
Math 554, Exam 2, Summer 2006 Solutions
Write your answers as legibly as you can on the blank sheets of paper provided.
Use only one side of each sheet. Leave room on the upper left hand corner
of each page for the staple. Be sure to number your pages. Put your solution
to problem 1 first, and then your solution to number 2, etc; although, by using
enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don’t already
know your e-mail address and you want me to know it, then send me an e-mail.

There are 8 problems. The exam is worth a total of 50 points.

If you would like, I will leave your graded exam outside my office door. You may
pick it up any time before the next class. If you are interested, be sure to tell
me.

I will post the solutions on my website later this afternoon.

1. (6 points) Define “Cauchy sequence”. Use complete sentences. Include
everything that is necessary, but nothing more.

The sequence {an} is a Cauchy sequence if for every ε > 0 , there exists n0 , such
that for every n, m > n0 , |an − am| < ε .

2. (6 points)Define “limit point”. (This concept is also known as
“accumulation point”.) Use complete sentences. Include everything
that is necessary, but nothing more.

The point p in R is a limit point for the subset E of R if for every ε > 0 , there
exists q ∈ Nε(p) ∩ E , with q 6= p .

3. (6 points) Consider the sequence {an} with a1 =
√

20 , and an =√
20 + an−1 for n ≥ 2 . Prove that the sequence {an} converges. Find

the limit of the sequence {an} . Write in complete sentences.

It is clear that every term an is at most 5 . We see that a1 ≤ 5 . If an−1 ≤ 5 ,
then an−1 + 20 ≤ 25 ; so an =

√
an−1 + 20 <

√
25 = 5 . It is also clear that the

sequence is an increasing sequence. We just saw that an ≤ 5 for all n . Multiply
both sides by the positive number an +4 to see that a2

n +4an ≤ 5an +20 . In other
words, we have a2

n ≤ an + 20 . The numbers an and an + 20 are both positive. It
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follows that an ≤
√

an + 20 = an+1 . The sequence {an} is an increasing bounded
sequence. We proved in class that every monotone bounded sequence converges.
It follows that the sequence {an} converges. We know that lim

n→∞

an exists. Let

L be the name of this limit. Take the limit of both sides of an =
√

20 + an−1 to
see that L =

√
20 + L , or L2 = 20 + L , which is L2 −L− 20 = 0 . This equation

factors to become (L − 5)(L + 4) = 0 ; hence L = 5 or L = −4 . Every an is

positive so L = −4 is not possible. We conclude that lim
n→∞

an = 5 .

4. (6 points) Let {ak} be a sequence of real numbers. For each natural
number n , let

sn =
a1 + a2 + · · ·+ an

n
.

Suppose that the sequence {ak} converges to the real number a .
Prove that the sequence {sn} also converges to a . Give a complete ε
style proof. Write in complete sentences.

Fix ε > 0 . The sequence {ak} converges to a so there exists a natural
number k0 so that if k > k0 , then |ak − a| < ε

2
. Let B equal the fixed

number B = |(
k0
∑

k=1

ak) − k0a| . Pick a natural number n1 with 2B
ε

< n1 . Let

n0 = max{n1, k0} . If n0 < n , then

|sn − a| =

∣

∣

∣

∣

a1 + a2 + · · ·+ an

n
− a

∣

∣

∣

∣

=

∣

∣

∣

∣

a1 + a2 + · · · + an − na

n

∣

∣

∣

∣

=

=

∣

∣

∣

∣

(a1 + a2 + · · · + ak0
− k0a) + (ak0+1 − a) + (ak0+2 − a) + · · · + (an − a)

n

∣

∣

∣

∣

.

Use the triangle inequality to see that

|sn − a| ≤ |a1 + a2 + · · · + ak0
− k0a|

n
+

|ak0+1 − a|
n

+
|ak0+2 − a|

n
+ · · ·+ |an − a|

n
.

The first term on the right of the sign ≤ is B
n

. Our choice of n0 ensures

that B
n

< ε
2 . If ` is a positive integer, then our choice of n0 ensures that

|ak0+` − a| ≤ ε
2

. At this point we have

|sn − a| ≤ ε

2
+ (n − k0)

ε
2

n
≤ ε

2
+ n

ε
2

n
= ε.
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We have shown that n > n0 =⇒ |sn − a| < ε . We conclude that the sequence
{sn} converges to a .

