Math 554, Final Exam, Summer 2005 Solution

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. Otherwise, get your grade from VIP.

There are 13 problems. Problems 1 through 9 are worth 8 points each. Problems 10 through 13 are worth 7 points each. The exam is worth a total of 100 points.

I will post the solutions on my website shortly after the class is finished.

1. Let $f: E \rightarrow \mathbb{R}$ be a function which is defined on a subset E of \mathbb{R}. Define $\lim _{x \rightarrow p} f(x)=L$. Use complete sentences. (Be sure to tell me what kind of a thing p is, and what kind of a thing L is.)

Let $f: E \rightarrow \mathbb{R}$ be a function which is defined on a subset E of \mathbb{R}. Assume that p is a limit point of E and L is a real number. We say that $\lim _{x \rightarrow p} f(x)=L$ if for all $\varepsilon>0$, there exists $\delta>0$ such that whenever $|x-p|<\delta, x \neq p$, and $x \in E$, then $|f(x)-L| \leq \varepsilon$.

2. STATE either version of the Bolzano-Weierstrass Theorem.

(version 1.) Every bounded infinite set of real numbers has a limit point in \mathbb{R}.
(version 2.) Every bounded sequence of real numbers has a convergent subsequence.

3. PROVE either version of the Bolzano-Weierstrass Theorem.

Proof of version 1.

Let S be a bounded infinite subset of \mathbb{R}, and let I be a finite closed interval which contains S. Cut I in half. At least one of the resulting two closed subintervals of I contains infinitely many elements of S. Call this interval I_{1}. Continue in this manner to build the closed interval I_{n}, for each natural number n, with the length of I_{n} equal to $1 / 2^{n}$ times the length of I and I_{n} contains infinitely many elements of S. The nested interval property of \mathbb{R} tells us that the intersection $\bigcap_{n=1}^{\infty} I_{n}$ is non-empty. Let p be an element of $\bigcap_{n=1}^{\infty} I_{n}$. We will show that p is a limit point of S. Given $\varepsilon>0$, there exists n large enough that the length of I_{n} is less than ε. We know that $p \in I_{n}$. It follows that $I_{n} \subseteq N_{\varepsilon}(p)$. Furthermore,
there is at least one element q of S with $q \neq p$ and $q \in N_{\varepsilon}(p)$; since $I_{n} \cap S$ is infinite.

Proof of version 2.

Let $\left\{a_{n}\right\}$ be a bounded sequence of real numbers. There are two cases to consider depending upon the cardinality of the set $\left\{a_{n} \mid n \in \mathbb{N}\right\}$.
Case 1: $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is finite. In this case, it is clear that some subsequence of $\left\{a_{n}\right\}$ is constant.
Case 2: $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is infinite. We apply version 1 of the Bolzano-Weierstrass Theorem. The set $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ has a limit point p. Pick n_{1} with $\left|a_{n_{1}}-p\right|<1$. Pick $n_{2}>n_{1}$ with $\left|a_{n_{1}}-p\right|<\frac{1}{2}$. Every open neighborhood of p contains infinitely many elements of $\left\{a_{n} \mid n \in \mathbb{N}\right\}$. We continue in this manner to pick $n_{k}>n_{k-1}$ with $\left|a_{n_{k}}-p\right|<\frac{1}{k}$. We see that the subsequence $\left\{a_{n_{k}}\right\}$ of the sequence $\left\{a_{n}\right\}$ converges to p.

4. Define Cauchy sequence. Use complete sentences.

The sequence $\left\{a_{n}\right\}$ is a a Cauchy sequence if for all $\varepsilon>0$, there exists n_{0} such that whenever $n, m>n_{0}$, then $\left|a_{n}-a_{m}\right|<\varepsilon$.

