Math 554, Final Exam, Summer 2006

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. **Leave room on the upper left hand corner of each page for the staple.** Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**. Otherwise, get your grade from VIP.

There are 11 problems. The exam is worth a total of 100 points.

I will post the solutions on my website later this afternoon.

Record ALL of your answers in complete sentences.

1. (9 points) Define "continuous". Use complete sentences. Include everything that is necessary, but nothing more.

The function $f: E \to \mathbb{R}$ is continuous at the point p of E, if, for all $\varepsilon > 0$, there exists $\delta > 0$, such that whenever $|x - p| < \delta$ and $x \in E$, then $|f(x) - f(p)| < \varepsilon$.

2. (9 points) Define "supremum". Use complete sentences. Include everything that is necessary, but nothing more.

The real number α is the *supremum* of the non-empty set of real numbers E if α is an upper bound of E and whenever d is a real number with $d < \alpha$, then d is not an upper bound of E.

3. (9 points) PROVE that the continuous image of a compact set is compact.

Let K be a compact subset of \mathbb{R} and let $f: K \to \mathbb{R}$ be a continuous function. Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in A\}$ be an open cover of f(K). For each point $p \in K$, the element f(p) is in f(K). The set \mathcal{U} covers f(K), so there is an index α_p such that f(p) is in U_{α_p} . The function f is continuous at p; so there exists a $\delta_p > 0$ such that $f(N_{\delta_p}(p) \cap K) \subseteq U_{\alpha_p}$. We create such a neighborhood $N_{\delta_p}(p)$ for each $p \in K$. We see that $\mathcal{N} = \{N_{\delta_p}(p) \mid p \in K\}$ is an open cover of K. The set K is compact; consequently, there exist p_1, \ldots, p_n in K such that $N_{\delta_{p_1}}(p_1), \ldots, N_{\delta_{p_n}}(p_n)$ cover

K. It follows that $f(N_{\delta_{p_1}}(p_1) \cap K), \ldots, f(N_{\delta_{p_n}}(p_n) \cap K)$ cover f(K). But $f(N_{\delta_{p_i}}(p_i) \cap K) \subseteq U_{\alpha_{p_i}}$, for all i; therefore, $U_{\alpha_{p_1}}, \ldots, U_{\alpha_{p_n}}$ covers f(K).

4. (9 points) STATE and PROVE the Nested Interval Property.

The Nested Interval Property. For each natural number n, let I_n be a bounded closed interval. If $I_n \supseteq I_{n+1}$ for all $n \in \mathbb{N}$, then the intersection $\bigcap_{n=1}^{\infty} In$ is not empty.

Proof. Let $I_n = [a_n, b_n]$, with $a_n < b_n$, for each n. The hypothesis that the intervals are nested tells us that

$$a_1 \le a_2 \le \dots \le b_2 \le b_1.$$

In fact, if n and m are natural numbers, then $a_n < b_m$. We prove this small claim. If n < m, then $a_n \le a_m < b_m$. (The first inquality follows from the hypothesis that the intervals are nested. The second inequality follows from the hypothesis that each interval is an interval.) In a similar manner, if m < n, then $a_n < b_n \le b_m$. The claim is established.

The set $A = \{a_1, a_2, ...\}$ is bounded and not empty. The least upper bound axiom tells us that $\sup A$ exists. Let $a = \sup A$.

We finsh our proof by showing that $a \in \bigcap_{n=1}^{\infty} I_n$. Fix a natural number n. We show $a \in I_n$. It is clear that $a_n \leq a$ (beacuse $a_n \in A$ and a is an upper bound for A) On the other hand, the first calculation we made shows that b_n is also an upper bound for A; hence b_n is at least as large as the least upper bound for A; namely, a. We conclude that $a \in [a_n, b_n]$, for all n; hence, $a \in \bigcap_{n=1}^{\infty} I_n$.

- 5. (10 points) Let A be a set. For each $\alpha \in A$, let U_{α} be an open subset of \mathbb{R} and F_{α} be a closed subset of \mathbb{R} . For each question: if the answer is yes, then PROVE the assertion; if the answer is no, then give a counter example.
 - (a) Does $\bigcup_{\alpha \in A} U_{\alpha}$ have to be open?

YES. Let p be an element of $\bigcup_{\alpha \in A} U_{\alpha}$. Thus, p is in U_{α_0} for some $\alpha_0 \in A$. The set U_{α_0} is open, so there exists $\varepsilon > 0$ with $N_{\varepsilon}(p) \subseteq U_{\alpha_0}$. Thus, $N_{\varepsilon}(p) \subseteq \bigcup_{\alpha \in A} U_{\alpha}$.

(b) Does $\bigcap_{\alpha \in A} U_{\alpha}$ have to be open?

