
Math 554, Final Exam, Summer 2006
Write your answers as legibly as you can on the blank sheets of paper provided.
Use only one side of each sheet. Leave room on the upper left hand corner
of each page for the staple. Be sure to number your pages. Put your solution
to problem 1 first, and then your solution to number 2, etc; although, by using
enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don’t already
know your e-mail address and you want me to know it, then send me an e-mail.
Otherwise, get your grade from VIP.

There are 11 problems. The exam is worth a total of 100 points.

I will post the solutions on my website later this afternoon.

Record ALL of your answers in complete sentences.

1. (9 points) Define “continuous”. Use complete sentences. Include
everything that is necessary, but nothing more.

The function f : E → R is continuous at the point p of E , if, for all ε > 0 , there
exists δ > 0 , such that whenever |x− p| < δ and x ∈ E , then |f(x)− f(p)| < ε .

2. (9 points) Define “supremum”. Use complete sentences. Include
everything that is necessary, but nothing more.

The real number α is the supremum of the non-empty set of real numbers E if α
is an upper bound of E and whenever d is a real number with d < α , then d is
not an upper bound of E .

3. (9 points) PROVE that the continuous image of a compact set is
compact.

Let K be a compact subset of R and let f : K → R be a continuous function. Let
U = {Uα | α ∈ A} be an open cover of f(K) . For each point p ∈ K , the element
f(p) is in f(K) . The set U covers f(K) , so there is an index αp such that f(p)
is in Uαp

. The function f is continuous at p ; so there exists a δp > 0 such that
f(Nδp

(p) ∩ K) ⊆ Uαp
. We create such a neighborhood Nδp

(p) for each p ∈ K .
We see that N = {Nδp

(p) | p ∈ K} is an open cover of K . The set K is compact;
consequently, there exist p1, . . . , pn in K such that Nδp1

(p1), . . . , Nδpn
(pn) cover
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K . It follows that f(Nδp1
(p1) ∩ K), . . . , f(Nδpn

(pn) ∩ K) cover f(K) . But

f(Nδpi
(pi) ∩ K) ⊆ Uαpi

, for all i ; therefore, Uαp1
, . . . , Uαpn

covers f(K) .

4. (9 points) STATE and PROVE the Nested Interval Property.

The Nested Interval Property. For each natural number n , let In be a bounded

closed interval. If In ⊇ In+1 for all n ∈ N , then the intersection
∞⋂

n=1
In is not

empty.

Proof. Let In = [an, bn] , with an < bn , for each n . The hypothesis that the
intervals are nested tells us that

a1 ≤ a2 ≤ · · · ≤ b2 ≤ b1.

In fact, if n and m are natural numbers, then an < bm . We prove this small
claim. If n < m , then an ≤ am < bm . (The first inquality follows from the
hypothesis that the intervals are nested. The second inequality follows from the
hypothesis that each interval is an interval.) In a similar manner, if m < n , then
an < bn ≤ bm . The claim is established.

The set A = {a1, a2, . . .} is bounded and not empty. The least upper bound
axiom tells us that sup A exists. Let a = sup A .

We finsh our proof by showing that a ∈
∞⋂

n=1
In . Fix a natural number n . We

show a ∈ In . It is clear that an ≤ a (beacuse an ∈ A and a is an upper bound
for A ) On the other hand, the first calculation we made shows that bn is also an
upper bound for A ; hence bn is at least as large as the least upper bound for A ;

namely, a . We conclude that a ∈ [an, bn] , for all n ; hence, a ∈
∞⋂

n=1
In .

5. (10 points) Let A be a set. For each α ∈ A , let Uα be an open subset
of R and Fα be a closed subset of R . For each question: if the answer
is yes, then PROVE the assertion; if the answer is no, then give a
counter example.

(a) Does
⋃

α∈A

Uα have to be open?
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YES. Let p be an element of
⋃

α∈A

Uα . Thus, p is in Uα0
for some α0 ∈ A . The

set Uα0
is open, so there exists ε > 0 with Nε(p) ⊆ Uα0

. Thus, Nε(p) ⊆
⋃

α∈A

Uα .

(b) Does
⋂

α∈A

Uα have to be open?

NO. For each natural number n , let In = (0, 1 + 1
n
) . It is clear that each open

interval In is an open set in R . It is also clear that
⋂

n∈N

In = (0, 1] ; which is not

an open subset of R . Indeed, Nε(1) is not contained in (0, 1] for any ε > 0 .

(c) Does
⋃

α∈A

Fα have to be closed?

NO. For each natural number n with n ≥ 2 , the closed interval [ 1
n
, 1] is a closed

subset of R . The union of all of these sets is (0, 1] , which is not a closed set.

(d) Does
⋂

α∈A

Fα have to be closed?

YES. We will prove that
⋂

α∈A

Fα is a closed set by proving that the complement is

open. Let x ∈ R with x /∈
⋂

α∈A

Fα . Thus, there is an index α0 ∈ A with x /∈ Fα0
.

The set Fα0
is closed, so the complement of Fα0

is open and there exists an ε > 0
such that Nε(x) misses Fα0

. It follows that Nε(x) misses
⋂

α∈A

Fα ; and therefore,
⋂

α∈A

Fα is a closed set.

6. (9 points) Let E = {1 − 1
n
| n ∈ N} and let F = E ∪ {1} .

(a) Give an example of an open cover of E which does not admit a
finite subcover. PROVE all of your assertions.

For each n ∈ N , let Un be the open set (−∞, 1 − 1
n
) . It is clear that

U = {Un|n ∈ N} is an open cover of E . It is also clear that the union of
any finite subset of sets Un1

∪ · · · ∪ Un`
from U is equal to Umax where max is

the maximum of the parameters {n1, . . . , n`} . At any rate this union misses most
of the set E .