5. PROVE that every Cauchy sequence converges.

Let $\left\{a_{n}\right\}$ be a Cauchy sequence. It is easy to see that $\left\{a_{n}\right\}$ is bounded. Indeed, there exists n_{0} with $\left|a_{n}-a_{n_{0}}\right|<1$ for all $n>n_{0}$. In this case, $\left|a_{n}\right| \leq M=\max \left\{\left|a_{n_{0}}\right|+1,\left|a_{1}\right|, \ldots,\left|a_{n_{0}-1}\right|\right\}$ for all n. Version 2 of the BolzanoWeierstrass Theorem guarantees the existence of a convergent subsequence $\left\{a_{n_{k}}\right\}$ of $\left\{a_{n}\right\}$. Let a be the limit of the subsequence $\left\{a_{n_{k}}\right\}$. We will prove that the entire sequence $\left\{a_{n}\right\}$ converges to a. Let $\varepsilon>0$ be fixed, but arbitrary. The subsequence $\left\{a_{n_{k}}\right\}$ converges to a; so, there exists k_{0} such that, whenever $k \geq k_{0}$, then $\left|a_{n_{k}}-a\right|<\frac{\varepsilon}{2}$. The sequence $\left\{a_{n}\right\}$ is a Cauchy sequence; so, there exists n_{1} such that, whenever $n, m \geq n_{1}$, then $\left|a_{n}-a_{m}\right| \leq \frac{\varepsilon}{2}$. Pick $n_{0} \geq \max \left\{n_{1}, n_{k_{0}}\right\}$. If $n>n_{0}$, then we may choose k with $k>k_{0}$ and $n_{k}>n_{0}$. We now have:

$$
\left|a_{n}-a\right| \leq\left|a_{n}-a_{n_{k}}\right|+\left|a_{n_{k}}-a\right| \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

6. Let I be an interval and $f: I \rightarrow \mathbb{R}$ be a function which is differentiable at the point p of I. PROVE that f is continuous at p.

The point p is a limit point of I; so it suffices to show that $\lim _{x \rightarrow p} f(x)=f(p)$. The hypothesis tells us that $\lim _{x \rightarrow p} \frac{f(x)-f(p)}{x-p}$ exists and is equal to $f^{\prime}(p)$. It is clear that $\lim _{x \rightarrow p} x-p$ exists and is equal to 0 . We proved that the limit of a product
is the product of the limits provided the individual limits exist and are finite. We conclude that

$$
\lim _{x \rightarrow p} f(x)-f(p)=\lim _{x \rightarrow p} \frac{f(x)-f(p)}{x-p} \cdot \lim _{x \rightarrow p} x-p=f^{\prime}(p) \cdot 0=0
$$

It follows that $\lim _{x \rightarrow p} f(x)=f(p)$, and f is continuous at p.
7. Let f be a continuous function from the closed interval $[a, b]$ to \mathbb{R}. Let $\varepsilon>0$ be fixed. Prove that there exists $\delta>0$ such that: whenever x and y are in $[a, b]$ with $|x-y|<\delta$, then $|f(x)-f(y)|<\varepsilon$. (Notice that you are supposed to prove that one δ works for every x and y.)
The function f is continuous on $[a, b]$, so for each point $p \in[a, b]$ there exists "a δ depending on $p "$, call it $\delta_{p}>0$, such that whenever

$$
\begin{equation*}
x \in[a, b] \text { with }|x-p|<\delta_{p} \Longrightarrow|f(x)-f(p)|<\frac{\varepsilon}{2} . \tag{3}
\end{equation*}
$$

Let $\mathcal{N}=\left\{\left.N_{\frac{\delta_{p}}{2}}(p) \right\rvert\, p \in[a, b]\right\}$. We see that \mathcal{N} is an open cover of the compact set $[a, b]$. Thus, there exists a finite set of points p_{1}, \ldots, p_{ℓ} in $[a, b]$ so that $\left\{N_{\frac{\delta_{p_{1}}}{2}}\left(p_{1}\right), \ldots, N_{\frac{\delta_{p_{\ell}}}{2}}\left(p_{\ell}\right)\right\}$ covers $[a, b]$. Let $\delta=\min \left\{\frac{\delta_{p_{1}}}{2}, \ldots \frac{\delta_{p_{\ell}}}{2}\right\}$. The number δ is the minimum of a FINITE set of POSITIVE numbers, so $\delta>0$. I claim that this one δ works for ALL x and y. Suppose, x, y are in $[a, b]$ with $|x-y|<\delta$. The set $\left\{N_{\frac{\delta_{p_{1}}}{2}}\left(p_{1}\right), \ldots, N_{\frac{\delta_{p_{\ell}}}{2}}\left(p_{\ell}\right)\right\}$ covers $[a, b]$, so there is an index i, with $1 \leq i \leq \ell$ with $\left|x-p_{i}\right|<\frac{\delta_{p_{i}}}{2}$. It follows that

$$
\left|y-p_{i}\right|=\left|y-x+x-p_{i}\right| \leq|y-x|+\left|x-p_{i}\right| \leq \delta+\frac{\delta_{p_{i}}}{2} \leq \frac{\delta_{p_{i}}}{2}+\frac{\delta_{p_{i}}}{2}=\delta_{p_{i}}
$$

