\qquad

Quiz for June 1, 2006

Let X, Y, and Z be sets. Suppose that $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are one-to-one functions. Prove that the function $g \circ f: X \rightarrow Z$ is one-to-one.

ANSWER: Let x_{1} and x_{2} be elements of X with $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$. We must prove that $x_{1}=x_{2}$.

We are given $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$. The function g is one-to-one; hence, the elements $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ in Y are equal. The function f is one-to-one; hence, the elements x_{1} and x_{2} in X are equal.

