PRINT Your Name:

Quiz for May 31, 2005

Let E be a nonempty subset of \mathbb{R} that is bounded above, and set

 $U = \{ \beta \in \mathbb{R} \mid \beta \text{ is an upper bound of } E \}.$

Prove that $\sup E = \inf U$.

ANSWER: Let $\alpha = \sup E$ and $\gamma = \inf U$.

 $\gamma \leq \alpha$: The number α is an upper bound of E; and therefore, $\alpha \in U$. On the other hand, γ is a lower bound for U; so, $\gamma \leq \alpha$.

We finish the argument by showing that $\gamma < \alpha$ is impossible. Suppose $\gamma < \alpha$. The number α is the supremum of E, and $\gamma < \alpha$; hence, there is an element $e \in E$ with $\gamma < e$. On the other hand, γ is the infimum of U, and $\gamma < e$; so, there is an element $u \in U$ with u < e. This is a contardiction because u is an upper bound of the set E and e is an element of E with u < e.

We have shown that $\gamma \leq a$ and γ is not less than α . The only remaining possibility is $\gamma = \alpha$.