
Math 554, Final Exam, Summer 2005 Solution
Write your answers as legibly as you can on the blank sheets of paper provided.
Use only one side of each sheet. Be sure to number your pages. Put your solution
to problem 1 first, and then your solution to number 2, etc; although, by using
enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don’t already
know your e-mail address and you want me to know it, then send me an e-mail.
Otherwise, get your grade from VIP.

There are 13 problems. Problems 1 through 9 are worth 8 points each. Problems
10 through 13 are worth 7 points each. The exam is worth a total of 100 points.

I will post the solutions on my website shortly after the class is finished.

1. Let f : E → R be a function which is defined on a subset E of R .
Define lim

x→p
f(x) = L . Use complete sentences. (Be sure to tell me

what kind of a thing p is, and what kind of a thing L is.)

Let f : E → R be a function which is defined on a subset E of R . Assume that
p is a limit point of E and L is a real number. We say that lim

x→p
f(x) = L if for

all ε > 0 , there exists δ > 0 such that whenever |x− p| < δ , x 6= p , and x ∈ E ,
then |f(x) − L| ≤ ε .

2. STATE either version of the Bolzano-Weierstrass Theorem.

(version 1.) Every bounded infinite set of real numbers has a limit point in R .

(version 2.) Every bounded sequence of real numbers has a convergent subsequence.

3. PROVE either version of the Bolzano-Weierstrass Theorem.

Proof of version 1.

Let S be a bounded infinite subset of R , and let I be a finite closed interval which
contains S . Cut I in half. At least one of the resulting two closed subintervals
of I contains infinitely many elements of S . Call this interval I1 . Continue in
this manner to build the closed interval In , for each natural number n , with the
length of In equal to 1/2n times the length of I and In contains infinitely many
elements of S . The nested interval property of R tells us that the intersection
∞⋂

n=1
In is non-empty. Let p be an element of

∞⋂
n=1

In . We will show that p is a

limit point of S . Given ε > 0 , there exists n large enough that the length of In

is less than ε . We know that p ∈ In . It follows that In ⊆ Nε(p) . Furthermore,
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there is at least one element q of S with q 6= p and q ∈ Nε(p) ; since In ∩ S is
infinite.

Proof of version 2.

Let {an} be a bounded sequence of real numbers. There are two cases to consider
depending upon the cardinality of the set {an | n ∈ N} .
Case 1: {an | n ∈ N} is finite. In this case, it is clear that some subsequence of
{an} is constant.
Case 2: {an | n ∈ N} is infinite. We apply version 1 of the Bolzano-Weierstrass
Theorem. The set {an | n ∈ N} has a limit point p . Pick n1 with |an1 − p| < 1 .
Pick n2 > n1 with |an1−p| < 1

2 . Every open neighborhood of p contains infinitely
many elements of {an | n ∈ N} . We continue in this manner to pick nk > nk−1

with |ank
− p| < 1

k . We see that the subsequence {ank
} of the sequence {an}

converges to p .

4. Define Cauchy sequence. Use complete sentences.

The sequence {an} is a a Cauchy sequence if for all ε > 0 , there exists n0 such
that whenever n,m > n0 , then |an − am| < ε .

5. PROVE that every Cauchy sequence converges.

Let {an} be a Cauchy sequence. It is easy to see that {an} is bounded.
Indeed, there exists n0 with |an − an0 | < 1 for all n > n0 . In this case,
|an| ≤ M = max{|an0 | + 1, |a1|, . . . , |an0−1|} for all n . Version 2 of the Bolzano-
Weierstrass Theorem guarantees the existence of a convergent subsequence {ank

}
of {an} . Let a be the limit of the subsequence {ank

} . We will prove that
the entire sequence {an} converges to a . Let ε > 0 be fixed, but arbitrary.
The subsequence {ank

} converges to a ; so, there exists k0 such that, whenever
k ≥ k0 , then |ank

− a| < ε
2 . The sequence {an} is a Cauchy sequence; so,

there exists n1 such that, whenever n,m ≥ n1 , then |an − am| ≤ ε
2 . Pick

n0 ≥ max{n1, nk0} . If n > n0 , then we may choose k with k > k0 and nk > n0 .
We now have:

|an − a| ≤ |an − ank
| + |ank

− a| ≤ ε

2
+

ε

2
= ε.

6. Let I be an interval and f : I → R be a function which is differentiable
at the point p of I . PROVE that f is continuous at p .