Use (3) twice at $p=p_{i}$ to see

$$
\begin{aligned}
|f(x)-f(y)|=\mid f(x)-f\left(p_{i}\right)+ & f\left(p_{i}\right)-f(y)\left|\leq\left|f(x)-f\left(p_{i}\right)\right|+\left|f\left(p_{i}\right)-f(y)\right|\right. \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

8. Give an example of a bounded infinite closed set that does not contain any intervals. Explain thoroughly.
Let $K=\{0\} \cup\left\{\left.\frac{1}{n} \right\rvert\, n=1,2,3, \ldots\right\}$. We see that K is bounded below by 0 and above by 1 . We see that the complement of K, which is

$$
(-\infty, 0) \cup\left(\bigcup_{n \in \mathbb{N}}\left(\frac{1}{n+1}, \frac{1}{n}\right)\right) \cup(1, \infty),
$$

is a union of open intervals. Every open interval is an open set. The union of open sets is an open set. Thus, the complement of K is an open set; hence, K is a closed set. The set K is obviously infinite. The set K contains no intervals.
9. Let A be an index set. For each index a in A, let F_{a} be a closed subset of \mathbb{R}. Is the union $\bigcup_{a \in A} F_{a}$ always closed? If yes, prove the claim. If no, give a counterexample.

NO. Let $A=\mathbb{N}$ and for each $n \in \mathbb{N}$, let $F_{n}=\left[\frac{1}{n}, 1\right]$. We see that each F_{n} is closed, but the union $\bigcup_{n \in \mathbb{N}} F_{n}=(0,1]$, which is not closed. (Zero is a limit point of the union, but 0 is not in the union.)
10. Let f and g be functions from the subset E of \mathbb{R} to \mathbb{R}, and let p be a limit point of \mathbb{R}. Suppose that $\lim _{x \rightarrow p} f(x)$ exists and equals A. Suppose, also, that $\lim _{x \rightarrow p} g(x)$ exists and equals B. Prove $\lim _{x \rightarrow p} f(x) g(x)$ exists and equals $A B$.

Let $\varepsilon>0$ be arbitrary, but fixed. We see that
$|f(x) g(x)-A B|=|f(x) g(x)-A g(x)+A g(x)-A B| \leq|f(x)-A||g(x)|+|A||g(x)-B|$.

- We are told that $\lim _{x \rightarrow p} g(x)=B$; hence, there exists $\delta_{1}>0$ such that, whenever $x \in E, x \neq p$, and $|x-p|<\delta_{1}$, then $|g(x)-B|<1$. For such x, we have

$$
|g(x)|=|g(x)-B+B| \leq|g(x)-B|+|B|<|B|+1
$$

In other words,

$$
\begin{equation*}
x \in E, x \neq p,|x-p|<\delta_{1} \Longrightarrow|g(x)|<|B|+1 \tag{1}
\end{equation*}
$$

- We are told that $\lim _{x \rightarrow p} g(x)=B$; hence, there exists $\delta_{2}>0$ such that

$$
\begin{equation*}
x \in E, x \neq p,|x-p|<\delta_{2} \Longrightarrow|g(x)-B|<\frac{\varepsilon}{2(|A|+1)} \tag{2}
\end{equation*}
$$

- We are told that $\lim _{x \rightarrow p} f(x)=A$; hence, there exists $\delta_{3}>0$ such that

$$
\begin{equation*}
x \in E, x \neq p,|x-p|<\delta_{3} \Longrightarrow|f(x)-A|<\frac{\varepsilon}{2(|B|+1)} \tag{3}
\end{equation*}
$$

Now, we take $\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$. We also take an arbitrary $x \in E$ with $x \neq p$ and $|x-p|<\delta$. We see from (1) that $|g(x)|<|B|+1$; from (2) that $|g(x)-B|<\frac{\varepsilon}{2(|A|+1)}$; and from (3) that $|f(x)-A|<\frac{\varepsilon}{2(|B|+1)}$. Therefore,

$$
\begin{aligned}
& |f(x) g(x)-A B| \leq|f(x)-A||g(x)|+|A||g(x)-B| \\
& <\frac{\varepsilon}{2(|B|+1)}(|B|+1)+|A| \frac{\varepsilon}{2(|A|+1)}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