5. (6 points) Prove that every uncountable subset of R contains a limit
point in R .

Lemma. If A is a countable set and for each α ∈ A , Sα is a finite set, then
⋃

α∈A

Sα is a countable set

Proof. The hypothesis that A is countable assures us that there exists a one-to-one
and onto function f : N → A . Make a grid. List the elements of Sf(1) in row 1.
List the elements of Sf(2) in row 2. etc. No count along diagonals that go from
Northeast to Southwest:

1 2 4 7 . . .
3 5 8 . . .
6 9 . . .
10 . . .
...

�

Now we do the problem. Let E be an uncountable set. We see that E is the
disjoint union of E ∩ [n, n+ 1) as n varies over the countable set Z . The Lemma
tells us that at least one of the sets E ∩ [n, n + 1) is infinite. (If all of these sets
were finite, then E would be the countable union of finite sets; hence countable.)
Let us assume that E ∩ [n, n+1) is finite for some fixed n . We may apply version
1 of the Bolzano-Weierstrass Theorem: the infinite bounded set E ∩ [n, n + 1) has
a limit point, say p , in R . It is clear that p is a limit point of E .

6. (8 points) For each question: if the answer is yes, then prove the
assertion; if the answer is no, then give a counter example.

(a) Is the union of an arbitrary collection of closed sets always a closed
set?

NO. For each natural number n with n ≥ 2 , the closed interval [ 1
n
, 1] is a closed

subset of R . The union of all of these sets is (0, 1] , which is not a closed set.
(b) Is the union of a finite collection of closed sets always a closed set?
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YES. Let C1, . . . , Cn be closed sets in R . I will show that the complement of
C1∪· · ·∪Cn is an open set. Take x ∈ R with x /∈ Ci for any i . The complement
of Ci is open for each i ; so there exists εi > 0 , so that Nεi

(x) misses Ci . Let
ε = min{ε1, . . . , εn} . We see that ε > 0 and that Nε(x) misses C1 ∪ · · · ∪ Cn .

(c) Is the intersection of an arbitrary collection of closed sets always
a closed set?

YES. Let I be an index set. For each index i ∈ I , let Ci be a closed subset of
R . We will prove that

⋂

i∈I

Ci is a closed set by proving that the complement is

open. Let x ∈ R with x /∈
⋂

i∈I

Ci . Thus, there is an index i0 ∈ I with x /∈ Ci0 .

The set Ci0 is closed, so the complement of Ci0 is open and there exists an ε > 0
such that Nε(x) misses Ci0 . It follows that Nε(x) misses

⋂

i∈I

Ci ; and therefore,
⋂

i∈I

Ci is a closed set.

(d) Is the intersection of a finite collection of closed sets always a
closed set?

YES. This is a special case of part (c). There is no need to copy the proof.

7. (6 points) Is the intersection of a finite collection of compact sets always
a compact set? If the answer is yes, then prove the assertion. If the
answer is no, then give a counter example.

YES. A set is compact if and only if it is closed and bounded. If K1, . . . , Kn

are compact sets, then each set Ki is closed and bounded. It is clear that the

intersection
n
⋂

i=1

Ci is bounded. Problem 6d tells us that
n
⋂

i=1

Ci is closed. We

conclude that
n
⋂

i=1

Ci is compact.

8. (6 points) Let E be the set { 1
n
| n ∈ N}∪{0} . Give a direct proof (using

the definition) that E is compact.

Let U = {Uα | α ∈ A} be an arbitrary open cover of E . The number zero is in
one of the sets of U ; in other words, there is an element α0 of A so that 0 ∈ Uα0

.
The set Uα0

is open, so there exists ε with Nε(0) ⊆ Uα0
. Of course, if n0 is

large enough, then 1
n0

< ε . If n ≥ n0 , then 1
n
≤ 1

n0

< ε and 1
n
∈ Nε(0) ⊆ Uα0

.
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For each n with n < n0 , there exists a subscript αn ∈ A with 1
n
∈ Uαn

. We
have found a finite subcover Uα0

, Uα1
, . . . , Uαn0−1

of U which covers E .


