PRINT Your Name: \qquad

Quiz for June 15, 2004

Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be Cauchy sequences. Prove that the sequence $\left\{a_{n} b_{n}\right\}$ is also a Cauchy sequence.

ANSWER: Let $\varepsilon>0$ be arbitrary, but fixed.

- The sequence $\left\{a_{n}\right\}$ is a Cauchy sequence; so, there exists n_{1} such that whenever $n_{1} \leq n, m$, then $\left|a_{n}-a_{m}\right| \leq 1$. In particular, whenever $n_{1} \leq n$, then

$$
\left|a_{n}\right|-\left|a_{n_{1}}\right| \leq\left|\left|a_{n}\right|-\left|a_{n_{1}}\right|\right| \leq\left|a_{n}-a_{n_{1}}\right| \leq 1 ;
$$

so,

$$
\begin{equation*}
\left|a_{n}\right| \leq\left|a_{n_{1}}\right|+1 \tag{1}
\end{equation*}
$$

- The exact same reasoning produces an integer n_{2} with the property that if $n_{2} \leq m$, then

$$
\begin{equation*}
\left|b_{m}\right| \leq\left|b_{n_{2}}\right|+1 \tag{2}
\end{equation*}
$$

- The sequence $\left\{a_{n}\right\}$ is a Cauchy sequence; so, there exists n_{3} such that whenever $n_{3} \leq n, m$, then

$$
\begin{equation*}
\left|a_{n}-a_{m}\right| \leq \frac{\varepsilon}{2\left(\left|b_{n_{2}}\right|+1\right)} . \tag{3}
\end{equation*}
$$

- The sequence $\left\{b_{n}\right\}$ is a Cauchy sequence; so, there exists n_{4} such that whenever $n_{4} \leq n, m$, then

$$
\begin{equation*}
\left|b_{n}-b_{m}\right| \leq \frac{\varepsilon}{2\left(\left|a_{n_{1}}\right|+1\right)} . \tag{4}
\end{equation*}
$$

Pick n_{0} to be the maximum of n_{1}, n_{2}, n_{3}, and n_{4}. If $n_{0} \leq n$, m, then the triangle inequality and (1), (2), (3), and (4) give:

$$
\begin{gathered}
\left|a_{n} b_{n}-a_{m} b_{m}\right|=\left|a_{n} b_{n}-a_{n} b_{m}+a_{n} b_{m}-a_{m} b_{m}\right| \leq\left|a_{n} b_{n}-a_{n} b_{m}\right|+\left|a_{n} b_{m}-a_{m} b_{m}\right| \\
=\left|a_{n}\right|\left|b_{n}-b_{m}\right|+\left|a_{n}-a_{m}\right|\left|b_{m}\right| \leq\left(\left|a_{n_{1}}\right|+1\right) \frac{\varepsilon}{2\left(\left|a_{n_{1}}\right|+1\right)}+\frac{\varepsilon}{2\left(\left|b_{n_{2}}\right|+1\right)}\left(\left|b_{n_{2}}\right|+1\right)=\varepsilon .
\end{gathered}
$$

