists $\,n_4\,$ such that whenever $n_4 \leq n,m$, then

(4)
$$|b_n - b_m| \le \frac{\varepsilon}{2(|a_{n_1}| + 1)}.$$

Pick n_0 to be the maximum of n_1 , n_2 , n_3 , and n_4 . If $n_0 \leq n, m$, then the triangle inequality and (1), (2), (3), and (4) give:

$$|a_n b_n - a_m b_m| = |a_n b_n - a_n b_m + a_n b_m - a_m b_m| \le |a_n b_n - a_n b_m| + |a_n b_m - a_m b_m|$$
$$= |a_n||b_n - b_m| + |a_n - a_m||b_m| \le (|a_{n_1}| + 1)\frac{\varepsilon}{2(|a_{n_1}| + 1)} + \frac{\varepsilon}{2(|b_{n_2}| + 1)}(|b_{n_2}| + 1) = \varepsilon.$$