Math 554, Final Exam, Summer 2006
Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Leave room on the upper left hand corner of each page for the staple. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. Otherwise, get your grade from VIP.

There are 11 problems. The exam is worth a total of 100 points.
I will post the solutions on my website later this afternoon.

Record ALL of your answers in complete sentences.

1. (9 points) Define "continuous". Use complete sentences. Include everything that is necessary, but nothing more.
2. (9 points) Define "supremum". Use complete sentences. Include everything that is necessary, but nothing more.
3. (9 points) PROVE that the continuous image of a compact set is compact.
4. (9 points) STATE and PROVE the Nested Interval Property.
5. (10 points) Let A be a set. For each $\alpha \in A$, let U_{α} be an open subset of \mathbb{R} and F_{α} be a closed subset of \mathbb{R}. For each question: if the answer is yes, then PROVE the assertion; if the answer is no, then give a counter example.
(a) Does $\bigcup_{\alpha \in A} U_{\alpha}$ have to be open?
(b) Does $\bigcap_{\alpha \in A} U_{\alpha}$ have to be open?
(c) Does $\bigcup_{\alpha \in A} F_{\alpha}$ have to be closed?
(d) Does $\bigcap_{\alpha \in A} F_{\alpha}$ have to be closed?
6. (9 points) Let $E=\left\{\left.1-\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$ and let $F=E \cup\{1\}$.
(a) Give an example of an open cover of E which does not admit a finite subcover. PROVE all of your assertions.
(b) Prove DIRECTLY (that is, do not quote any Theorems) that every open cover of F does admit a finite subcover.
7. (9 points) Consider the sequence $\left\{a_{n}\right\}$ with $a_{n}=\sum_{k=1}^{n} \frac{1}{k!}$. Prove that $\left\{a_{n}\right\}$ is a Cauchy sequence.
8. (9 points) Let $a_{1} \neq a_{2}$ be real numbers. For $n \geq 3$, let $a_{n}=\frac{3}{4} a_{n-1}+\frac{1}{4} a_{n-2}$. PROVE that the sequence $\left\{a_{n}\right\}$ is a contractive sequence.
9. (9 points) Let $\left\{a_{n}\right\}$ be a sequence of positive real numbers. Suppose that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=L$ for some real number L with $L<1$. Does the sequence $\left\{a_{n}\right\}$ have to converge? If the answer is yes, then PROVE the assertion; if the answer is no, then give a counter example.
10. (9 points) Let A and B be non-empty sets, and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Suppose that the function $g \circ f$ is onto. For each question: if the answer is yes, then PROVE the assertion; if the answer is no, then give a counter example.
(a) Does f have to be onto?
(b) Does g have to be onto?
11. (9 points) Let A and B be nonempty subsets of positive real numbers that are bounded from above. Let $C=\{a b \mid a \in A$ and $b \in B\}$. PROVE that $\sup C=(\sup A)(\sup B)$.