The point p is a limit point of I ; so it suffices to show that lim
x→p

f(x) = f(p) .

The hypothesis tells us that lim
x→p

f(x)−f(p)
x−p exists and is equal to f ′(p) . It is clear

that lim
x→p

x − p exists and is equal to 0 . We proved that the limit of a product
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is the product of the limits provided the individual limits exist and are finite. We
conclude that

lim
x→p

f(x) − f(p) = lim
x→p

f(x) − f(p)
x − p

· lim
x→p

x − p = f ′(p) · 0 = 0.

It follows that lim
x→p

f(x) = f(p) , and f is continuous at p .

7. Let f be a continuous function from the closed interval [a, b] to R .
Let ε > 0 be fixed. Prove that there exists δ > 0 such that: whenever
x and y are in [a, b] with |x − y| < δ , then |f(x) − f(y)| < ε . (Notice
that you are supposed to prove that one δ works for every x and y .)

The function f is continuous on [a, b] , so for each point p ∈ [a, b] there exists “a
δ depending on p ”, call it δp > 0 , such that whenever

(3) x ∈ [a, b] with |x − p| < δp =⇒ |f(x) − f(p)| < ε
2 .

Let N = {N δp
2

(p) | p ∈ [a, b]} . We see that N is an open cover of the compact
set [a, b] . Thus, there exists a finite set of points p1, . . . , p` in [a, b] so that
{N δp1

2
(p1), . . . , N δp`

2
(p`)} covers [a, b] . Let δ = min{ δp1

2 , . . .
δp`

2 }. The number δ

is the minimum of a FINITE set of POSITIVE numbers, so δ > 0 . I claim that this
one δ works for ALL x and y . Suppose, x, y are in [a, b] with |x− y| < δ . The
set {N δp1

2
(p1), . . . , N δp`

2
(p`)} covers [a, b] , so there is an index i , with 1 ≤ i ≤ `

with |x − pi| <
δpi

2 . It follows that

|y − pi| = |y − x + x − pi| ≤ |y − x| + |x − pi| ≤ δ +
δpi

2
≤ δpi

2
+

δpi

2
= δpi

.

Use (3) twice at p = pi to see

|f(x) − f(y)| = |f(x) − f(pi) + f(pi) − f(y)| ≤ |f(x) − f(pi)| + |f(pi) − f(y)|
<

ε

2
+

ε

2
= ε.

8. Give an example of a bounded infinite closed set that does not contain
any intervals. Explain thoroughly.

Let K = {0} ∪ { 1
n | n = 1, 2, 3, . . . } . We see that K is bounded below by 0 and

above by 1 . We see that the complement of K , which is

(−∞, 0) ∪
(⋃

n∈N

( 1
n+1 , 1

n )

)
∪ (1,∞),

is a union of open intervals. Every open interval is an open set. The union of open
sets is an open set. Thus, the complement of K is an open set; hence, K is a
closed set. The set K is obviously infinite. The set K contains no intervals.



4

9. Let A be an index set. For each index a in A , let Fa be a closed
subset of R . Is the union

⋃
a∈A

Fa always closed? If yes, prove the

claim. If no, give a counterexample.

NO. Let A = N and for each n ∈ N , let Fn = [ 1
n , 1] . We see that each Fn is

closed, but the union
⋃

n∈N

Fn = (0, 1] , which is not closed. (Zero is a limit point of

the union, but 0 is not in the union.)

10. Let f and g be functions from the subset E of R to R , and let p
be a limit point of R . Suppose that lim

x→p
f(x) exists and equals A .

Suppose, also, that lim
x→p

g(x) exists and equals B . Prove lim
x→p

f(x)g(x)

exists and equals AB .

Let ε > 0 be arbitrary, but fixed. We see that

|f(x)g(x)−AB| = |f(x)g(x)−Ag(x)+Ag(x)−AB| ≤ |f(x)−A||g(x)|+|A||g(x)−B|.
•We are told that lim

x→p
g(x) = B ; hence, there exists δ1 > 0 such that, whenever

x ∈ E , x 6= p , and |x − p| < δ1 , then |g(x) − B| < 1 . For such x , we have

|g(x)| = |g(x) − B + B| ≤ |g(x) − B| + |B| < |B| + 1.