(b) Prove DIRECTLY (that is, do not quote any Theorems) that every
open cover of F does admit a finite subcover.
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Let U = {Uα | α ∈ A} be an arbitrary open cover of F . The number 1 is in one
of the sets of U ; in other words, there is an element α0 of A so that 1 ∈ Uα0

.
The set Uα0

is open, so there exists ε with Nε(1) ⊆ Uα0
. Of course, if n0 is large

enough, then 1
n0

< ε . If n ≥ n0 , then 1
n
≤ 1

n0
< ε and 1 − 1

n
∈ Nε(1) ⊆ Uα0

.

For each n with n < n0 , there exists a subscript αn ∈ A with 1− 1
n
∈ Uαn

. We
have found a finite subcover Uα0

, Uα1
, . . . , Uαn0−1

of U which covers F .

7. (9 points) Consider the sequence {an} with an =
n∑

k=1

1
k! . Prove that

{an} is a Cauchy sequence.

For each natural number r , we see that 2r ≤ 1 · 2 · 3 · . . . · r · (r + 1) . In other
words, 2r ≤ (r + 1) and 1

(r+1)! ≤
1
2r . It follows that

|an+k − an| =
1

(n + 1)!
+ · · ·+

1

(n + k)!
≤

1

2n
+ · · ·+

1

2n+k−1
=

1
2n − 1

2n+k

1 − 1
2

=
1

2n−1
−

1

2n+k−1
≤

1

2n−1
.

Fix ε > 0 . Pick n0 large enough for 1
2n0−1 < ε . We have just shown that if n

and m are both at least n0 , then |an − am| < 1
2min{n,m}−1 ≤ 1

2n0−1
< ε . We have

proven that {an} is a Cauchy sequence.

8. (9 points) Let a1 6= a2 be real numbers. For n ≥ 3 , let an =
3
4an−1 + 1

4an−2 . PROVE that the sequence {an} is a contractive
sequence.

If an−1 and an−2 ever happen to be equal, then an will equal this common value
and induction or iteration shows that all of the rest of the terms of the sequence
take this common value. A constant sequence is automatically contractive (use any
b with 0 < b < 1 ), but not very interesting. Henceforth, in this problem, we will
only think about sequences with an+1 − an 6= 0 . We see that

|an+2 − an+1|

|an+1 − an|
=

| 34an+1 + 1
4an − an+1|

|an+1 − an|
=

| − 1
4an+1 + 1

4an|

|an+1 − an|
=

| − 1
4 ||an+1 − an|

|an+1 − an|
= 1

4
.

Thus, |an+2 − an+1| ≤ 1
4 |an+1 − an| for all n and the sequence {an} is a

contractive sequence.
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9. (9 points) Let {an} be a sequence of positive real numbers. Suppose
that lim

n→∞

an+1

an
= L for some real number L with L < 1 . Does the

sequence {an} have to converge? If the answer is yes, then PROVE
the assertion; if the answer is no, then give a counter example.

YES. Pick ρ with L < ρ < 1 . The hypothesis that lim
n→∞

an+1

an
= L guarantees

that there exists n0 so that whenever n ≥ n0 , then an+1

an
< ρ . In particular,

an0+1 < ρan0
; an0+2 < ρ2an0

; . . . . Induct or iterate to see that an+k < ρkan0

for all natural numbers k . It is clear that ρkan0
goes to 0 as k goes to ∞ ;

hence, the original sequence {an} converges to 0 .

10. (9 points) Let A and B be non-empty sets, and let f : A → B and
g : B → C be functions. Suppose that the function g ◦ f is onto. For
each question: if the answer is yes, then PROVE the assertion; if the
answer is no, then give a counter example.

(a) Does f have to be onto?

NO Let A = {1} , B = {1, 2} , C = {1} , f(1) = 1 and g(1) = g(2) = 1 . It is
clear that g ◦ f is onto, but f is not onto.

(b) Does g have to be onto?

YES. If c is an arbitrary element of C , then the fact that g ◦ f is onto tells us
that there exists an element a ∈ A with (g ◦ f)(a) = c . We now know that f(a)
is an element of B with g(f(a)) = c .

11. (9 points) Let A and B be nonempty subsets of positive real numbers
that are bounded from above. Let C = {ab | a ∈ A and b ∈ B} . PROVE
that sup C = (sup A)(sup B) .

Let α = sup A , β = sup B and γ = sup C .

We show γ ≤ αβ . It suffices to show that αβ is an upper bound for C . Let c
be an arbitrary element of C . It follows that c = ab for some a ∈ A and some
b ∈ B . We know that α is an upper bound for A , so a ≤ α . We know that
β is an upper bound for B , so b ≤ β . Multiply a ≤ α by the positive number
b to see thar ab ≤ αb . Multiply b ≤ β by the positive number α to see that
αb ≤ αβ . Conclude that

c = ab ≤ αb ≤ αβ;



6

and therefore αβ is an upper bound for C .

We show αβ ≤ γ . We do this part of the argument by contradiction. If γ < αβ ,
then γ

α
< β . (We know that A is a non-empty set of positive numbers, and α

is an upper bound for A . It follows that α is positive, and so not zero.) But β
is sup B ; so there exists b ∈ B with γ

α
< b . The number b is positive; so not

zero. We have γ
b

< α . But α is sup A ; so there exists a ∈ A with γ
b

< a . We
now have γ < ab ∈ C ; which contradicts the fact that γ is an upper bound for
C . Our original supposition that γ < αβ must be wrong; so, we have established
that αβ ≤ γ .

We have shown that γ ≤ αβ and αβ ≤ γ . It follows that αβ = γ and the proof
is complete.


