Math 554, Exam 3, Summer 2005

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

There are 6 problems. Problems 1 through 2 are worth 9 points each. Problems 3 through 6 are worth 8 points each. The exam is worth a total of 50 points.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website shortly after the class is finished.

1. For each natural number n, let

$$
s_{n}=1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} .
$$

Prove that $\left\{s_{n}\right\}$ is a Cauchy sequence.
2. Let A be a set. For each $a \in A$, let U_{a} be an open subset of \mathbb{R}.
(a) Does $\bigcup_{a \in A} U_{a}$ have to be an open set? If yes, prove the statement? If no, give a counterexample.
(b) Does $\bigcap_{a \in A} U_{a}$ have to be an open set? If yes, prove the statement? If no, give a counterexample.
3. Define the sequence converges. Use complete sentences. Include everything that is necessary, but nothing more.
4. For each natural number $n \in \mathbb{N}$, let K_{n} be a closed set of the form $\left(-\infty, b_{n}\right)$ for some $b_{n} \in \mathbb{R}$. Assume $K_{n} \supseteq K_{n+1}$ for all n. Does $\bigcup_{n=1}^{\infty} K_{n}$ have to be non-empty? If yes, prove the statement? If no, give a counterexample. OOPS!. This problem is riddled with typos. The set $K_{n}=\left(-\infty, b_{n}\right)$ is not a closed set. Do the best job you can, then move on.
5. Consider the sequence $\left\{a_{n}\right\}$ with $a_{1}=10$ and, for all $n \geq 2$, $a_{n}=\frac{1}{2}\left(a_{n-1}+\frac{7}{a_{n-1}}\right)$.
(a) Show that this sequence is bounded below by $\sqrt{7}$.
(b) Show that the sequence is a decreasing sequence.
6. Consider the sequence $\left\{a_{n}\right\}$ with $a_{1}=\frac{1}{4}$ and, for all $n \geq 2, a_{n}=\frac{1}{3}\left(1-a_{n-1}^{3}\right)$.
(a) Show that $0<a_{n}<\frac{1}{3}$, for all n.
(b) Prove that $\left\{a_{n}\right\}$ is a contractive sequence.