11. Let c_{1} be an arbitrary element of the open interval $(0,1)$. For each $n \in \mathbb{N}$, let $c_{n+1}=\frac{1}{5}\left(c_{n}^{2}+2\right)$. Prove that the sequence $\left\{c_{n}\right\}$ is contractive.
First we show, by induction, that $c_{n+1} \in(0,1)$ for all natural numbers n. We picked c_{1} to satisfy this hypothesis. If $0<c_{n}<1$, then $0<c_{n}^{2}<1$, $2<c_{n}^{2}+2<3, \frac{2}{5}<\frac{1}{5}\left(c_{n}^{2}+2\right)<\frac{3}{5}$; and therefore, $0<c_{n+1}<1$.
We see that

$$
\begin{aligned}
\left|c_{n+1}-c_{n}\right|= & \left|\frac{1}{5}\left(c_{n}^{2}+2\right)-\frac{1}{5}\left(c_{n-1}^{2}+2\right)\right|=\frac{1}{5}\left|c_{n}^{2}-c_{n-1}^{2}\right|=\frac{1}{5}\left|c_{n}-c_{n-1}\right|\left|c_{n}+c_{n-1}\right| \\
& \leq \frac{1}{5}\left|c_{n}-c_{n-1}\right|\left(\left|c_{n}\right|+\left|c_{n-1}\right|\right)<\frac{1}{5}\left|c_{n}-c_{n-1}\right|(1+1) .
\end{aligned}
$$

We used the triangle inequality together with our earlier observation that every member of the sequence has absolute value less than 1 . The constant $b=\frac{2}{5}$ is less than 1 . We have shown that

$$
\left|c_{n+1}-c_{n}\right|<\frac{2}{5}\left|c_{n}-c_{n-1}\right|
$$

therefore, the sequence $\left\{c_{n}\right\}$ is contractive.
12. Consider the sequence $\left\{a_{n}\right\}$ with $a_{1}=4$, and for $n \in \mathbb{N}, a_{n+1}=$ $\sqrt{2 a_{n}+3}$. Prove that the sequence converges. Find the limit of the sequence.

We first prove, by induction, that the sequence is bounded below by 3 . We see that $3<a_{1}$. We assume $3<a_{n}$. It follows that $6<2 a_{n}, 9<2 a_{n}+3$, and $3<\sqrt{2 a_{n}+3}=a_{n+1}$.

Now we prove that the sequence is monotone decreasing. I know $3<a_{n}$. It follows that $0<\left(a_{n}-3\right)\left(a_{n}+1\right)$, or $0<a_{n}^{2}-2 a_{n}-3$. It now follows that $2 a_{n}+3<a_{n}^{2}$. All of the numbers in the previous inequality are positive; so, we see that $\sqrt{2 a_{n}+3}<a_{n}$. In other words, $a_{n+1}<a_{n}$.

The sequence $\left\{a_{n}\right\}$ is monotone decreasing and bounded. We proved that every monotone bounded sequence has a real number limit. It follows that the sequence $\left\{a_{n}\right\}$ converges. Finally, now that we know that the sequence $\left\{a_{n}\right\}$ converges to some limit L, we see that L must satisfy $L=\sqrt{2 L+3}$; thus, $L^{2}=2 L+3$, or $L^{2}-2 L-3=0$, or $(L-3)(L+1)=0$. So, L equals either 3 or -1 . Every element of the sequence is positive; so, $L \neq-1$. We conclude that $L=3$.
13. Let $f(x)= \begin{cases}x^{2}+x & \text { if } x \text { is rational } \\ x & \text { if } x \text { is irrational. Is } f \text { differentiable at } 0 \text { ? Prove }\end{cases}$ your answer.
We calculate

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x}
$$

We suspect that this limit might exist, and if so, we suspect that the limit is 1 . Notice that if x is not zero and x is rational, then

$$
\left|\frac{f(x)}{x}-1\right|=\left|\frac{x^{2}+x}{x}-1\right|=|(x+1)-1|=|x| .
$$

If x is irrational, then

$$
\left|\frac{f(x)}{x}-1\right|=\left|\frac{x}{x}-1\right|=0 .
$$

Let $\varepsilon>0$ be arbitrary, but fixed. Take $\delta=\varepsilon$. Suppose $|x-0|<\delta$. If x is irrational, then $\left|\frac{f(x)}{x}-1\right|=0$, and this is certainly less than ε. If x is not 0 and x is rational, then $\left|\frac{f(x)}{x}-1\right|=|x|<\delta=\varepsilon$. We conclude that f is differentiable at 0 , and $f^{\prime}(0)=1$.