In other words,

(1) x ∈ E, x 6= p, |x − p| < δ1 =⇒ |g(x)| < |B| + 1

• We are told that lim
x→p

g(x) = B ; hence, there exists δ2 > 0 such that

(2) x ∈ E, x 6= p, |x − p| < δ2 =⇒ |g(x) − B| <
ε

2(|A| + 1)

• We are told that lim
x→p

f(x) = A ; hence, there exists δ3 > 0 such that

(3) x ∈ E, x 6= p, |x − p| < δ3 =⇒ |f(x) − A| <
ε

2(|B| + 1)

Now, we take δ = min{δ1, δ2, δ3} . We also take an arbitrary x ∈ E with
x 6= p and |x − p| < δ . We see from (1) that |g(x)| < |B| + 1 ; from (2)
that |g(x) − B| < ε

2(|A|+1) ; and from (3) that |f(x) − A| < ε
2(|B|+1) . Therefore,

|f(x)g(x) − AB| ≤ |f(x) − A||g(x)| + |A||g(x) − B|

<
ε

2(|B| + 1)
(|B| + 1) + |A| ε

2(|A| + 1)
<

ε

2
+

ε

2
= ε.
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11. Let c1 be an arbitrary element of the open interval (0, 1) . For each
n ∈ N , let cn+1 = 1

5 (c2
n+2) . Prove that the sequence {cn} is contractive.

First we show, by induction, that cn+1 ∈ (0, 1) for all natural numbers n .
We picked c1 to satisfy this hypothesis. If 0 < cn < 1 , then 0 < c2

n < 1 ,
2 < c2

n + 2 < 3 , 2
5 < 1

5 (c2
n + 2) < 3

5 ; and therefore, 0 < cn+1 < 1 .

We see that

|cn+1 − cn| = |15 (c2
n + 2) − 1

5 (c2
n−1 + 2)| = 1

5 |c2
n − c2

n−1| = 1
5 |cn − cn−1||cn + cn−1|

≤ 1
5 |cn − cn−1|(|cn| + |cn−1|) < 1

5 |cn − cn−1|(1 + 1).

We used the triangle inequality together with our earlier observation that every
member of the sequence has absolute value less than 1 . The constant b = 2

5 is
less than 1 . We have shown that

|cn+1 − cn| < 2
5 |cn − cn−1|;

therefore, the sequence {cn} is contractive.

12. Consider the sequence {an} with a1 = 4 , and for n ∈ N , an+1 =√
2an + 3 . Prove that the sequence converges. Find the limit of the

sequence.

We first prove, by induction, that the sequence is bounded below by 3 . We see
that 3 < a1 . We assume 3 < an . It follows that 6 < 2an , 9 < 2an + 3 , and
3 <

√
2an + 3 = an+1 .

Now we prove that the sequence is monotone decreasing. I know 3 < an . It
follows that 0 < (an − 3)(an + 1) , or 0 < a2

n − 2an − 3 . It now follows that
2an + 3 < a2

n . All of the numbers in the previous inequality are positive; so, we
see that

√
2an + 3 < an . In other words, an+1 < an .

The sequence {an} is monotone decreasing and bounded. We proved that every
monotone bounded sequence has a real number limit. It follows that the sequence
{an} converges. Finally, now that we know that the sequence {an} converges to
some limit L , we see that L must satisfy L =

√
2L + 3 ; thus, L2 = 2L + 3 , or

L2 − 2L − 3 = 0 , or (L − 3)(L + 1) = 0 . So, L equals either 3 or −1 . Every
element of the sequence is positive; so, L 6= −1 . We conclude that L = 3 .

13. Let f(x) =
{

x2 + x if x is rational

x if x is irrational.
Is f differentiable at 0 ? Prove

your answer.

We calculate

lim
x→0

f(x) − f(0)
x − 0

= lim
x→0

f(x)
x

.
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We suspect that this limit might exist, and if so, we suspect that the limit is 1 .
Notice that if x is not zero and x is rational, then

| f(x)
x − 1| = |x2+x

x − 1| = |(x + 1) − 1| = |x|.

If x is irrational, then
| f(x)

x − 1| = |xx − 1| = 0.

Let ε > 0 be arbitrary, but fixed. Take δ = ε . Suppose |x − 0| < δ . If x is
irrational, then | f(x)

x − 1| = 0 , and this is certainly less than ε . If x is not 0 and
x is rational, then | f(x)

x − 1| = |x| < δ = ε . We conclude that f is differentiable
at 0 , and f ′(0) = 1 .