NO. For each natural number n, let $I_n = (0, 1 + \frac{1}{n})$. It is clear that each open interval I_n is an open set in \mathbb{R} . It is also clear that $\bigcap_{n \in \mathbb{N}} I_n = (0, 1]$; which is not an open subset of \mathbb{R} . Indeed, $N_{\varepsilon}(1)$ is not contained in (0, 1] for any $\varepsilon > 0$. (c) **Does** $\bigcup_{\alpha \in A} F_{\alpha}$ have to be closed?

NO. For each natural number n with $n \ge 2$, the closed interval $[\frac{1}{n}, 1]$ is a closed subset of \mathbb{R} . The union of all of these sets is (0, 1], which is not a closed set.

(d) Does $\bigcap_{\alpha \in A} F_{\alpha}$ have to be closed?

YES. We will prove that $\bigcap_{\alpha \in A} F_{\alpha}$ is a closed set by proving that the complement is open. Let $x \in \mathbb{R}$ with $x \notin \bigcap_{\alpha \in A} F_{\alpha}$. Thus, there is an index $\alpha_0 \in A$ with $x \notin F_{\alpha_0}$. The set F_{α_0} is closed, so the complement of F_{α_0} is open and there exists an $\varepsilon > 0$ such that $N_{\varepsilon}(x)$ misses F_{α_0} . It follows that $N_{\varepsilon}(x)$ misses $\bigcap_{\alpha \in A} F_{\alpha}$; and therefore, $\bigcap_{\alpha \in A} F_{\alpha}$ is a closed set.

- 6. (9 points) Let $E = \{1 \frac{1}{n} \mid n \in \mathbb{N}\}$ and let $F = E \cup \{1\}$.
 - (a) Give an example of an open cover of E which does not admit a finite subcover. PROVE all of your assertions.

For each $n \in \mathbb{N}$, let U_n be the open set $(-\infty, 1 - \frac{1}{n})$. It is clear that $\mathcal{U} = \{U_n | n \in \mathbb{N}\}$ is an open cover of E. It is also clear that the union of any finite subset of sets $U_{n_1} \cup \cdots \cup U_{n_\ell}$ from \mathcal{U} is equal to U_{\max} where max is the maximum of the parameters $\{n_1, \ldots, n_\ell\}$. At any rate this union misses most of the set E.

(b) Prove DIRECTLY (that is, do not quote any Theorems) that every open cover of F does admit a finite subcover.

Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in A\}$ be an arbitrary open cover of F. The number 1 is in one of the sets of \mathcal{U} ; in other words, there is an element α_0 of A so that $1 \in U_{\alpha_0}$. The set U_{α_0} is open, so there exists ε with $N_{\varepsilon}(1) \subseteq U_{\alpha_0}$. Of course, if n_0 is large enough, then $\frac{1}{n_0} < \varepsilon$. If $n \ge n_0$, then $\frac{1}{n} \le \frac{1}{n_0} < \varepsilon$ and $1 - \frac{1}{n} \in N_{\varepsilon}(1) \subseteq U_{\alpha_0}$. For each n with $n < n_0$, there exists a subscript $\alpha_n \in A$ with $1 - \frac{1}{n} \in U_{\alpha_n}$. We have found a finite subcover $U_{\alpha_0}, U_{\alpha_1}, \ldots, U_{\alpha_{n_0-1}}$ of \mathcal{U} which covers F.

7. (9 points) Consider the sequence $\{a_n\}$ with $a_n = \sum_{k=1}^n \frac{1}{k!}$. Prove that

$\{a_n\}$ is a Cauchy sequence.

For each natural number r, we see that $2^r \leq 1 \cdot 2 \cdot 3 \cdot \ldots \cdot r \cdot (r+1)$. In other words, $2^r \leq (r+1)$ and $\frac{1}{(r+1)!} \leq \frac{1}{2^r}$. It follows that

$$|a_{n+k} - a_n| = \frac{1}{(n+1)!} + \dots + \frac{1}{(n+k)!} \le \frac{1}{2^n} + \dots + \frac{1}{2^{n+k-1}} = \frac{\frac{1}{2^n} - \frac{1}{2^{n+k}}}{1 - \frac{1}{2}}$$
$$= \frac{1}{2^{n-1}} - \frac{1}{2^{n+k-1}} \le \frac{1}{2^{n-1}}.$$

Fix $\varepsilon > 0$. Pick n_0 large enough for $\frac{1}{2^{n_0-1}} < \varepsilon$. We have just shown that if n and m are both at least n_0 , then $|a_n - a_m| < \frac{1}{2^{\min\{n,m\}-1}} \leq \frac{1}{2^{n_0}-1} < \varepsilon$. We have proven that $\{a_n\}$ is a Cauchy sequence.

8. (9 points) Let $a_1 \neq a_2$ be real numbers. For $n \geq 3$, let $a_n = \frac{3}{4}a_{n-1} + \frac{1}{4}a_{n-2}$. PROVE that the sequence $\{a_n\}$ is a contractive sequence.

