Math 554, Exam 2, Summer 2006 Solutions

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Leave room on the upper left hand corner of each page for the staple. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

There are 8 problems. The exam is worth a total of 50 points.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website later this afternoon.

1. (6 points) Define "Cauchy sequence". Use complete sentences. Include everything that is necessary, but nothing more.

The sequence $\{a_n\}$ is a *Cauchy sequence* if for every $\varepsilon > 0$, there exists n_0 , such that for every $n, m > n_0$, $|a_n - a_m| < \varepsilon$.

2. (6 points)Define "limit point". (This concept is also known as "accumulation point".) Use complete sentences. Include everything that is necessary, but nothing more.

The point p in \mathbb{R} is a *limit point* for the subset E of \mathbb{R} if for every $\varepsilon > 0$, there exists $q \in N_{\varepsilon}(p) \cap E$, with $q \neq p$.

3. (6 points) Consider the sequence $\{a_n\}$ with $a_1 = \sqrt{20}$, and $a_n = \sqrt{20 + a_{n-1}}$ for $n \ge 2$. Prove that the sequence $\{a_n\}$ converges. Find the limit of the sequence $\{a_n\}$. Write in complete sentences.

It is clear that every term a_n is at most 5. We see that $a_1 \leq 5$. If $a_{n-1} \leq 5$, then $a_{n-1} + 20 \leq 25$; so $a_n = \sqrt{a_{n-1} + 20} < \sqrt{25} = 5$. It is also clear that the sequence is an increasing sequence. We just saw that $a_n \leq 5$ for all n. Multiply both sides by the positive number $a_n + 4$ to see that $a_n^2 + 4a_n \leq 5a_n + 20$. In other words, we have $a_n^2 \leq a_n + 20$. The numbers a_n and $a_n + 20$ are both positive. It

follows that $a_n \leq \sqrt{a_n + 20} = a_{n+1}$. The sequence $\{a_n\}$ is an increasing bounded sequence. We proved in class that every monotone bounded sequence converges. It follows that the sequence $\{a_n\}$ converges. We know that $\lim_{n \to \infty} a_n$ exists. Let L be the name of this limit. Take the limit of both sides of $a_n = \sqrt{20 + a_{n-1}}$ to see that $L = \sqrt{20 + L}$, or $L^2 = 20 + L$, which is $L^2 - L - 20 = 0$. This equation factors to become (L - 5)(L + 4) = 0; hence L = 5 or L = -4. Every a_n is positive so L = -4 is not possible. We conclude that $\lim_{n \to \infty} a_n = 5$.

4. (6 points) Let $\{a_k\}$ be a sequence of real numbers. For each natural number n, let

$$s_n = \frac{a_1 + a_2 + \dots + a_n}{n}$$

Suppose that the sequence $\{a_k\}$ converges to the real number a. Prove that the sequence $\{s_n\}$ also converges to a. Give a complete ε style proof. Write in complete sentences.

Fix $\varepsilon > 0$. The sequence $\{a_k\}$ converges to a so there exists a natural number k_0 so that if $k > k_0$, then $|a_k - a| < \frac{\varepsilon}{2}$. Let B equal the fixed number $B = |(\sum_{k=1}^{k_0} a_k) - k_0 a|$. Pick a natural number n_1 with $\frac{2B}{\varepsilon} < n_1$. Let $n_0 = \max\{n_1, k_0\}$. If $n_0 < n$, then

$$|s_n - a| = \left| \frac{a_1 + a_2 + \dots + a_n}{n} - a \right| = \left| \frac{a_1 + a_2 + \dots + a_n - na}{n} \right| = \left| \frac{(a_1 + a_2 + \dots + a_{k_0} - k_0 a) + (a_{k_0 + 1} - a) + (a_{k_0 + 2} - a) + \dots + (a_n - a)}{n} \right|.$$

Use the triangle inequality to see that

$$|s_n - a| \le \frac{|a_1 + a_2 + \dots + a_{k_0} - k_0 a|}{n} + \frac{|a_{k_0 + 1} - a|}{n} + \frac{|a_{k_0 + 2} - a|}{n} + \dots + \frac{|a_n - a|}{n}.$$

The first term on the right of the sign \leq is $\frac{B}{n}$. Our choice of n_0 ensures that $\frac{B}{n} < \frac{\varepsilon}{2}$. If ℓ is a positive integer, then our choice of n_0 ensures that $|a_{k_0+\ell}-a| \leq \frac{\varepsilon}{2}$. At this point we have

$$|s_n - a| \le \frac{\varepsilon}{2} + (n - k_0)\frac{\varepsilon}{n} \le \frac{\varepsilon}{2} + n\frac{\varepsilon}{n} = \varepsilon.$$

We have shown that $n > n_0 \implies |s_n - a| < \varepsilon$. We conclude that the sequence $\{s_n\}$ converges to a.

