Math 554, Exam 4, Summer 2005

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

There are 7 problems. Problem 1 is worth 8 points. Problems 2 through 7 are worth 7 points each. The exam is worth a total of 50 points.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website shortly after the class is finished.

1. Let $E=\{q \in \mathbb{Q} \mid 0 \leq q \leq 1\}$. Is E a compact set? Explain thoroughly. (Recall that \mathbb{Q} is the set of rational numbers.)
2. Define compact. Use complete sentences. Include everything that is necessary, but nothing more.
3. Define continuous. Use complete sentences. Include everything that is necessary, but nothing more.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)= \begin{cases}x^{3} & \text { if } x \text { is rational } \\ 5 x-2 & \text { if } x \text { is irrational }\end{cases}
$$

Give a complete " $\varepsilon-\delta$ " proof that f is continuous at $p=2$.
5. STATE the theorem which relates the limit of a function and the limit of various sequences. Use complete sentences. Include everything that is necessary, but nothing more.
6. Let K be a compact set and let $f: K \rightarrow \mathbb{R}$ be a continuous function. Prove that the image $f(K)$ is a compact set. (I want to see a complete proof.)
7. Let f be a continuous function from the closed interval $[a, b]$ to \mathbb{R}. Let $\varepsilon>0$ be fixed. Prove that there exists $\delta>0$ such that: whenever x and y are in $[a, b]$ with $|x-y|<\delta$, then $|f(x)-f(y)|<\varepsilon$. (Notice that you are supposed to prove that one δ works for every x and y.)