If a_{n-1} and a_{n-2} ever happen to be equal, then a_n will equal this common value and induction or iteration shows that all of the rest of the terms of the sequence take this common value. A constant sequence is automatically contractive (use any b with 0 < b < 1), but not very interesting. Henceforth, in this problem, we will only think about sequences with $a_{n+1} - a_n \neq 0$. We see that

$$\frac{|a_{n+2} - a_{n+1}|}{|a_{n+1} - a_n|} = \frac{|\frac{3}{4}a_{n+1} + \frac{1}{4}a_n - a_{n+1}|}{|a_{n+1} - a_n|} = \frac{|-\frac{1}{4}a_{n+1} + \frac{1}{4}a_n|}{|a_{n+1} - a_n|} = \frac{|-\frac{1}{4}||a_{n+1} - a_n|}{|a_{n+1} - a_n|} = \frac{1}{4}.$$

Thus, $|a_{n+2} - a_{n+1}| \leq \frac{1}{4}|a_{n+1} - a_n|$ for all n and the sequence $\{a_n\}$ is a contractive sequence.

9. (9 points) Let $\{a_n\}$ be a sequence of positive real numbers. Suppose that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$ for some real number L with L < 1. Does the sequence $\{a_n\}$ have to converge? If the answer is yes, then PROVE the assertion; if the answer is no, then give a counter example.

YES. Pick ρ with $L < \rho < 1$. The hypothesis that $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$ guarantees that there exists n_0 so that whenever $n \ge n_0$, then $\frac{a_{n+1}}{a_n} < \rho$. In particular, $a_{n_0+1} < \rho a_{n_0}$; $a_{n_0+2} < \rho^2 a_{n_0}$; ... Induct or iterate to see that $a_{n+k} < \rho^k a_{n_0}$ for all natural numbers k. It is clear that $\rho^k a_{n_0}$ goes to 0 as k goes to ∞ ; hence, the original sequence $\{a_n\}$ converges to 0.

- 10. (9 points) Let A and B be non-empty sets, and let $f: A \to B$ and $g: B \to C$ be functions. Suppose that the function $g \circ f$ is onto. For each question: if the answer is yes, then PROVE the assertion; if the answer is no, then give a counter example.
 - (a) Does f have to be onto?

NO Let $A = \{1\}$, $B = \{1, 2\}$, $C = \{1\}$, f(1) = 1 and g(1) = g(2) = 1. It is clear that $g \circ f$ is onto, but f is not onto.

(b) **Does** g have to be onto?

YES. If c is an arbitrary element of C, then the fact that $g \circ f$ is onto tells us that there exists an element $a \in A$ with $(g \circ f)(a) = c$. We now know that f(a) is an element of B with g(f(a)) = c.

11. (9 points) Let A and B be nonempty subsets of positive real numbers that are bounded from above. Let $C = \{ab \mid a \in A \text{ and } b \in B\}$. PROVE that $\sup C = (\sup A)(\sup B)$.

Let $\alpha = \sup A$, $\beta = \sup B$ and $\gamma = \sup C$.

We show $\gamma \leq \alpha\beta$. It suffices to show that $\alpha\beta$ is an upper bound for C. Let c be an arbitrary element of C. It follows that c = ab for some $a \in A$ and some $b \in B$. We know that α is an upper bound for A, so $a \leq \alpha$. We know that β is an upper bound for B, so $b \leq \beta$. Multiply $a \leq \alpha$ by the positive number b to see that $ab \leq \alpha b$. Multiply $b \leq \beta$ by the positive number α to see that $\alpha b \leq \alpha\beta$. Conclude that

$$c = ab \le \alpha b \le \alpha \beta;$$

and therefore $\alpha\beta$ is an upper bound for C.

We show $\alpha\beta \leq \gamma$. We do this part of the argument by contradiction. If $\gamma < \alpha\beta$, then $\frac{\gamma}{\alpha} < \beta$. (We know that A is a non-empty set of positive numbers, and α is an upper bound for A. It follows that α is positive, and so not zero.) But β is $\sup B$; so there exists $b \in B$ with $\frac{\gamma}{\alpha} < b$. The number b is positive; so not zero. We have $\frac{\gamma}{b} < \alpha$. But α is $\sup A$; so there exists $a \in A$ with $\frac{\gamma}{b} < a$. We now have $\gamma < ab \in C$; which contradicts the fact that γ is an upper bound for C. Our original supposition that $\gamma < \alpha\beta$ must be wrong; so, we have established that $\alpha\beta \leq \gamma$.

We have shown that $\gamma \leq \alpha\beta$ and $\alpha\beta \leq \gamma$. It follows that $\alpha\beta = \gamma$ and the proof is complete.