5. (6 points) Prove that every uncountable subset of \mathbb{R} contains a limit point in \mathbb{R} .

Lemma. If A is a countable set and for each $\alpha \in A$, S_{α} is a finite set, then $\bigcup_{\alpha \in A} S_{\alpha}$ is a countable set

Proof. The hypothesis that A is countable assures us that there exists a one-to-one and onto function $f : \mathbb{N} \to A$. Make a grid. List the elements of $S_{f(1)}$ in row 1. List the elements of $S_{f(2)}$ in row 2. etc. No count along diagonals that go from Northeast to Southwest:

1	2	4	7	
3	5	8		
6	9			
10				
:				
•				

Now we do the problem. Let E be an uncountable set. We see that E is the disjoint union of $E \cap [n, n+1)$ as n varies over the countable set \mathbb{Z} . The Lemma tells us that at least one of the sets $E \cap [n, n+1)$ is infinite. (If all of these sets were finite, then E would be the countable union of finite sets; hence countable.) Let us assume that $E \cap [n, n+1)$ is finite for some fixed n. We may apply version 1 of the Bolzano-Weierstrass Theorem: the infinite bounded set $E \cap [n, n+1)$ has a limit point, say p, in \mathbb{R} . It is clear that p is a limit point of E.

- 6. (8 points) For each question: if the answer is yes, then prove the assertion; if the answer is no, then give a counter example.
 - (a) Is the union of an arbitrary collection of closed sets always a closed set?

NO. For each natural number n with $n \ge 2$, the closed interval $[\frac{1}{n}, 1]$ is a closed subset of \mathbb{R} . The union of all of these sets is (0, 1], which is not a closed set.

(b) Is the union of a finite collection of closed sets always a closed set?

YES. Let C_1, \ldots, C_n be closed sets in \mathbb{R} . I will show that the complement of $C_1 \cup \cdots \cup C_n$ is an open set. Take $x \in \mathbb{R}$ with $x \notin C_i$ for any i. The complement of C_i is open for each i; so there exists $\varepsilon_i > 0$, so that $N_{\varepsilon_i}(x)$ misses C_i . Let $\varepsilon = \min\{\varepsilon_1, \ldots, \varepsilon_n\}$. We see that $\varepsilon > 0$ and that $N_{\varepsilon}(x)$ misses $C_1 \cup \cdots \cup C_n$.

(c) Is the intersection of an arbitrary collection of closed sets always a closed set?

YES. Let I be an index set. For each index $i \in I$, let C_i be a closed subset of \mathbb{R} . We will prove that $\bigcap_{i \in I} C_i$ is a closed set by proving that the complement is open. Let $x \in \mathbb{R}$ with $x \notin \bigcap_{i \in I} C_i$. Thus, there is an index $i_0 \in I$ with $x \notin C_{i_0}$. The set C_{i_0} is closed, so the complement of C_{i_0} is open and there exists an $\varepsilon > 0$ such that $N_{\varepsilon}(x)$ misses C_{i_0} . It follows that $N_{\varepsilon}(x)$ misses $\bigcap_{i \in I} C_i$; and therefore, $\bigcap C_i$ is a closed set.

(d) Is the intersection of a finite collection of closed sets always a closed set?

YES. This is a special case of part (c). There is no need to copy the proof.

7. (6 points) Is the intersection of a finite collection of compact sets always a compact set? If the answer is yes, then prove the assertion. If the answer is no, then give a counter example.

YES. A set is compact if and only if it is closed and bounded. If K_1, \ldots, K_n are compact sets, then each set K_i is closed and bounded. It is clear that the intersection $\bigcap_{i=1}^{n} C_i$ is bounded. Problem 6d tells us that $\bigcap_{i=1}^{n} C_i$ is closed. We conclude that $\bigcap_{i=1}^{n} C_i$ is compact.

8. (6 points) Let E be the set $\{\frac{1}{n} \mid n \in \mathbb{N}\} \cup \{0\}$. Give a direct proof (using the definition) that E is compact.

Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in A\}$ be an arbitrary open cover of E. The number zero is in one of the sets of \mathcal{U} ; in other words, there is an element α_0 of A so that $0 \in U_{\alpha_0}$. The set U_{α_0} is open, so there exists ε with $N_{\varepsilon}(0) \subseteq U_{\alpha_0}$. Of course, if n_0 is large enough, then $\frac{1}{n_0} < \varepsilon$. If $n \ge n_0$, then $\frac{1}{n} \le \frac{1}{n_0} < \varepsilon$ and $\frac{1}{n} \in N_{\varepsilon}(0) \subseteq U_{\alpha_0}$.

 $i \in I$

For each n with $n < n_0$, there exists a subscript $\alpha_n \in A$ with $\frac{1}{n} \in U_{\alpha_n}$. We have found a finite subcover $U_{\alpha_0}, U_{\alpha_1}, \ldots, U_{\alpha_{n_0-1}}$ of \mathcal{U} which covers E.